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Abstract 

Conventional tDCS protocols rely on applying electrical current at a fixed intensity 

and duration without using surrogate markers to direct the interventions. This has led to 

some mixed results; especially because tDCS induced effects may vary depending on 

the ongoing level of brain activity. Therefore, the objective of this preliminary study was to 

assess the feasibility of an EEG-triggered transcranial direct current stimulation (tDCS) system 

based on EEG online analysis of its frequency bands. 

Six healthy volunteers were randomized to participate in a double-blind sham-controlled 

crossover design to receive a single session of 10 min 2mA cathodal and sham tDCS. tDCS trigger 

controller was based upon an algorithm designed to detect an increase in the relative beta power 

of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power was 

used based on baseline EEG recordings.  

EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and 

successfully triggered the stimulation in all participants. This preliminary study represents a proof-

of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and 

review here different methods of closed loop system that can be considered and potential clinical 

applications of such system. 
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1. Introduction 

Closed-loop brain computer interface (BCI) systems, for real-time detection and 

controlled by electroencephalogram (EEG)-patterns have been developed in order to 

allow humans to interact with their environment without peripheral nervous system 

involvement.1 Most BCI studies focus on improving motor function in people with severe 

motor disabilities.2 In this context, BCI system relies on acquiring a brain signal, 

preprocessing it, extracting and classifying target features, and governing a secondary 

device via a control interface. Such a control system will then act in a loop, feedforwarding 

responses at the same time that it is actively monitoring the existent brain activity for the 

target feature detection. In the recent years, several noninvasive brain stimulation (NIBS) 

techniques have been extensively studied. One of these techniques suitable for BCI 

adaptations is transcranial direct current stimulation (tDCS). In tDCS, weak electric 

currents are applied to the brain via scalp electrodes. This constant electric current 

induces shifts in neuronal membrane excitability, resulting in secondary changes in 

cortical activity. TDCS is a safe and noninvasive neuromodulatory technique. Depending 

on the targeted cortical region and activity state as measured by EEG, tDCS can modulate 

cognitive performance3-5 or suppress symptoms in a range of neuropsychiatric diseases 

such as neuropathic pain, depression, schizophrenia, and addiction among others.6-8 

Although tDCS has most of its neuromodulatory effects on the underlying cortex, tDCS-

induced effects are also observed in distant neural networks. Therefore, concomitant 

EEG monitoring of the effects of tDCS could provide valuable information on the 

mechanisms of tDCS and identify opportunities for closed-loop tDCS-based systems.  
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Conventional tDCS protocols rely on applying the electrical current at a fixed 

intensity and duration, without using surrogate markers to direct the interventions. This 

has led to mixed results in clinical trials, in part because the extent to which tDCS 

modulates cortical excitability is dependent on the ongoing level of cortical activity.9 

Therefore, the development of a closed-loop system that can trigger tDCS at specific 

levels of ongoing cortical activity is appealing because it will allow rapid neuromodulatory 

intervention after detecting a specifically predefined EEG-oscillatory activity, thus 

promoting the enhancement of specific EEG patterns associated to cognitive functioning, 

or in the opposite direction, by inhibiting aberrant EEG oscillations or pathological 

electrical activity as in the case of ictal states. It can also be helpful to determine adequate 

tDCS parameters for specific applications by monitoring EEG signals. In such a system, 

specific changes in the EEG signal would be used for triggering external tDCS devices 

using specific BCI-derived algorithms. Accordingly, a wearable neurofeedback system 

involving surface EEG and transcranial electrical stimulation was recently proposed.10 

Nonetheless, the system despite being useful, has not yet been applied to a clinical trial.  

EEG signals are sensitive and reliable to detect cognitive changes related to performance 

of certain tasks 11, which therefore could be monitored with real-time EEG analysis.12-15 Also, EEG 

power is a reliable measure to detect specific cognitive and motor features across 

sessions,16,17 as well as the effects of tDCS.18,19 Invasive closed-loop systems 

incorporating EEG and brain stimulation techniques have been demonstrated in both 

animal and human studies.20,21 To our knowledge, the only study testing a non-invasive 

closed-loop system in humans is a recent feasibility study showing that motor-imagery 

induced desynchronization detected by surface EEG can trigger transcranial magnetic 
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stimulation (TMS) leading to increased excitability of the motor cortex.22 But, so far there 

are no studies assessing the feasibility of using surface EEG to guide tDCS stimulation in 

humans. A closed-loop system has some challenges such as (i) accurate triggering of tDCS 

device; (ii) defining an algorithm based on a neurophysiological signal that would be clinically 

relevant and (iii) defining a task to modify a neurophysiological signal.23 

Here we assessed the feasibility of a closed-loop system based on scalp-recorded 

EEG that is able to detect specific patterns of electroencephalographic oscillations based 

on a pre-defined algorithm. In our system, the EEG signal is acquired, filtered, sampled, and 

digital-signal-processed to obtain quantitative data that identify specific profiles of brain 

oscillations. This EEG system is also connected to a noninvasive brain polarization device, 

a tDCS apparatus, which would allow the specific EEG changes to automatically trigger the 

stimulation. For this proof-of-concept study, the triggering algorithm chosen to initiate 

cathodal tDCS was based on a combined increase of relative power in the beta band and 

a decrease of relative power of the alpha band. This threshold was arbitrarily selected in 

order to mimic the cognitive effort involved in task engagement, and simultaneously 

preventing the system from being triggered by very small changes in EEG power (e.g. 5%).  

The primary aim of this study was a proof-of-concept and assessment of the 

feasibility and safety of an EEG-triggered tDCS closed-loop system in healthy subjects. 

As a secondary aim, we explored whether EEG-guided active tDCS induced significant 

changes in EEG power as compared to EEG-guided sham tDCS.  

 

2. Technical aspects of closed-loop systems for brain stimulation 
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Current monitoring technology allows for portability and miniaturization of circuits 

intended to record and process signals with the intention to control NIBS devices. Those signals 

can be obtained from the endogenously generated and functionally-dependent cortical activity or 

related with oxygen binding for metabolic rate, these signals can be captured using technology 

suitable for demanding environments such as rehabilitation centers or the ever complex hospital 

settings, EEG or near-infrared spectroscopy (NIRS) measurements are the prototypical systems 

due to practicality and safety, especially if the main objective for application is to keep the system 

as portable and non-invasive as possible. The ideal closed loop system needs to process the signals 

in real time as to allow for feedback control and trigger response, this closed-loop system must 

also benefit for brain-state dependent oscillatory activity or cortical hemodynamic changes, so it 

allows for the modulation of ongoing motor or cognitive training/tasking on line. For the purpose 

of this manuscript and because a EEG-based closed-loop system is presented, a review of this 

methodology is reviewed.   

The design of a closed-loop system differs significantly between different methods, and 

because this is an evolving multidisciplinary field the language used to describe the systems can 

vary among devices. An intelligent EEG-based, NIBS closed-loop, can be also called EEG-based 

feedback stimulation control, such a device or system must interface with the nervous system via 

electrographic signals, providing an input which will responds to pre-specified quantitative EEG 

criteria. A closed-loop first needs to recognize, discriminate and classify the EEG patterns into a 

language that can be delivered to the system for further action. Briefly, we can separate the 

operational structure of the system in four major components; 1) data acquisition operation and 

signal recognition; 2) feature extraction and reduction of data dimension; 3) classifier design; and 
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4) classification and decision making for output. Altogether, these components serve as a basic 

structure for the development of an intelligent EEG-based closed-loop device (see figure 1).      

 

[Insert figure 1 about here] 

 

3. Methods 

This was a feasibility pilot trial in which we assessed in healthy volunteers a closed-

loop tDCS system triggered by specific EEG patterns based on a pre-defined algorithm. 

 

3.1 Participants 

Six healthy subjects were recruited (3 females, age: 27 ± 5.87 years old). Subjects 

were excluded if there were (a) existence of major neurologic or psychiatric condition (i.e. 

epilepsy, severe depression); (b) history of head injury resulting in more than a 

momentary loss of consciousness; (c) previous neurosurgery; (d) history of significant 

alcohol or drug abuse in the prior 6 months; (e) presence of unstable medical conditions, 

such as uncontrolled diabetes mellitus, cardiac pathology, cancer, kidney insufficiency 

and acute thrombosis; or (f) general contraindication to tDCS, such as metal implant in 

the head; implanted electronic medical devices; and pregnancy.  

All subjects gave written informed consent prior to their inclusion in this study. This 

experiment was approved by the Institutional Review Board (IRB) of Spaulding 

Rehabilitation Hospital (SRH), and was conducted according to the Declaration of 

Helsinki. 

 



8 
 

3.2 tDCS stimulation  

In this study, participants were randomized in a counterbalanced order using a 

computerized randomization technique to start with either sham or active tDCS. The 

second session was performed one week later in order to prevent carryover effects. 

Cathodal tDCS was delivered by a customized 1X1 tDCS device (Soterix Medical, US) 

and using two rubber electrodes in 35cm2 saline soaked sponges. The parameters for 

cathodal tDCS were 2mA for 10 minutes (30 seconds ramp up/down), with the cathode 

placed over the left dorsolateral prefrontal cortex (DLPFC, F3) and anode electrode on 

the contralateral deltoid muscle. By applying 10 minutes of tDCS, it will be possible to 

measure an effect that can outlast the stimulation period up to one hour.24-26 Sham 

stimulation followed the same parameters except that the duration of the stimulation 

lasted only 30 seconds ramping up/down, as this is a reliable method to ensure the 

blinding.27  

 

3.3 Electroencephalography  

The brain electrical activity was registered through Powerlab 26T (ADinstruments, 

Australia). The EEG electrodes were placed according to the 10-20 International System, over Cz 

and another one on the right earlobe (A2) in a monopolar montage (see figure 2), whereas the 

reference was placed at the left mastoid apophysis. 

EEG signal was passed through a band pass filter between 0.1 and 35 Hz, before 

being sampled at 1000Hz. Offline processing of EEG data (for baseline and after tDCS) 

involved ocular artifact removal following the Gratton and colleagues algorithm 28 and  

averaging of 4-sec epochs (15 in total). Fast Fourier transformation (FFT) using Labchart 
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8.1 (AD instruments, Australia) was applied to calculate power in the following frequency 

bands: delta, theta, alpha and beta.  

 

3.4 Procedures  

3.4.1 The triggering algorithm  

This closed-looped system consisted of triggering the customized 1X1 tDCS 

device (Soterix Medical, US) after a pre-specified EEG power threshold was reached. For 

this specific project, the threshold was arbitrarily established at an increase of relative 

beta power of 200% with a simultaneous decrease of 50% in relative alpha power – this 

would prevent the system from being triggered by very small changes (e.g. 5%). Once both 

conditions were met (i.e. decrease in alpha and increase in beta), the Powerlab 26T would 

automatically send a trigger pulse to the tDCS device, which will then start the stimulation. 

After the period of stimulation has ended, the closed-looped system would actively search 

again for the pre-established threshold, and if it was reached, the tDCS would be triggered 

once again (see figure 2). The goal of this proof of concept was not to determine the 

threshold. Instead, it was to develop a system where changes on the EEG activity could 

be detected and that would automatically trigger (or not) the tDCS device based on a pre-

established threshold.  

 

[Insert figure 2 about here] 

 

During the first minute of baseline EEG recordings, participants were asked to look 

at a fixator cross in front of them, and then they were asked to keep their eyes closed for 



10 
 

the remaining 9 minutes of registration. This period was used to calculate pre-specified 

thresholds using offline EEG analysis. Following the baseline EEG recording, a 

computerized Stroop task was used in order to induce the EEG changes required to reach 

a pre-determined threshold.  Once it was reached and tDCS was initiated, subjects were 

asked to close their eyes. After tDCS had ended, another ten minutes of EEG were recorded (figure 

2). 

The baseline parameters (eyes open) for the closed-looped system were defined 

based on the relative alpha and beta power. These values were calculated reflecting the 

percentage of the actual power of the frequency band (i.e. alpha or beta) in the total power 

(i.e. of all frequency bands).  

 

3.4.2 Analysis 

 In order to assess if the cognitive task triggered successfully tDCS, Fisher´s exact test was 

used. In order to assess the differences across active and sham tDCS, Mann Whitney tests were 

used for each brain rhythm.  All the statistical analyses were performed using SPSS (version 21.0). 

Due to the exploratory nature of this study we only analyzed differences between sham and verum 

tDCS. 

 

4. Results 

In all cases, the EEG threshold tDCS triggering was induced during the performance of the 

Stroop task (p<.001). The system detected correctly the pre-determined controller algorithm 

(increase in the relative power of beta by more than 200%, accompanied by a decrease of 50% or 
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more in the relative power of alpha) and initiated the stimulation successfully. There were no 

adverse effects associated with stimulation. 

 

    [Insert figure 3 about here] 

One participant who dropped out during the trial was excluded from the power analyses. 

After the EEG threshold induced tDCS triggering, in the period immediately following tDCS, 

cathodal tDCS did not result in any significant change for any of the EEG power bandwidths (see 

figure 3). 

 

5. Discussion  

We demonstrated the technical feasibility of a closed-loop EEG-tDCS system 

which detected a task-induced EEG change in all participants and triggered tDCS 

stimulation in all trials. This is one of the first studies showing the feasibility of a closed-

loop system consisting of surface EEG and tDCS, where tDCS was delivered as a result 

of consistent EEG oscillatory changes derived from a cognitive challenge in multiple 

healthy subjects. Participants exposed to the interventions did not spontaneously report 

any adverse effects or on the tDCS adverse effects questionnaire, and had no acute 

changes on neurological and cognitive examinations.  

The closed-loop system acquired EEG signals and sent an output trigger based upon the 

predetermined algorithm that processed the EEG signals and once threshold was reached, tDCS 

was activated. The activated tDCS device then delivered the stimulation current and EEG signal 

was monitored again to form the closed-loop. The algorithm consisted of an online FFT for all the 
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frequency bands (with an initial delay of 500 msec), followed by an active threshold monitoring. 

Once the threshold was reached (i.e., alpha power decreased by 50% and beta power increased by 

200%), tDCS was triggered. Once tDCS stimulation has ended a new active threshold monitoring 

was initiated, thus closing the loop.  

With regard to the secondary aim, there were no significant effects of cathodal tDCS on 

EEG frequency band power. This was likely due to reduced lack of statistical power in the current 

design and also because the parameters of tDCS were not aimed to induce significant EEG changes 

in healthy subjects.  

 

Historical notes on closed loop system 

The idea of combining electrical stimulation and cortical outputs is not new. By using 

functional electrical stimulation (FES) it is possible to connect cortical outputs directly to muscles, 

and to thereby induce a movement. For instance, EEG beta rhythm generated by the imagination 

of foot movements has been already used to induce grasping movements.29 In fact, in medicine, 

there is a good number of examples of successful closed loop systems. One of them is the automatic 

cardiac defibrillator, in which a constant electrocardiogram (ECG) system monitors the heart’s 

electrical activity and can trigger a portable defibrillator that can revert cardiac arrest.30-33 The 

combination of tDCS and EEG is, on the other hand, a feasible practice that has not being tested. 

One of the advantages of tDCS is its small size and portability characteristics.34  

 

Closed loop system using tDCS 

TDCS is a technique that has had a significant technical and clinical development in the 

past 15 years;35 however some of its effects are still moderate.36-38 One area of development to 
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optimize the effects of tDCS is through the use of a closed loop system. The closed-loop system 

using specific signals from the brain involves (i) specific neural patterns found, for instance, in 

EEG for behavior/cognition and (ii) corresponding tDCS-polarity induced effects to modulate 

these effects. This closed-loop system will allow more effective modulation of cognitive 

performance as the effects of tDCS also depends on the ongoing level of brain activity.24,39,40 For 

this system to be effective it is necessary to understand: (1) specific EEG signals that translate in 

specific behaviors or prediction of behaviors and (2) specific tDCS parameters that can lead to a 

specific EEG signature associated with a specific behavioral change. Although the main goal of 

this feasibility report is to test the technical requirements and feasibility of the system, there is still 

a need for intensive research for each clinical application as to define steps 1 and 2.  

There are potential applications using tDCS to develop a closed loop system. For instance, 

there is growing evidence on effects of tDCS on motor learning 25,41,42. In this context, when tDCS 

is integrated in a closed-loop system within a BCI, which promotes motor learning, the therapeutic 

effects of such a system can be substantially enhanced. In fact, such a closed-loop system 

employing TMS has been suggested as a potential tool to improve post-stroke motor recovery 22. 

Moreover, tDCS closed-loop systems were already successfully tested in animal models of 

epilepsy. In a previous study, Berényi and colleagues 20 showed that seizure-triggered, feedback 

driven tDCS was able to detect and reduce spike-and-wave in a rodent model of generalized 

epilepsy. This type of intervention could be a possible alternative to other forms of brain 

stimulation (such as deep brain stimulation), where the continuous application of electrical current 

is associated with increased side effects43  

Another potential application of a closed-loop tDCS system is in chronic neuropathic pain 

or fibromyalgia. It has been demonstrated that the primary motor cortex is a critical neural 
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modulator of maladaptive pain related neural circuits 44-46 and that interventions to modulate the 

primary motor cortex, such as tDCS or mental imagery, can affect motor cortex excitability and 

reduce pain.47-49 Therefore, one potential application is to use behavioral interventions such as 

visual illusion (mirror therapy is an example) to induce changes in motor cortex excitability and 

combine with TDCS to modulate pain-related circuits.50 In such study, a detailed recording of 

motor cortex excitability could be used to trigger (and also stop) tDCS of primary motor cortex to 

reduce pain. In fact, unnecessary prolonged tDCS could lead to opposite effects.51 

In this scenario, a closed-loop system that is able to detect specific abnormal EEG activity 

and is able to trigger a pre-specified stimulation and thus restore brain activity with less exposure 

to electrical currents could have a better risk/benefit ratio and also more optimal results. Moreover, 

these systems can be used to monitor neurophysiological indicators of potential side effects such 

as pre-seizure EEG abnormalities in high risk populations and therefore abort the stimulation 

preceding the clinical symptoms.  

 

Potential clinical impact of closed loop systems  

The development of non-invasive closed-loop systems might have future 

implications in disorders characterized by transient abnormalities of cortical excitability 

and connectivity. Since these systems would incorporate dynamic stimulation techniques 

(i.e. tDCS), which are responsive to online physiological monitoring (EEG), they can be 

used in combination with other forms of therapies and increase the success rate of such 

interventions. Moreover, designing specific algorithms able to determine individualized 

thresholds based on intrinsic abnormalities recorded on EEG will allow optimization of these 

therapies and stimulation techniques.  
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For example, in disorders such as epilepsy, designing algorithms to predict, detect and 

treat an ictal event is of particular importance as these algorithms might be used in closed-

looped systems which could trigger preventive or therapeutic interventions. 52 Such 

systems have been recently investigated using invasive devices 53; however, there are no 

studies assessing the feasibility and efficacy of completely non-invasive closed-loop 

systems in epilepsy. Cathodal DC polarization has already been shown to reduce 

epileptiform EEG activity in patients with epilepsy 54; closed-loop systems incorporating 

these methods should be developed to detect ictal patterns and initiate stimulation. 

Neurorehabilitation, including cognitive remediation, is another potential application of a 

tDCS closed-loop system Moreover, the closed-loop system can be adapted to other 

forms of non-invasive stimulation, such as stimulation of the sensory somatic sensory 

fields of the trigeminal or vagal nerves, in which sympathetic/parasympathetic 

modulations can be used for therapeutic purposes.  

Recently, transcranial alternating current stimulation (tACS) was integrated into a 

feedback-controlled interface, for the purpose to boost sleep spindle activity, 

Lustenberger et al, successfully demonstrated positive modulation of oscillatory sleep 

spindles, by applying an algorithm for the detection of such distinctive electrographic 

feature pattern, and triggering tACS in the 12Hz range to enhance a rhythm associated 

with improvements of motor memory.55 This works adds evidence for the integration of 

intelligent monitoring of EEG activity and efficiently applied noninvasive brain stimulation.    

Another field that has benefited for advanced research on closed-loop systems is DBS and 

Parkinson’s disease. Recent studies have tested adapted DBS (aDBS) with promising results (for 

a review see 56). In this review, they pointed out that not every symptom could benefit from an 

https://www-ncbi-nlm-nih-gov.ezp-prod1.hul.harvard.edu/pubmed/?term=Lustenberger%20C%5BAuthor%5D&cauthor=true&cauthor_uid=27476602
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adaptive closed-loop system or are even more challenging to deal with. For instance, in Parkinson 

disease, the effects of DBS on dystonia may appear after several days or more, while for tremor 

the benefits are more direct.57  

In this case, aDBS system aiming at treating tremor shows better results than those for 

dystonia. In the scenario of epilepsy, most of the drugs have a direct effect when a seizure occurs 

by modulating membrane potentials and seizure threshold, while for NIBS, these techniques seem 

to have an impact on frequency of seizure occurrence as well as on reducing the interictal 

epileptiform activity.58 These preliminary results show that focal epilepsy seems to be a proper 

target to benefit from a closed-loop approach. In our proof-of-concept study, we can conceptually 

approach the idea to avoid or prevent seizures by decreasing epileptiform cortical activity, by 

placing the cathode electrode over a theoretical epileptogenic area. The rationale behind comes 

from evidence of decreased seizure frequency and interictal discharges, when subjects with focal 

epilepsy (mesial temporal lobe epilepsy) were exposed to cathodal tDCS59  The EEG-tDCS model 

seems to fit the requirement of a realistic and efficient closed-loop system and, therefore, it is 

essential to pursue investigations on the potential benefits of NIBS in reducing the risk of seizure 

using this closed-loop approached.   

 

6. Important points to develop a closed loop system 

The most single important aspect to consider when developing such closed-loop system is 

the threshold criteria. In the present study, as a proof of feasibility, our threshold was pre-

established on rather arbitrary values that were chosen in order to reduce the probability of tDCS 

being triggered by very small changes. Thus, the next step will be the implementation of adaptive 

thresholds based on very specific brain changes related either to task performance or to neurologic 

condition. Such a system should behave similarly to the already available automatized QRS 
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detectors in ECG, where it is possible to detect and categorize different peaks which also represent 

different types of cardiac activity.60  

 Determining the proper trigger in a closed-loop system is a key point if not the most 

important part of the model. Theoretically, creating a closed-loop system based on a causal 

relationship between the output (e.g, brain activity) and the stimulus generator is feasible. 

However, it is well known that a specific behavior or symptom is not driven by a single pattern of 

brain activity. Therefore, the algorithm that will be used in the model should take into account 

several well defined parameters to have an appropriate and accurate response. Indeed, it is of a 

high importance to clearly define the symptoms aimed to be modulated. Regarding seizure 

prediction, several criteria have been defined by Mormann (2007)61 to evaluate the efficacy of a 

seizure prediction algorithm: algorithms should be developed upon long term recordings from 

patients; the sensitivity and specificity the algorithm should be assessed under the prediction time 

horizon, but also under the false warning portion of time; the prediction is above change level, as 

determined by appropriate statistics; and finally, needs to be tested in an out-of-sample data to 

increased its external validity.61 

Measurements tools for a closed loop system 

It is essential to determine an accurate measure that indicates the occurrence or the 

demonstration of the target symptom to treat. Many closed-loop systems have used on scalp-

recorded EEG or electrocorticography (ECoG). EEG and ECoG recordings have the advantage to 

be straightforward; however, they are surrogates of the symptom that it is aimed to be modulated 

or healed. On the other hand, clinical triggers (e.g, muscle contracture or tremor) may induce better 

results since they represent the final outcome to modulate. Nonetheless, clinical triggers might be 
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more complicated to record. The most challenging issue would certainly be to distinguish the 

problematic clinical measure from other normal and desired clinical behaviors.  

Other physiological measures, such as heart rate variability or kinematics by using 

accelerometers, represent an interesting alternative to EEG. They have been proposed to be used 

to extract salient biomarkers of seizures 62. An important challenge would be to determine how to 

measure, record, and remove noise. Nevertheless, this can be challenging since physiological 

signals are prone to be easily changeable by many factors unrelated to the targeted symptom, 

leading to a high rate of errors of classification by the algorithm. If this issue can be solved, an 

interesting approach would be the incorporation of different physiological measures to EEG 

recording in order to improve the accuracy of the closed-loop system and, as a consequence to 

improve seizure prediction and intervention.  

Cognitive modulation by closed-loop stimulation could be reached not only by monitoring 

electrical brain activity, but by feeding cognitive task performance into the algorithm as well. This 

model represents a level of modular efficiency where ongoing EEG signals are analyzed and 

correlated with behavioral responses. In this scenario, reaction time, omission and commission 

errors on a continuous performance task, can be used as surrogate markers of network modulation 

and by accounting online EEG signal analysis. The same can be used for memory or arithmetic 

tasks, and all of these components will improve the sensitivity and functionality of the controller 

algorithm, and might promote an adequate delivery of electrical stimulation, since brain 

oscillations would be coupled with behavioral responses for a more accurate calculation of network 

performance under the effects of the stimulation itself. In this scenario, the main challenge would 

be to define a sensitive cognitive outcome that would be related to a meaningful clinical result. 
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Challenges of closed-loop systems. 

Current closed-loop systems have three main caveats: 1. They are based on a causal 

relationship between the trigger and the outcome, while it is not how the brain or the body works; 

model encompassing multiple triggers should be design to improve the accuracy and efficacy of 

the system; 2. The algorithm should be built to be adaptable over time since the treatment (e.g. 

NIBS) will improve patients’ symptoms and the threshold that has been first determined would 

need to be adapted over time.  

To address this issue, future studies would need to incorporate machine learning systems; 

3. It is essential to well, if not entirely, understand the (neuro)physiological mechanisms of a 

disease to actually be able to detect the best input to record and determine how to stimulate or 

modify it. However, so far, not all conditions meet this criterion and, might not be a good target 

for successful closed-loop approaches. Moreover, based on the current literature, closed-loop 

systems have only been tested for short period of times. Thus, it is crucial to investigate the 

feasibility of this patients’ tailored treatment in long-term studies in order to know if these cutting-

edge technologies are durable treatment and could be translated clinical setting.  

Use of machine learning into closed-loop systems 

The main limitation in implementing online EEG analyses is the development of complex 

algorithms and learning methods in order to overcome within subject variability and provide more 

precise information with favorable signal-to-noise ratio.63 

Machine learning is the field of science that can address this important point to implement 

a closed-loop system in clinical practice as aforementioned. The principle of machine learning is 
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to learn a mathematic model, or classifier, that can recognize and segregate novel patterns. These 

systems can either be auto-corrected, while others first have to look at the results to be further 

corrected and better adapted. For a closed-loop system involving EEG and NIBS, based on 

previously collected data, several algorithms are developed to correlate the outcome measure 

(EEG) to the parameters of stimulation and the clinical outcomes. Since continuous EEG data 

collection is being managed and stored into the system, future algorithm development must start 

using the EEG data to drive the electrical stimulation, moreover, the representation and the 

algorithm must account for the identification of neurophysiological patterns which will control the 

input/output based on these transformations, accordingly, this learning program for pattern 

recognition must be capable to modify the stimulation parameters based on a continuous 

recognition on previously classified EEG characteristics under the influence of the stimulation, as 

well as without it, in order to optimize the delivery of the current and its effects on excitable tissue.  

Moving forward into the intelligent design of these machine learning units, will be the 

incorporation of prediction models based on EEG estimates of modulation. This can be achieved 

by understanding the regular and prototypical responses to the stimulation by accounting the 

probability for these regularities to happen, this will have a profound impact on how the 

stimulation can facilitate cognitive performance in a standardized task for a healthy volunteer, or 

in the case of M1 neuromodulation in a post stroke subject undergoing rehabilitation for his/her 

paretic limb.  

From a clinical perspective, a recent DBS trial on Parkinson Disease has used this machine 

learning concept to optimize patients’ treatment.64 They investigated if the incorporation of 

patient-specific symptoms and medications into a machine learning algorithm would better predict 

the treatment outcomes in comparison to stimulation parameter settings alone. They used three 
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different machine learning methods (i.e., support vector machines, Naïve Bayes, and random 

forest) and identified that several clinical parameters were significantly correlated with 

postoperative outcomes. Using these results, the combined machine learning algorithms were able 

to predict almost 90% of the motor improvement at one year post-DBS surgery. These preliminary 

results based on a small sample of patients demonstrate that more robust machine learning systems 

could be adequately trained and programmed using data from larger clinical trial.  

 

7. Summary 

In summary, we demonstrated the feasibility of developing a closed-loop system that was able to 

recognize specific patterns of EEG activity to trigger tDCS stimulation. This study represents a 

proof-of-concept for the development of a non-invasive EEG-tDCS closed-loop system in humans, 

which should facilitate future research, on the development of adaptive thresholds and 

identification for clinical applications. NIB stimulation and NIB recording provide a safe and 

theoretically efficient closed-loop system. Moreover, the interaction between the two, might also 

lead to a better understanding of the mechanisms of action of the targeted (neurological) condition. 

Indeed, if a solid closed-loop system taking into account several triggers and outcomes – inputs 

and outputs could be created, it may lead to a better understanding of the interaction between the 

cause/mechanisms of the conditions and its symptoms.  

 

8. Limitations 

This study produced valuable evidence for the use and application of an EEG-controlled tDCS 

stimulation device, however, we should see this work as an initial attempt to test the idea of a 

physiology based system for NIBS. This trial was designed to probe feasibility and as proof-of-
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concept principle, due to the nature of the design some weakness can be accounted for, such are; 

small sample size, the development of an arbitrary algorithm, and the lack of a control group. We 

believe the basic principle of the study was reached, but further research is needed to refine the 

characteristics of the monitoring algorithm and the cognitive-behavioral tasks used to promote 

changes in the targeted network. Transition to clinical applications is of great interest to the field, 

long-lasting EEG monitoring and multiple sessions of stimulations are going to be required for the 

appropriate design of a EEG tDCS closed-loop applied to specific pathologies.       
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Figure Legends 

 

Figure 1: Schema of the main components of the present closed-loop system. 

Figure 2: Illustration of the setting in this study. The closed loop system includes an amplifier & 

controller device to filter and amplify EEG signals, a laptop to provide the Stroop task and to 

process the algorithm for trigger decision, and a tDCS device that can be triggered by the 

amplifier & controller device. The EEG electrodes are placed on the vertex (Cz) and right 

earlobe (A2) while tDCS cathode is placed on the left dorsolateral prefrontal cortex (DLPFC, F3) 

and anode on the right deltoid muscle. 

Figure 3:  Changes in Delta, Theta, Alpha, and Beta power of cathodal and sham groups after 

triggered tDCS, wherein the data are expressed as mean ± SD.  
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