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Abstract Neuromodulation techniques aimed at normalizing the neurophysiologic 
disturbance produced by brain lesions or dysfunction have been studied for years 
in attempts to modulate brain activity to treat several neurological diseases. 
The field of (non)invasive brain stimulation offers a valuable alternative 
to improve the recovery of severely brain-injured patients with disorders 
of consciousness, a population that lacks of effective treatment options, 
especially at the chronic stage. We here describe invasive and noninvasive brain 
stimulation techniques, namely, deep brain stimulation (DBS) and transcranial 
direct current stimulation (tDCS), as therapeutic options for patients with 
DOC.  DBS has shown to induce extensive behavioral improvement after 
the implantation of an electrical stimulator in the intralaminar nuclei in case 
reports. However, large controlled clinical trials have to be conducted in order 
to confirm the clinical benefit of this treatment. Regarding tDCS, the first 
studies, targeting the left prefrontal cortex, have shown encouraging results, 
with significant behavioral improvements, in both acute and chronic patients. 
Besides behavioral improvements, mechanisms underlying the effects of these 
neuromodulation techniques need to be further investigated. The mesocircuit 
model, by integrating the fronto-striato-thalamic loop, provides a conceptual 
foundation to explain the effects of several treatments having shown some 
effectiveness in the recovery of patients with DOC.
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Chapter 12
New Therapeutic Options for the Treatment 
of Patients with Disorders of Consciousness: 
The Field of Neuromodulation

Aurore Thibaut and Nicholas D. Schiff

Abstract  Neuromodulation techniques aimed at normalizing the neurophysiologic 
disturbance produced by brain lesions or dysfunction have been studied for years in 
attempts to modulate brain activity to treat several neurological diseases. The field of 
(non)invasive brain stimulation offers a valuable alternative to improve the recovery of 
severely brain-injured patients with disorders of consciousness, a population that lacks 
of effective treatment options, especially at the chronic stage. We here describe invasive 
and noninvasive brain stimulation techniques, namely, deep brain stimulation (DBS) 
and transcranial direct current stimulation (tDCS), as therapeutic options for patients 
with DOC.  DBS has shown to induce extensive behavioral improvement after the 
implantation of an electrical stimulator in the intralaminar nuclei in case reports. 
However, large controlled clinical trials have to be conducted in order to confirm the 
clinical benefit of this treatment. Regarding tDCS, the first studies, targeting the left 
prefrontal cortex, have shown encouraging results, with significant behavioral improve-
ments, in both acute and chronic patients. Besides behavioral improvements, mecha-
nisms underlying the effects of these neuromodulation techniques need to be further 
investigated. The mesocircuit model, by integrating the fronto-striato-thalamic loop, 
provides a conceptual foundation to explain the effects of several treatments having 
shown some effectiveness in the recovery of patients with DOC.
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�Introduction

While significant progress has been made in understanding the neural correlates of 
disorders of consciousness (DOC), treatment options for patients with altered states 
of consciousness available today remain very limited. Moreover, when these treat-
ments are effective, the underlying mechanisms are still almost unknown. Recent 
discoveries demonstrating the inherent plasticity of the brain suggest a wide range 
of therapeutic possibilities. Indeed, in the past 10 years, a number of studies have 
reported that some patients in MCS could spontaneously improve even several years 
after the insult [1–3]. Studies of treatments improving cognitive abilities in patients 
with DOC have also shown that deep brain stimulation (DBS) of the intralaminar 
nuclei of the thalamus [4] and some pharmacological agents such as amantadine  
[5, 6], apomorphine [7], intrathecal baclofen [8], and zolpidem [9, 10] can improve 
behavioral signs of consciousness in some patients with DOC. However, so far, only 
amantadine has been shown to increase signs of consciousness in a large cohort of 
acute and subacute patients with DOC in a placebo-controlled trial [6]. In addition, 
the specific mechanisms underlying the recovery of behavioral signs of conscious-
ness observed in such patients with DOC following the administration of these drugs 
are still poorly understood. We hence clearly need to improve our treatment options 
for the small—albeit existing—minority of patients who show clinically meaningful 
recovery of quality of life after chronic DOC [11]. Our next challenge is to better 
understand the mechanisms of action of these treatments when clinical improvement 
of patients is observed and how to possibly improve therapeutic options.

In this chapter, we describe the use of invasive and noninvasive brain stimulation 
(i.e., deep brain stimulation (DBS) and transcranial direct current stimulation 
(tDCS)) to improve the recovery of patients with DOC, as well as the current mod-
els that could explain the underlying neurophysiological mechanisms of these two 
neuromodulation techniques.

�What Network to Stimulate

�Frontoparietal Network

Studies of regional brain metabolism have sought to identify areas specifically 
involved in loss of consciousness, comparing brain metabolism of patients in veg-
etative state/unresponsive wakefulness syndrome (VS/UWS) and in minimally con-
scious state (MCS) with healthy controls. The results of these studies highlight the 
correlation of a widespread impairment of the frontoparietal network, encompass-
ing midline (i.e., anterior cingulate cortex (ACC)/mesiofrontal and posterior cingu-
late cortex (PCC)/precuneus, related to internal awareness or self-related processes) 
and lateral (i.e., prefrontal and posterior parietal, related to awareness of the 
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environment) associative cortices, a decreased level of consciousness [12–18]. The 
connectivity within the midline frontoparietal cortex, also called the default mode 
network (DMN), has been shown to reflect the level of consciousness of DOC 
patients [19]. Indeed, the connectivity of this network is correlated to the level of 
consciousness, ranging from patients in UWS/VS (low connectivity) to patients in 
MCS and to healthy controls (higher connectivity). In a more recent study, it has 
been observed that patients in UWS/VS have metabolic dysfunction in both thalami 
and both extrinsic/lateral and intrinsic/medial networks, also called the DMN (i.e., 
anterior cingulate/medial prefrontal cortex and posterior cingulate/precuneus), as 
compared to controls, while MCS patients showed metabolic dysfunction in both 
thalami but only in the intrinsic/medial network [20]. These studies point to the 
importance of both internal and external consciousness network in the recovery of 
consciousness.

Part of the external consciousness network, the dorsolateral prefrontal cortex 
(DLPFC) is a critical area for higher cognitive functions. This cortical region is con-
nected to many brain areas such as the orbitofrontal cortex, the basal ganglia, the 
thalamus, and the associative cortical areas. It is thought to play an important inte-
grating role in the motor and behavioral functions, as well as in the executive func-
tions, such as planning, working memory, inhibition, and cognitive flexibility. 
Indeed, the DLPFC receives multisensory information from the parietal associative 
cortices and projects directly to subcortical monoaminergic and cholinergic neuro-
nal populations within the brainstem [21–23]. Besides executive functions, the addi-
tional cortical and subcortical circuits with which the DLPFC is connected are more 
generally required for all complex mental activity. Indeed, the DLPFC is part of the 
functional executive control network, known to be related to external awareness 
[24]. Through these complex connections with cortical and subcortical brain areas, 
the DFPLC is a critical brain region for cognitive functions and integrations. It is 
part of the external consciousness network, as well as related to the recovery of 
consciousness [20]. Recent neuroimaging studies have shown the implication of the 
DFPLC in the efficacy of several treatments (e.g., zolpidem, amantadine, or nonin-
vasive brain stimulation) aiming to improve signs of consciousness in DOC patients 
[5, 25, 26], further strengthening the importance of this region in recovery of  
consciousness (see below).

It is now widely admitted that the precuneus is another critical hub for conscious-
ness recovery [13, 18, 27, 28]. Indeed, several studies have shown that, at rest, the 
precuneus is the most active area in healthy subjects, while it is the most impaired 
in patients in VS/UWS [29]. In addition, the recovery from VS/UWS seems to be 
paralleled by a recovery in brain metabolism in this region [12, 30]. Moreover, the 
precuneus is a critical hub of the DMN, which is also highly correlated with the 
level of consciousness [19, 27, 31, 32]. A recent functional magnetic resonance 
imaging (fMRI) study using tractography has anatomically objectified that patients 
with DOC demonstrate damages in fiber tracts connecting the precuneus with both 
cortical (i.e., temporoparietal junction and frontal medial cortex) and subcortical 
(i.e., thalamus and striatum) areas [33].
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�Mesocircuit Frontoparietal Model

In addition to the very strong evidence that activity within the frontoparietal network 
grades with level of recovery of consciousness, the key role of the anterior forebrain 
mesocircuit has been identified in recovery of consciousness after severe brain inju-
ries [34]. These networks have critical functional and anatomical relationships that 
support a joint mesocircuit frontoparietal model [35] as reviewed below (Fig. 12.1).

The mesocircuit hypothesis emphasizes that the anterior forebrain is particularly 
vulnerable to downregulation due to widespread cerebral deafferentation that typi-
cally occurs following multifocal brain injuries [34]. The anterior forebrain meso-
circuit itself prominently includes the frontal/prefrontal cortices and the 
striatopallidal modulatory system that regulates thalamic outflow back to the cortex 
and striatum. Neurons within the central thalamus have a crucial role in the meso-
circuit based on their extensive anatomical connectivity with the forebrain [37], as 
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Direct
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Fig. 12.1  The mesocircuit frontoparietal model. Reduction of thalamocortical and thalamostriatal 
outflow following deafferentation and loss of neurons from the central thalamus withdraws impor-
tant afferent drive to the medium spiny neurons of the striatum, which may then fail to reach firing 
threshold because of their requirement for high levels of synaptic background activity. Loss of 
active inhibition from the striatum allows neurons of the globus pallidus interna (GPi) to tonically 
fire and provide active inhibition to their synaptic targets, including relay neurons of the already 
strongly disfacilitated central thalamus, and possibly also the projection neurons of the pedunculo-
pontine nucleus. Several treatments that have shown promising results in the recovery of signs of 
consciousness in severely brain-injured patients are related to the mesocircuit model. A partial 
preservation of the prefrontal cortex (i.e., stimulated area) seems to be necessary to induce a clini-
cal tDCS response [25]. The clinical improvement of a patient who responded to amantadine was 
correlated with an increase in brain metabolism with the frontoparietal network [5]. Zolpidem may 
reduce the inhibition of the thalamus by activating the striatum [34]. Finally, deep brain stimulation 
directly acts over the central thalamus aiming to stimulate the thalamocortical connectivity [4] 
(Adapted from [36])
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well as their functional role in forebrain arousal regulation [38, 39]. Consistent with 
their unique geometry, pathological studies have shown strong correlation of the 
loss of these central thalamic neurons with the severity of structural brain injuries 
and level of functional outcomes ranging from disorders of consciousness to moder-
ate disabilities [40]. The main hypothesis anticipates two major effects: (1) a critical 
decrease in central thalamic outflow secondary to disfacilitation [41] resulting from 
loss of corticothalamic connections and (2) direct inhibition of central thalamic neu-
rons by disinhibited globus pallidus (GP) neurons as a result of insufficient cortico-
striatal and thalamostriatal input to the medium spiny neurons (MSNs) of the 
striatum that require high level of stimulation to reach their firing threshold [42]. 
Collectively, as a result, the activity across the striatum, central thalamus, and fron-
tal/prefrontal cortices is consequently decreased.

Several studies have found evidence in support of the mesocircuit hypothesis. A 
recent study compared the metabolic profiles of severely brain-injured patients with 
DOC, with healthy controls, and identified that metabolism within ventral and associa-
tion striatum (excluding the sensorimotor portion), as well as in the central thalamus, 
was reduced in patients, while an increase was observed in the GPi (Fridman et al. 
[43]—see Fig. 12.2). These reversal profiles in patients as compared to controls in the 
GPi and the central thalamus give another strong support to the mesocircuit model.

This mesocircuit model provides an economical explanation of the vulnerability 
of the anterior forebrain in patients with DOC who suffer from widespread 
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Fig. 12.2  Group data displaying glucose uptake values in deep brain structures measured in 
healthy controls (in blue) and brain-injured subjects (in red). (a) Box plot. A significant reduction 
in relative glucose metabolism of the ventral striatum (VST), associative striatum (AST), and cen-
tral thalamus (c-TH) in brain-injured subjects is seen compared with healthy controls. No differ-
ence in sensorimotor striatum (SMST) mn-UV is present between healthy controls and brain-injured 
subjects. A significant increase in GP metabolism is present in the group of BI subjects. (b) 
Significant results are shown in blue for healthy controls and red for brain-injured patients, whereas 
white boxes denote no significant differences; arrows indicate the direction of the significance (i.e., 
pointing toward the higher mn-UV values). (c) Bivariate scattergram demonstrates an inverse lin-
ear correlation between glucose metabolic rate of the c-TH (x-axis) and the GP (y-axis) (From [43])
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deafferentation and neuronal cell loss. Interestingly, bulk activation of the anterior 
forebrain based on the mesocircuit model can explain the effect of several pharma-
cological interventions, as well as thalamic DBS [34]. An interesting example is 
zolpidem, a short-acting non-benzodiazepine GABA agonist hypnotic drug that has 
shown to induce paradoxical responses in some patients with DOC.  In a recent 
study, Chatelle et al. [26] have shown that the recovery of consciousness of three 
zolpidem responders (i.e., patients who transiently recovered a functional commu-
nication under zolpidem) was correlated with an increase in brain metabolism 
within the dorsolateral prefrontal and mesiofrontal cortices (see Fig. 12.3). Zolpidem 
could inhibit the GPi by inhibiting the GABAAa-1 subunit, expressed in large quan-
tities in the GPi. This would substitute for the normal inhibition of the GPi from the 
striatum, hence increasing the thalamic excitatory influence on prefrontal cortices. 
Additionally, direct excitatory effects at the level of the cortex and striatum likely 
play a key role in the response [44]. Activation of frontal EEG in zolpidem respond-
ers is further consistent with the model and the findings of Chatelle et  al. [26]. 
Interestingly, in all neuroimaging studies investigating the cerebral patterns of zol-
pidem responders [26, 45, 46], the brain areas showing increased metabolism after 
zolpidem did not show significant structural lesions, a finding consistent either with 
the proposal that zolpidem responders have consciousness impairments mainly due 
to inhibitory functional effects rather than by structural damage [47] or that reduced 
firing rates produced by disfacilitation are present and that a widening of the 
dynamic range of these neuronal populations is achieved by release of a circuit-level 
blockage [44].

Placebo
impaired

Zolpidem
impaired

Zolpidem
recovered

Fig. 12.3  Impaired brain metabolism after placebo and zolpidem intake and areas showing rela-
tive recovery after zolpidem. Brain areas showing impaired metabolism (in blue) following pla-
cebo and zolpidem administration and regions which were impaired following placebo but showed 
relative recovery of activity after zolpidem intake (in red). From left to right, medial right and left 
view and frontal and posterior view (From [26])AU10
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The linkage of the mesocircuit and the frontoparietal model has been specifically 
supported by both anatomical and functional studies. Loss of structural connections 
between the thalamus and the posterior medial complex (including posterior cingu-
late cortex and precuneus, see below) has been statistically correlated with behav-
ioral outcomes after severe brain injuries [48]. Anatomical projections from the 
central thalamus to the posterior medial cortical regions are strong [49], and a com-
pelling functional correlation has been demonstrated in experimental studies of 
anesthetized healthy volunteers. Once in a stable plane of anesthesia, pharmacologi-
cally induced emergence from deep sedation using physostigmine produced a 
recovery of consciousness reflected in the ability to engage in command following 
in some subjects, recovery of command following correlated with co-activation of 
both the central thalamus and PMC [50]. Collectively, these studies show evidence 
of an interdependence of the functional integrity of the central thalamus and poste-
rior medial complex and level of consciousness.

In summary, it seems that two important circuit mechanisms are combined in 
impaired consciousness following a severe brain injury and recovery [35]: (1) a 
strong link between the level of consciousness (from coma to emergence from 
MCS) and the preservation of resting metabolism in medial parietal cortex/posterior 
medial complex (i.e., precuneus, retrosplenial, posterior cortex) and (2) a key role 
for the central thalamus in regulating the anterior forebrain activation.

�Deep Brain Stimulation (DBS)

DBS is widely used to treat several neurological and psychiatric disorders such as 
motor disorders (e.g., essential tremor, dystonia, Parkinson’s disease), chronic pain, 
or obsessive-compulsive disorders and is FDA approved [51]. Basically, DBS 
encompasses a pulse generator that sends current to a brain electrode that delivers 
electrical and magnetic impulses to a targeted brain region. For some diseases, like 
Parkinson’s and dystonia, DBS conceptually “inhibits” the targeted regions, while 
for other diseases, it has been employed to “excite” brain regions. The detailed 
underlying mechanisms of DBS are not yet fully understood and mainly depend on 
the targeted pathological process. At the basic level of initial effect on the brain, 
however, a primary effect of excitation of axonal action potentials is generally 
agreed upon outside of very high frequency or amplitude stimulation regimes which 
may induce conduction blockade [52, 53]. In the context of disorders of conscious-
ness and central thalamic stimulation, direct excitation of projecting thalamocorti-
cal afferents is identified as the basic effect through a wide range of basic and 
clinical neuroscience studies (reviewed in [54]).

DBS in DOC patients aims at stimulating thalamocortical loops across frontos-
triatal regions responsible for cognitive functions such as attention, memory, lan-
guage, or executive functions. The intralaminar nuclei were chosen because the 
central thalamus is suggested to be altered in regard to the pathophysiological 
mechanisms linked to the brain injury and cellular loss in central thalamus seems to 
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be particularly associated with DOC patients’ level of recovery [40, 55]. Therefore, 
DBS could facilitate the induction and support the activity in a large network of 
neurons through the entire brain and thus lead to the recovery of cognitive functions 
underlined by these networks. In addition, the central thalamus plays a key role in 
arousal regulation. Indeed, neurons in the intralaminar nuclei of the thalamus are 
linked and located between the forebrain (involved in premotor shifts of attention 
and adjustments of vigilance level) and the arousal system in the brainstem [37].

The first DBS studies in DOC, performed between the 1960s and 1990s, failed to 
demonstrate any clinical improvements related to DBS. More recently, the effects of 
DBS of the midbrain reticular formation and the median-parafascicular complex 
were investigated in DOC patients [56]. Eight patients in VS/UWS recovered a 
response to commands (i.e., MCS+), and four patients in MCS recovered a func-
tional communication (i.e., emerged from MCS). Unfortunately, the protocol did 
not encompass a controlled arm, and therefore, the exclusive relationship between 
clinical improvement and DBS cannot be stated.

In 2007, Schiff and collaborators have reported the case of a chronic posttrau-
matic patient in MCS treated with DBS of thalamic intralaminar nuclei in a double-
blind design with recording of several baselines [4]. This was the first study that 
employed standardized reliable and validated outcome measures (such as the Coma 
Recovery Scale-Revised—CRS-R [57]) to investigate the efficacy of DBS. Clinically, 
the patient was in a minimally conscious state for 6 years at a considerably higher 
level of baseline behavior (CRS-R 19 at initiation of trial) than prior studies (CRS-R 
estimated ~7–9) and did not show any improvement despite rehabilitation program. 
DBS was applied bilaterally to the central thalamus and alternated on and off phases 
in 30-day intervals over 6 months. Intelligible verbalizations and functional object 
use were directly observed as soon as the stimulator was turned on during the titra-
tion period (following continuous stimulation for 18 h) but not within the initial 
3-day testing with lower currents and limited times of exposure to stimulation. After 
a few months of stimulations, responses to command, spontaneous limb move-
ments, oral feeding, and functional communication were objectified during DBS on 
periods. When DBS was turned off, behavioral performance decreased significantly 
but remained above baseline level, suggesting some remnant effects. These func-
tional gains were maintained across the 24-month follow-up phase and for 6 years 
until the patient’s death. Even if more clinical trials are required to confirm these 
effects in a large population of patients and to better understand the mechanisms of 
DBS in DOC, these findings are very encouraging for the potential to develop a 
therapy and the further recovery of some chronic patients with DOC.

�Transcranial Direct Current Stimulation (tDCS)

In the past 15 years, many studies have shown that tDCS can modify neuronal excit-
ability and induce behavioral changes in both healthy controls and patients with 
motor or cognitive dysfunctions [58–61]. Currently, a lot of clinical trials have been 
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conducted to study the effect of tDCS on poststroke motor and language deficits, in 
psychiatric disorders, chronic pain, memory impairment, and tinnitus in order to 
decrease symptoms [62–66]. tDCS represents a safe, cheap, and easy-to-use tech-
nique that could be easily integrated in rehabilitation programs. However, its thera-
peutic effect remains to be more extensively explored [67, 68]. Physiologically, 
tDCS involves passing a weak (usually ≤2 mA) direct current through the brain 
between two electrodes, the anode (i.e., excitatory) and the cathode (i.e., inhibi-
tory). By decreasing or increasing the action potential threshold, anodal tDCS 
enhances excitability, whereas cathodal tDCS reduces it [69]. The formation of the 
long-lasting aftereffects is not entirely understood but seems to depend on mem-
brane potential changes, modulations of NMDA receptor efficacy, as well as modi-
fication of ion channels (e.g., calcium, Liebetanz et al. [70]). In other words, tDCS 
does not induce the firing of otherwise resting neurons, such as TMS, but rather 
modulates the spontaneous firing rate of neurons by acting on the membrane 
potential.

In a first sham-controlled double-blind randomized crossover study, the effect of 
a single prefrontal tDCS was evaluated in a heterogeneous population of patients 
with DOC, VS/UWS and MCS, and acute-subacute (<3 months) and chronic, with 
traumatic or non-traumatic etiologies [71]. At the individual level, tDCS responders 
were defined as patients who presented a new sign of consciousness (e.g., command 
following; visual pursuit; recognition, manipulation, or localization of objects; 
Giacino et al. [72]), after the real tDCS session, that was not present before nor dur-
ing the sham tDCS session. 13/30 patients in MCS showed a tDCS-related improve-
ment. Two acute (<3 months) patients in VS/UWS out of 25 showed a tDCS response 
(i.e., showed command following and visual pursuit present after the anodal stimu-
lation not present at baseline or pre- or post-sham tDCS). At group level, a treatment 
effect, as measured by the CRS-R, was observed in the MCS but not in the VS/UWS 
patients’ group. In addition, no tDCS-related side effects were observed.

These findings appear of critical importance especially if we consider that there 
are only limited evidence-based pharmacological or non-pharmacological treatment 
options for severely brain-damaged patients with DOC and particularly in the 
chronic setting. Indeed, in the aforementioned study, out of the 13 patients in MCS 
who showed a tDCS response, 5 were included more than 12 months after the acute 
insult. This suggests that chronic MCS patients, even years after the brain injury, 
have still the ability to improve and recover some new signs of consciousness. On 
the other hand, no improvements were observed in patients in VS/UWS, in line with 
previous studies showing capacity for neural plasticity in patients in MCS rather 
than VS/UWS [73].

The main limit of this study was the short-term clinical effects of tDCS. Indeed, 
behavioral improvements were observed for not longer than 2 h from the stimula-
tion. The literature of tDCS seems to convey that the number of sessions is a critical 
parameter to induce larger effects [74, 75]. As in daily clinical practice longer 
effects are required, studies using repeated tDCS sessions are warranted to elucidate 
whether this technique might be a feasible treatment for patients with DOC.  To 
answer that question, another study aiming to evaluate the long-term effect of tDCS 
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was performed in chronic MCS patients. All participants received sham tDCS,  
5 days/week, for 1 week, and anodal tDCS 5 days/week, for 1 week, separated by 
1-week period of washout. The level of consciousness (i.e., CRS-R total score) 
improved after 5 days of tDCS in 56% of the patients included in that study, and the 
effects lasted 1 week after the end of the stimulations. In addition, a longitudinal 
increase of the CRS-R total scores was identified for the real session but not for the 
sham one. Those results suggest that repeated (5 days) anodal left prefrontal tDCS 
can improve the recovery of consciousness in chronic MCS patients up to 1 week 
after the last stimulation [76].

In another study, five repeated tDCS sessions (one daily) were performed on ten 
chronic (>6 months) patients with DOC. The left primary sensorimotor cortex (2 
MCS – 3 VS/UWS) or the left DLPF cortex (1 MCS – 4 VS/UWS) was stimulated 
[77]. All patients in MCS showed clinical improvement immediately after tDCS 
session, while no effects were observed in patients in VS/UWS, in accordance with 
the previous tDCS study [71].

Using multimodal neuroimaging analyses, the previously described subgroup of 
tDCS responders (Thibaut et al. [71]) has been characterized. A common pattern of 
metabolic gray matter preservation was observed in tDCS responders as compared 
to nonresponders. This study showed that the transient improvement of signs of 
consciousness following tDCS seems to require gray matter integrity and/or resid-
ual metabolic activity in three brain regions: (1) the medial prefrontal cortex 
(encompassing the DLPFC, stimulated area), (2) the precuneus, and (3) the thala-
mus (see Fig. 12.4).

The residual brain metabolism and preserved gray matter in tDCS responders in 
the medial prefrontal cortex, posterior cingulate/precuneus, and thalamus highlight 
the role played by these structures in the recovery of consciousness. As previously 
mentioned, PET studies on VS/UWS patients identified metabolic impairment in 
the DMN (i.e., medial prefrontal cortex and the posterior cingulate/precuneus), as 
well as in the lateral frontoparietal regions including the DLPFC, emphasizing their 
critical role in consciousness recovery processes [19, 20].

The remaining metabolic and structural integrity of the medial prefrontal cortex 
and the thalamus observed in tDCS responders also supports the key role of these 
structures in the disturbances of consciousness and corroborates with previous stud-
ies showing that the corticothalamic loop has a critical role in consciousness recov-
ery [78], as well as with the mesocircuit model [34, 43].

�Which Technique to Choose?

As regard to the published tDCS studies on DOC patients, it is worth to stress that 
tDCS seems to be a safe device. Indeed, so far, no severe side effects were observed, 
even considering that many of these patients had severe brain injuries with wide-
spread lesion possibly involving the stimulated areas. Moreover, although it is well 
known that brain-injured patients are more vulnerable to epileptic seizure, and some 
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of them were even under an epileptic treatment due to previous seizures, no seizures 
as side effects were observed.

On the other hand, DBS exposes the patient to several more risks due to the brain 
surgery than tDCS but can stimulate the brain centrally in systems evolved to have 
far-reaching and powerful modulatory effects. In most cases, the postoperative side 
effects of DBS are limited. It should also be noted that the use of DBS is only inves-
tigational and even the study inclusion criteria to receive this stimulation were very 
strict such that the number of patients likely to be eligible for this approach will be 
limited.

a

b

c

d

tDCS responders < controls 

tDCS non-responders < controls 

tDCS responders ¹ non-responders  

Electric field/current density

0 V/m 0, 5V/m

Anode Cathode

Fig. 12.4  Positron emission tomography (PET). Brain areas showing hypometabolism (in blue), 
as compared to controls, in patients in a minimally conscious state (FEW corrected): (a) 8 tDCS 
responders and (b) 13 nonresponders. (c) Regions with less hypometabolism in responders as 
compared to nonresponders (in red). (d) Theoretical tDCS-induced electric fields. Note that behav-
ioral responsiveness to short duration left dorsolateral prefrontal cortex (DLPFC) tDCS correlates 
with less impaired metabolism in the areas presumed to be stimulated by tDCS (left DLPFC and 
mesiofrontal cortices) but also of distant cortical (precuneus) and subcortical (thalamus) regions 
(From [25])
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DBS as compared to tDCS, by stimulating the thalamus, can directly activate the 
thalamocortical connectivity, which has a critical role for consciousness recovery  
[35, 78], while tDCS can only directly stimulate cortico-cortical and corticothalamic 
connectivity. Though activation of the entire network is expected for both techniques 
to varying degrees, neurons in the central thalamus are specialized for broad activation 
across the entire frontostriatal system as recently demonstrated using fiberoptic opto-
genetic activation techniques coupled to functional magnetic resonance imaging (Liu 
et al. 2015). Therefore, DBS might induce more significant clinical improvements 
than tDCS. Other advantages of DBS are the continuous effect and the permanent 
stimulation of patients’ brain. Indeed, since the stimulator is placed and stays 
implanted for several years, it does not need to be repeatedly applied in order to induce 
long-term clinical effects, while for tDCS, repeating the stimulation daily seems to be 
necessary to induce prolonged behavioral improvements. In addition, since tDCS 
needs to be repeatedly performed, it requires more human resources, which might be 
an issue; even tDCS stays a relatively inexpensive and easy-to-use technique.

�Consistency with the Mesocircuit Model

Interestingly, tDCS and DBS protocols that have been shown to induce promising 
results on consciousness recovery in DOC patients were focusing on brain areas 
which are part of the mesocircuit frontoparietal model. Indeed, DLPFC tDCS increases 
neuronal excitability of the prefrontal cortex, while DBS directly stimulates the cen-
tral thalamus. These observations are in line with the study of Laureys et al. where a 
recovery of the connectivity between the thalamus and the frontal area was detected in 
patients who spontaneously regain consciousness from a vegetative state [78]. 
Furthermore, it is well known that prefrontal areas are critical in cognitive processes 
[79], and, more recently, it has been shown that stimulating this regions, even in an 
noninvasive way, seems to improve signs of consciousness of acute and chronic 
patients with DOC, though at a lower level as compared to central thalamus DBS. As 
schematized in Fig. 12.1, this mesocircuit model, by integrating this fronto-striato-
thalamic loop, efficiently predicts both the impact of central thalamic DBS and pre-
frontal tDCS and the effects of a variety of specific pharmacological interventions 
known to be, in some cases, effective in improving behavioral responsiveness in 
severely brain-injured patients. In addition, it highlights once more the critical role of 
the thalamus and its connectivity with the frontal areas for consciousness recovery.

�Conclusion

The aforementioned neuromodulation techniques, namely, DBS and tDCS, are 
thought to excite mainly forebrain regions and restore the connectivity between the 
thalamus and prefrontal cortex. Depending on patients specificities (e.g., damaged 
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brain areas), one of these techniques could be tested to improve patients’ signs of 
consciousness and recovery. It would also be interesting to investigate if tDCS 
responsiveness could be a predictor of DBS efficacy, since both neuromodulation 
techniques are involved in the fronto-striato-thalamic loop, while tDCS is clearly 
less invasive than DBS.

Understanding the neural mechanisms of consciousness recovery will help neu-
roscientists and clinicians to develop new therapeutic options to stimulate the recov-
ery of higher levels of functioning. On the other hand, deepening our knowledge on 
the mechanisms of how neuromodulation therapies work might help to understand 
the phenomena occurring in the process of consciousness recovery.

In the years to follow, more work has to be done to strengthen our understanding 
of the mechanisms of and potential treatments to promote the recovery of con-
sciousness in patients with DOC. This will help improve daily care, comfort, and 
rehabilitation in this population in acute as well as in chronic stages.
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