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Key points: 

1. A practical, automatic, and reproducible procedure to calibrate the recursive digital filter can be attained using an 

original objective function 

2. Comparison tests between several watersheds and between different separation techniques demonstrate the validity 

and robustness of our approach 10 

3. The developed method offers a more operational alternative to the standard graphical one and a less expensive way 

than more elaborate methods 

 

Abstract. Baseflow estimation is of overwhelming importance in hydrological modelling and water resources 

management. One of the widely used techniques to derive baseflow from measured stream flow is the Recursive Digital 15 

Filter (RDF). Yet its application still raises methodological issues related to the determination of its parameters. In this 

study, we propose a practical and automatic procedure to calibrate the RDF with respect to the measured stream flow. 

The method operationality and robustness are first demonstrated on three gauging stations in the Ourthe catchment 

(Belgium). The calibrated parameters compare well with those obtained by a standard graphical approach. Next, the 

proposed approach is compared to the technique of Conductance Mass Balance (CMB) for two gauging stations in the 20 

Hoyoux catchment (Belgium). A fair agreement between the results of the two techniques is obtained, suggesting that 

the proposed automatic calibration procedure of RDF takes the baseflow separation process to a higher level of 

practicality and transparency. 
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1 Introduction 

Baseflow represents the groundwater contribution to stream flow (Halford and Mayer, 2000; Hall, 1968; Rutledge, 

1997). Unlike stream flow rate, the direct measurement of baseflow is practically impossible (e.g. Tardy et al., 2004). 

However, baseflow plays a critical role in understanding water budgets (Arnold and Allen, 1999; Stewart et al., 2007), 

analyzing water cycle vulnerability to natural and anthropological effects (Tesoriero et al., 2013), improving 5 

management strategies of water supply systems and underground water protection (e.g. Wenninger et al., 2004), and 

implementing process-based hydrological models in an objective way (Beven, 1989; Eckhardt et al., 2002; Ferket et al., 

2010; Lang et al., 2008; Willems, 2014). This explains the plethora of techniques that have been proposed to estimate 

baseflow (see Hall (1968) and Tallaksen (1995) for comprehensive reviews). 

 10 

The most common methods are the graphical ones that rely on stream discharge data alone. They use either the 

recession-curve-displacement technique (Barnes, 1939; Daniel, 1976; Rorabaugh, 1964) or a low-pass filter (Chapman, 

1991; Nathan and McMahon, 1990). The former is based on the exponential solution of the differential equation 

governing unsteady infiltration flow established by Boussinesq in 1877 (Hall, 1968). Although it is considered more 

theoretically based than the filter methods, it has been abandoned because of the underlying assumptions concerning 15 

the physical properties of the aquifer that limit its validity to ideal cases, i.e. homogeneous, uniform, isotropic and 

confined aquifers (Halford and Mayer, 2000; Rutledge, 2005). The most widely used low-pass filter is the Recursive 

Digital Filter (RDF) adapted from signal processing theory (Chapman, 1991; Nathan and McMahon, 1990; Willems, 

2009). It was judged as objective (Chapman, 1991) and was highly recommended for its direct link with lumped 

hydrological representations of watersheds (Willems, 2009). Nonetheless, RDF requires an estimate of the watershed-20 

specific recession constant, which remains difficult to determine. 

 

Early techniques for estimating the recession constant include the matching strip method (Toebes and Strang, 1964) and 

the correlation method (Langbein, 1938). The first one consists in determining a master recession curve based on the 

best eye fit of all the individual recession segments superimposed on a semi-logarithmic scale. However, the results 25 

may be biased by over- or under-estimations of the actual length of the recession periods, as well as human judgment 

in the visual inspection of the recession segments (Hall, 1968). Although Nathan and McMahon (1990) succeeded to 

semi-automatize this procedure, the non-reproducibility issue persisted. In the correlation method (Langbein, 1938), the 

recession constant is determined by fitting a curve on the discharge values at one time step plotted against the discharge 

values at a later time step. Nathan and McMahon (1990) tested this approach to find that the uncertainty involved in the 30 

curve fitting procedure makes the method unsuitable for the analysis of recession flow. Despite multiple attempts made 

to improve these methods (Brutsaert and Nieber, 1977; Cheng et al., 2016; Nathan and McMahon, 1990; Rutledge and 

Daniel, 1994; Singh and Stall, 1971), determining the recession constant still involves a high degree of subjectivity and 

a lack of reproducibility (Li et al., 2014; Nejadhashemi et al., 2003; Stewart et al., 2007; Tallaksen, 1995; Zhang et al., 

2013). 35 

 

Later studies developed separation techniques that could serve as a reference for RDF calibration and evaluation. One 

approach relies on additional field measurements, such as the groundwater level (Holko et al., 2002; Peters and Van 

Lanen, 2005) or the concentration of a conservative geochemical tracer which depends on the flow path (Cey et al., 

1998; Gonzales et al., 2009; Matsubayashi et al., 1993; Pilgrim et al., 1979; Pinder and Jones, 1969; Stewart et al., 40 
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2007). The most commonly used tracer is the specific conductance, which is substantially higher for subsurface flow 

than for surface flow (Li et al., 2014; Zhang et al., 2013). This led to the development of the widely recognized 

conductance mass balance method (CMB). In another approach, reference baseflow estimates are derived from 

numerical simulations performed with a physically-based hydrological model, e.g. the HydroGeoSphere (HGS) model 

(Therrien et al., 2010) used in (Su et al., 2016) to evaluate different RDFs. Despite the promising results obtained by 5 

these methods, the additional efforts required to collect more data or to implement complex numerical models make 

them less attractive in practice, especially for long runs and for past periods for which additional data may be 

unavailable. 

 

In this paper, we propose an operational procedure to calibrate the RDF parameters without any supplementary 10 

experimental or modeling effort. It uses a tailored objective function to calibrate the RDF parameters based only on the 

total stream flow measurements. In the following, we start by introducing the formulation of the objective function. 

Next, we test its validity, operationality, and robustness in adjusting the RDF parameters for long time series of stream 

flow (more than 30 years) on three gauging stations in the Meuse basin in Belgium. Then, we compare the results against 

those obtained by a standard adjustment method. Finally, we present a comparison of the baseflow hydrographs obtained 15 

using the new method with those produced by two more elaborate methods: CMB on two other gauging stations in the 

Meuse basin for which stream flow conductance measurements are available, and HGS on 64 synthetic catchments. 

2 Materials and Methods 

In this section, the governing equations of the RDF technique are first described (Sect. 2.1). Then, we explain the 

formulation of the new objective function used in the calibration of the filter parameters (Sect. 2.2). In Sect. 2.3, we 20 

briefly introduce the CMB technique used for evaluating our new approach. The other technique used to generate 

reference baseflows, i.e. the HGS model, is shortly presented in Sect. 2.4. Finally, we present the datasets used and the 

main characteristics of the watersheds draining at the studied gauging stations (Sect. 2.5). 

2.1 Recursive Digital Filter equations 

We used an improved formulation of Chapman (1991) filter, as proposed by Willems (2009). The original assumption 25 

of equal repartition of long-term volumes between baseflow and quick flow is generalized by parameterizing the flow 

fractions. The equations of the modified filter read: 
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where q(t) [L3 T-1] is the measured stream flow time series, fbase(t) [L3 T-1] is the filtered baseflow time series, fquick(t) 30 

[L3 T-1] is the filtered quick flow time series, k [T-1] is the baseflow recession constant, and w [-] is the ratio of the quick 
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flow volume to the total stream flow volume. As can be seen in Eq. (1), parameter w should be at least greater than 
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The expression of fbase(t) can also be given as a function of q(t) by replacing fquick(t) in Eq. (1b) by q(t)− fbase(t): 
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In addition to the recession constant of baseflow, k, present in the original filter, another parameter w was introduced 

by Willems (2009) to represent the rainfall fraction contributing to quick runoff computed as an integral quantity over 

a long period as follows: 

 

𝑤 =
∑ [𝒒(𝒕) − 𝒇𝐛𝐚𝐬𝐞(𝒕)]𝑡=𝑡N

𝑡=𝑡0

∑ 𝒒(𝒕)
𝑡=𝑡N
𝑡=𝑡0

 (3) 
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where t0 [T] and tN [T] are respectively the initial and final instants of the discharge series. 

  

The two parameters to be determined to apply the RDF are the recession constant k and parameter w. The recession 

constant characterizes the shape of the baseflow graph, more specifically the rate of its depletion during periods of little 

to no precipitation. Parameter w, on the other hand, represents the remoteness of the baseflow from the total flow, which 15 

decreases with decreasing w values until both signals superimpose when w is set to zero. 

2.2 Objective function for the RDF optimization 

An original method is proposed to enable the determination of the RDF parameters in an automatic and reproducible 

way. Due to the lack of a direct reference, i.e. baseflow measurements, for the calibration of the filter parameters, we 

have encoded into a mathematical criterion the main elements involved in the visual inspection approach. We explain 20 

here the derivation of this criterion in four steps. 

Step°1 

Since the time series of stream flow and baseflow are supposed to superimpose during recession periods, the Nash-

Sutcliffe Efficiency criterion ENSE (Nash and Sutcliffe, 1970), calculated only on these periods, was used to evaluate the 

agreement between the two time series during recession periods: 25 
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where 𝑡r0
𝑖  [T] and 𝑡rN

𝑖  [T] are respectively the initial and final instants of the ith recession period, 𝑞̅ [L3 T-1] is the average 

flow rate on recession periods, and Nr [-] is the number of recession periods identified in the studied time series. 
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The recession periods were separated from other periods using an automatic algorithm similar to the one proposed by 

Vogel and Kroll (1996). It considers a recession to be a period over which the variation of a monthly smoothed flow 

signal does not exceed a certain threshold. This variation was calculated as the finite difference over each daily time 

step of this monthly averaged flow rate normalized by the watershed average flow rate divided by its surface area, with 

exponents 2 and 3/2 respectively: 5 

 

𝒒(𝒕) − 𝒒(𝒕 − ∆𝒕)
∆𝑡

 

𝑄̅2

𝐴3/2⁄
≤ 𝑠 (5)  

 

with s [-] the threshold value of the non-dimensional temporal variation of total stream flow and 𝑄̅ [L3 T-1] is the mean 

flow rate. The influence of the value selected for s is detailed in Sect. 3.2.1. 

Step°2 10 

Since the RDF contains parameter w, which directly controls the distance between the total flow and the baseflow, using 

only criterion (4) for the calibration of the filter parameters would simply lead to a zero value for w. Indeed, this ensures 

a perfect fit between baseflow and total flow during recession periods (as expressed by Eq. (4)); but also outside 

recession periods, which is definitely not the sought result. Therefore, the optimization criterion must also reflect the 

fact that the baseflow differs from the total flow outside the recession periods. We expressed this through a composite 15 

Nash-Sutcliffe Efficiency criterion E’NSE, which involves the ratio between the ENSE criterion calculated on the recession 

periods (𝐸NSErecession periods
) and a similar criterion calculated outside the recession periods (𝐸NSEother periods

): 

 

𝐸′NSE = 1 −
1 − 𝐸NSErecession periods

1 − 𝐸NSEother periods

 (6) 

Step°3 

In Step 3, we describe three improvements brought to Eq. (6). 20 

 First, to avoid a possible bias in the identification of the recession periods, we limited the calculation of 

criterion ENSE on these periods to the final portion of the recession period, during which we may confidently 

presume that dominant baseflow conditions prevail. This was formalized by introducing parameter p [%] which 

represents the last portion of the duration of the recession period identified in Step 1. 𝐸NSEother periods
is thus 

calculated on all the remaining data, including the early parts of the recession periods (100-p)%. 25 

 Second, an exponent β [-] was introduced to enable adjusting the relative weight given to criterion ENSE 

calculated on the other periods compared to ENSE calculated on the recession periods. 

 Third, we applied criteria ENSE on logarithmic transformed discharges to increase their sensitivity to low flow 

values. 

The enhanced formulation 𝐸𝑙 ′′NSE  of the composite criterion reads: 30 
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𝐸𝑙 ′′NSE = 1 −
1 − 𝐸𝑙NSElast 𝑝% of each recession period

(1 − 𝐸𝑙 NSEother periods
)

𝛽
 (7) 

 

The selection of the values of parameters p and β is discussed in Sect. 3.2.1.  

Step°4 

Criterion (7) does not contain any penalty if the calculated baseflow exceeds the measured total flow; instead of being 

lower than the total flow as expected. Therefore, we introduced another factor in the formulation of the objective 5 

function, in order to limit the exceedance of the total flow by the baseflow. This factor is calculated as the volume of 

baseflow exceeding the total flow normalized by the total stream flow volume. The formulation of this new criterion, 

Exd, was homogenized with that of criterion 𝐸𝑙′′NSE by subtracting the ratio of volumes from unity: 
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The final objective function G for calibrating the RDF parameters is thus defined as the product of the two proposed 

criteria: 

 

𝐺 = 𝐸𝑙 ′′NSE ×  𝐸𝑥𝑑 (9) 

 

It should be noted that the two functions 𝐸𝑙′′NSE and Exd do not represent goodness-of-fit criteria in the traditional sense. 15 

2.3 Improved CMB technique 

Among the existing methods of baseflow separation, the conductance mass balance has been widely used for comparison 

(Lott and Stewart, 2016; Miller et al., 2015; Yu and Schwartz, 1999) or calibration (Lott and Stewart, 2016; Stewart et 

al., 2007; Zhang et al., 2013) of other techniques (e.g. graphical method) since it is considered more physically based 

and more objective. The CMB method relies on observed time series of stream flow rate and flow conductance. 20 

Subsurface flow is separated from surface flow using the dilution principle, the former being supposedly characterized 

by a high conductance and the latter by a low conductance: 

 

𝒇𝐬𝐮𝐛(𝒕) = 𝒒(𝒕)
𝑪𝐪(𝒕) − 𝐶surf

𝐶sub − 𝐶surf

 (10) 

 

where fsub(t) [L3 T-1] is the subsurface flow time series, Cq(t) [T3 I2 L-3 M-1] is the specific conductance time series of 25 

stream flow, Csurf and Csub [T3 I2 L-3 M-1] are the representative values of the specific conductance of surface flow and 

subsurface flow respectively. These conductance values are assumed to be stable signatures of the flow components and 

to differ significantly due to the distinct flow paths of each flow component. 
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Attention should be drawn to the difference between the flow components split by each of the RDF and the CMB 

method. The baseflow (fbase) separated by the RDF consists only of the flow in the saturated soil layer, whereas the 

subsurface flow (fsub) separated by the CMB is the flow occurring in the saturated (fbase) and unsaturated (finter) soil 

layers. Thus, the quick flow component in the RDF (fquick) consists of both the surface flow (fsurf) and the unsaturated 

flow (finter), while that of the CMB consists only of the surface flow (fsurf). So, any comparison between the two methods 5 

should be limited to periods where unsaturated flow contribution can be neglected. 

 

The conductance parameters Csurf and Csub are usually estimated from the observed stream flow conductance, at the 

moments of maximum and minimum flow respectively (neglecting the contribution of the other flow component to the 

total conductance at these moments). Before using CMB method as a reference for assessing our original calibration 10 

technique, we tested the validity of these two assumptions for determining the conductance parameters Csurf and Csub 

(see Supplementary material). While assigning the maximum measured conductance to parameter Csub was proved to 

be valid, the estimation of parameter Csurf directly from stream flow conductance at peak flow, assuming zero subsurface 

contribution, was found to bias the baseflow results. We fixed this issue using an original iterative method explained in 

the Supplementary material. 15 

2.4 HGS model 

HydroGeoSphere model was used by Li et al. (2014) to generate numerically the total flow and baseflow on 64 synthetic 

catchments. We compared these results with the baseflow filtered by our improved implementation of RDF. Since full 

details on the structure of the HGS model and its numerical implementation can be found in Therrien et al. (2010), only 

a short overview is provided here. HGS is a fully integrated Surface Water/Ground Water model that simulates the 20 

hydrological response of watersheds in a 3D physically based manner. Surface flow is simulated using the 2D diffusion 

approximation of the Shallow Water Equations (SWEs). Subsurface flow is simulated by the modified 3D Richard’s 

equation. The interaction between the two flows is ensured through a conductance concept. All differential equations in 

the model are solved by means of a finite difference numerical scheme. 

2.5 Data description 25 

To assess the calibration procedure of the RDF based on the proposed objective function, we considered three gauging 

stations in river Ourthe, which is the main tributary of river Meuse in Belgium. The three stations correspond to nested 

watersheds sharing very similar land use properties (43% forests, 35% meadows, 5% agricultural areas, 2% urban areas 

and the remaining are water bodies). The other characteristics are presented in Table 1. These gauging stations were 

selected for the relatively long and uninterrupted available time series (hourly flow rates over 34 to 43 years). 30 

 

We also used the CMB technique to assess its agreement with the new calibration method. Since this technique requires 

additional data on the stream flow conductance, which were not available for river Ourthe, we considered two 

watersheds in the catchment of river Hoyoux, another tributary of river Meuse in Belgium. As shown in Table 1, the 

specific conductance of the stream flow was monitored continuously between July 2013 and November 2015 at a time 35 

resolution of 15-min (Briers et al., 2016a, 2016b; Brouyère et al., 2016). 
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The raw data of flow rate and specific conductance were averaged to daily values to fit the needs of the baseflow 

separation processing carried out in this study. 

 

Li et al. (2014) defined a synthetic V-catchment to assess the performance of different RDFs against baseflows modeled 

by the HGS model. Based on the plausible values considered for the physical catchment characteristics and the 5 

hydrological inputs, 70 distinct combinations of synthetic catchments were generated, some of which were then 

discarded for producing zero stream flow series. The numerical baseflows of these catchments will be compared in our 

study with the baseflow filtered by the improved implementation of the RDF. The characteristics of these catchments 

can be found in the Supplementary material of Li et al. (2014). 

 10 

Table 1 

Characteristics of the real watersheds 

3 Results and discussion 

In this section, we present and discuss the results of the calibration procedure of RDF using the proposed objective 

function (Eq. (9)). The ability of the procedure to identify the RDF parameters and estimate baseflow is first evaluated 15 

(Sect. 3.1).Next, we assess the sensitivity of the results to the value of parameters s, p and  used in the formulation of 

the objective function, as well as to the length of the considered time series (Sect. 3.2). 

3.1 Assessment of the automatic calibration procedure of the RDF 

Due to the unavailability of direct measurements of baseflow, standard approaches of validation do not apply to baseflow 

separation techniques. Therefore, as recommended in previous studies (e.g. Gonzales et al., 2009; Halford and Mayer, 20 

2000; Lott and Stewart, 2016), we tested the proposed automatic calibration procedure in three ways: 

1. Check the consistency and plausibility of the parameter values obtained for several gauging stations corresponding 

to nested watersheds; 

2. Compare the computed parameter values with those derived from a standard graphical approach; 

3. Compare the baseflow estimates with a reference baseflow computed by more elaborate methods: 25 

3.1. the tracer method CMB which incorporates supplementary real world observations (conductance 

measurements), 

Catchment Watershed A [km2] I [%] KG [-] Period of record 
P10 – average – 

P90 of q(t) [m3 s-1] 

min – average – max 

of Cq(t) [µS cm-1] 

Ourthe 

Hotton 956.5 7.85 2.11 Jan 1979 – Dec 2012 1.95-15.43-36.20 N.A. 

Durbuy 1 220.3 7.38 2.43 Jan 1978 – Dec 2012 2.70-18.10-42.97 N.A. 

Tabreux 1 612.2 7.80 2.28 Jan 1970 – Dec 2012 3.36-22.27-52.85 N.A. 

Hoyoux 
Triffoy 30.3 4.50 2.09 Jul 2013 – Nov 2015 0.09-0.17-0.27 339 – 613 – 688 

Hoyoux upstream 94.3 4.50 1.98 Jul 2013 – Nov 2015 0.47-0.7-1.07 400 – 578 – 632 

Note. 

 P10  and P90 are respectively the 10th and 90th percentiles of the recorded daily rates of stream flow 

 A is the watershed surface area 

 I is the watershed average slope 

 KG is the Gravelius compactness coefficient is the ratio of the perimeter of the drainage basin to the circumference of a circle whose 

area is equal to that of the drainage basin that is used to characterize the basin shape (Bendjoudi and Hubert, 2002) 
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3.2. controlled numerical simulations using the physically based HGS model. 

Comparisons 1 and 2 were undertaken for the three gauging stations in the Ourthe catchment, while comparison 3.1 

could only be carried out for the Hoyoux stations for which flow conductance data are available, and comparison 3.2 

was carried out on synthetic catchments for which total flows and baseflows were determined in Li et al. (2014) using 

the HGS model. 5 

3.1.1 Ourthe catchment 

The RDF calibration technique was tested for the three gauging stations Hotton, Durbuy, and Tabreux. A systematic 

exploration of the space of the filter parameters was undertaken to assess the variation of the objective function G for 

all possible combinations of k and w. Parameter k was assumed to range between 1 and 200 days, while parameter w 

may vary between 0.005 and 1. The parameters space was discretized using a 50 × 50 uniform grid. As shown in Fig. 10 

1, the proposed objective function G varies substantially with the two parameters k and w, enabling thus an unambiguous 

detection of the optimum (marked by a red cross in Fig. 1). For the optimum found at each gauging station, Table 2 

summarizes the values obtained for k, w, G as well as 𝐸𝑙′′NSE and Exd. The values taken by Exd reveal that the volume 

of computed baseflow exceeding the total stream flow corresponds to about 5% of the total volume, which is deemed 

relatively low. 15 

 

Figure 1 

Variation of the RDF objective function G as a function of k and w at the gauging stations of (a) Hotton, 

(b) Durbuy, and (c) Tabreux 

20 

Relating the calibrated parameter values to the catchment characteristics is one way to gain primary confidence in the 

results. In the filter equations, parameter w reflects the partition of rainfall volumes in-between the different flow 

components. This partition is mainly influenced by watershed geomorphology and by the soil properties, which control 

the infiltration rate and the soil storage capacity. Since the three nested watersheds considered here share very similar 

characteristics in terms of average slope (Table 1) and land use (Sect. 2.4), the optimal value of parameter w is expected 25 

to remain similar at the three gauging stations. This is indeed the result that we obtained, as shown in Fig. 1 and Table 

2: parameter w takes almost identical values in the three watersheds, corresponding to a quick flow volume of 61% to 

63% of the total flow volume. For parameter k, the optimal values obtained for the three gauging stations are also almost 

identical, with a slight increase with the increasing watershed area (Table 2). Although this increase is hardly significant, 

it shows nonetheless a physically-consistent correlation between the recession timescale and the drainage area. Next, 30 

we checked whether the calibrated values of the RDF parameters are in agreement with the values derived from the 

widely used graphical method presented by Willems (2009), which is equivalent to the matching strip method. It consists 
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in (i) plotting the total flow on a logarithmic scale as a function of time, then (2) deducing the recession rate from the 

average of the inverse of all the slopes of the recession limbs. Parameter w is adjusted so that the magnitude of the 

estimated baseflow best approaches the total flow during recession periods. In Fig. 1, the sets of all (k,w) couples 

identified by this method are represented by a red shaded area. For the three studied gauging stations, the optimum 

obtained based on the objective function G (marker × in Fig. 1) falls within the range of possible combinations of k and 5 

w that a user would choose based on the graphical method. This result suggests that the proposed automatic approach 

remains consistent with the standard graphical one. 

 

Table 2 

Optimal values of the RDF parameters and the corresponding values of the 10 

objective function and its individual components 

 

 

 

 15 

 

In addition, the proposed automatic method is perfectly reproducible, which is not the case of the standard graphical 

method, as it yields a relatively large range of acceptable values for each parameter (red shaded area in Fig. 1). It is 

therefore likely that, if the graphical analysis is repeated twice, even the same user would not pick exactly the same 

combinations of values for k and w. The difference in the level of determinism between the two methods is also 20 

examined in terms of baseflow estimates. In Fig. 2, we represent the envelope of the baseflow hydrographs filtered 

using the set of (k,w) parameters of the red shaded area in Fig. 1 obtained by the graphical adjustment and the baseflow 

filtered using the unique (k,w) couple of the proposed approach for Tabreux station between 2000 and 2010. This 

comparison illustrates the stochasticity of the baseflow estimation related to the absence of a well-defined criterion in 

the classical adjustment. To further evaluate our proposed approach in terms of baseflow estimates, we use hereafter 25 

the CMB technique, which enables a more physically based flow separation. 

Figure 2 

Comparison of baseflow time series obtained by RDF calibrated using the classical method and the method proposed 

in this paper on Tabreux station between 2000 and 2010 

 30 

Watershed Hotton Durbuy Tabreux 

G [-] 0.72 0.78 0.79 

𝐸𝑙′′NSE [-] 0.76 0.82 0.83 

Exd [%] 94.80 95.18 95.17 

k  [days] 51 53 54 

w [-] 0.63 0.61 0.61 
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3.1.2 Hoyoux catchment 

CMB method was applied at the gauging stations “Triffoy” and “Hoyoux upstream” to split the surface flow from the 

subsurface flow. For the two gauging stations, the following values of (Csub, Csurf) were obtained: (650, 185) µS.cm-1 

and (635, 57) µS.cm-1 respectively. Our new objective function Eq. (9) was also used, to calibrate the RDF and separate 

the baseflow from the quick flow at the two gauging stations. Since the outputs of the compared techniques do not 5 

represent exactly the same physical quantity, results were only compared in the lowest portion of each recession period, 

during which the baseflow is most probably the only contributor to stream flow. 

To evaluate the agreement between the two techniques over these periods, we used the determination coefficient R² [-] 

calculated with respect to the RDF baseflow: 

 10 

𝑅2 = 1 −

∑ (∑ (𝒇𝐛𝐚𝐬𝐞/𝐑𝐃𝐅(𝒕) − 𝒇𝐬𝐮𝐛/𝐂𝐌𝐁(𝒕))
2𝑡=𝑡rN

𝑖

𝑡=𝑡rN
𝑖 −𝑝(𝑡rN

𝑖 −𝑡r0
𝑖 )

)𝑖=𝑁r
𝑖=1

∑ (∑ (𝒇𝐛𝐚𝐬𝐞/𝐑𝐃𝐅(𝒕) − 𝒇𝐛𝐚𝐬𝐞/𝐑𝐃𝐅(𝒕)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
2𝑡=𝑡rN

𝑖

𝑡=𝑡rN
𝑖 −𝑝(𝑡rN

𝑖 −𝑡r0
𝑖 )

)𝑖=𝑁r
𝑖=1

 (11) 

 

In the last 50% of the identified recession periods, the results of the two methods are found generally close to each other, 

as they are both expected to represent the baseflow component only (Fig. 3). When computed relative to the RDF results, 

determination coefficients of 0.78 and 0.80 are obtained for “Hoyoux upstream” and “Triffoy” respectively. These 

values are considered relatively high given the difference of the concepts underlying the separation procedures: the RDF 15 

tends to extract a smoothly varying low frequency baseflow, whereas the CMB produces a noisier signal directly 

influenced by the dynamics of the total stream flow. In other words, the signal obtained by the CMB technique directly 

responds to all small fluctuations occurring during the recession periods, while that generated by the RDF does not due 

to its structural composition based on exponential averaging of total flow. The agreement between the two results is 

also shown by the scatter plots in Fig. 3, as most data fall within a ±10% interval around the agreement line. 20 
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Figure 3 

Comparison of baseflow obtained by calibrated RDF and subsurface flow obtained by calibrated CMB method on (a) Triffoy 

for time series results, (b) Hoyoux upstream for time series results, (c) Triffoy for regression analysis, (d) Hoyoux upstream 

for regression analysis 

 5 

 

3.1.3 Synthetic catchments 

For 64 synthetic catchments, we compare here the baseflow estimates obtained by our technique to baseflows generated 

numerically by Li et al. (2014) using the HGS model. As detailed in Fig. S3 in Supplementary material, the differences 

between the numerical estimates of baseflow and our filtered estimates was quantified using three criteria: (1) Nash-10 

Sutcliffe criterion (ENSE), (2) difference in the baseflow contribution to the total stream flow volume, and (3) correlation 

between the two baseflow estimates. For 28 catchments out of 64 (44%), we obtain a positive ENSE value of which the 

overwhelming majority (86%) are above 0.6, implying a good agreement between filtered and numerical estimations. 

For 15 of the other catchments, a high overestimation of the baseflow integral contribution by the RDF relative to the 

numerical approach explains the relatively poor values obtained for ENSE. Differences in the baseflow dynamics explain 15 

the lack of correspondence between the compared methods on 13 other catchments, while a different timing explains 

the poor agreement on the 8 remaining catchments. 

A principal component analysis (PCA) was carried out on these groups as a function of the catchments characteristics 

(Fig. S4 and S5 in Supplementary material). It reveals a strong scatter of all groups in the principal component plane 

and hence no clear dependency of the results quality on the catchments characteristics. However, the weak performance 20 

of RDF could probably be explained by sporadic temporal variations of total flow on certain catchments that might 

affect the detectability of recession periods and thus the quality of baseflow estimates. Another recession detection 

method like the Automatic Baseflow Identification Technique (ABIT) developed by Cheng et al. (2016) could be tested 

in future research to check whether the highly fluctuating discharge flow could have biased the identification of 

recession periods and led to the poor agreement between filtered and numerical baseflows for some of the catchments. 25 

3.2 Sensitivity analysis 

In Sect. 3.2.1, we analyze the influence of parameters s, p and β on the calibrated values of the RDF parameters k and 

w, whereas the sensitivity of these values to the length of the available times series is discussed in Sect. 3.2.2. 
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3.2.1 Influence of the parameters involved in the calibration procedure 

The first step for applying the proposed optimization procedure consists in identifying the recession periods in the 

studied time series, using the algorithm presented in Step 1 of Sect. 2.2. For this step, the non-dimensional slope 

threshold s was introduced to define the beginning and the end of recession periods. We discuss hereafter the influence 

of parameter s on the results of the automatic RDF calibration. We also tested the sensitivity of the calibrated parameters 5 

k and w to the values set for the selected percentage p of the recession period (taken from the end) and the relative 

weight β applied to the denominator of the 𝐸𝑙 ′′NSE criterion. We first substantiate the choice of the ranges of variation 

of parameters s, p and  to be considered for conducting the sensitivity analysis: 

 A value slightly higher than zero is recommended for parameter s to reduce the algorithm sensitivity to small 

flow rate fluctuations which do not necessarily represent actual rainfall events. An interval of [1-10] for the 10 

slope threshold was found to be reasonable. The automatically identified recession periods were closely 

scrutinized to ensure that only falling limbs are captured, and only relatively long recessions are considered. 

 Since the percentage parameter p is intended to ensure a pure baseflow condition, its value was upper limited 

to the second half of the identified recession periods, i.e. the last 50%. Furthermore, in order to have a 

sufficiently representative dataset of the receding shape of the flow rate during dry periods, a lower limit was 15 

set to 30%. 

 Regarding the weighting exponent β, instead of supposing a default unity value, we checked whether small 

variations would significantly change the optimal values of the filter parameters k and w. Therefore, we studied 

the sensitivity of the results to its value in the range [0.7-1]. 

 20 

We scanned systematically the three dimensional space of parameters (s, p, and β), and we applied the proposed 

optimization method of RDF. The variation of the optimal values of (k,w) as a function of each parameter (s, p, and β) 

are displayed in Fig. S6 in the Supplementary material for the three gauging stations in the Ourthe catchment. For the 

considered ranges of variation of s, p, and β, these three parameters show a very low (Hotton station) to imperceptible 

(Durbuy and Tabreux stations) influence on the results of the optimization procedure. 25 

 

 The negligible sensitivity of parameter k and w to the weight β (small error bars in Fig. S6 in the Supplementary 

material) shows that assigning different weights to different flow periods for the ENSE criterion is needless and 

thus exponent β can be dropped from the objective function structure. 

 Except for w at Hotton gauging station, parameter p has no influence on the optimal values of k and w. This 30 

suggests that the proposed identification of the recession periods is reliable. 

 Similarly, the small influence of the slope threshold s on the optimal values of k and w highlights the 

adaptability and robustness of the proposed method to recession periods identification. 

3.2.2 Influence of the time series length 

Time series of 34 to 43 years are available at the three Ourthe gauging stations. These time series are relatively long 35 

compared to the records commonly available in other watersheds. Therefore, we analyzed the impact of using a shorter 

time series on the calibration procedure. To do so, we applied our automatic calibration method based on partial series 

of 2, 4, 6, 8, 10, 15 and 20 years. For each time series length, 14 to 41 continuous samples were randomly extracted 
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from the complete dataset and used to optimize parameters k and w. The variability in the computed optimal values of 

k and w for each time series length is shown in Fig. S7 in the Supplementary material. The boxplot representation 

displays the median of the results by means of a horizontal mark inside a box with edges corresponding to the 25th and 

75th percentiles of the results. The whiskers extend up to the most extreme data points within 1.5 times the interquartile 

range away from the top and bottom of the box, and the outliers are plotted individually using the marker +. 5 

 

Results show that adjusting the filter parameters on shorter datasets tend to overestimate the k value and slightly 

underestimate the w value with more dispersed estimations with smaller samples. For a 2-year dataset of continuous 

stream flow measurements, the optimal values of parameters k and w can be estimated with a maximum accuracy 

(between the 3 stations) of 12% and 22% respectively calculated as a Scaled Root Mean Square Error (ESRMSE [-]): 10 

 

𝐸SRMSE =
1

𝑋
√

1

𝑛
∑(𝑥i − 𝑋)2

𝑛

𝑖=1

 (12) 

 

where X is the parameter value calibrated on the whole dataset, xi is the parameter value calibrated on the ith reduced 

data sample (here two-year), and n is the number of reduced data samples (here 2-year) drawn from the entire population. 

 15 

In order to better understand the variation of the optimization result as a function of the series length, the distribution 

obtained for each time series length is compared to the reference one obtained from the whole dataset. The comparison 

is made using a two sided Wilcoxon rank sum test at a statistical significance of 5%. All computed p-values were found 

to be well above 5%, indicating that the null hypothesis can be accepted for all compared couples and hence all samples 

can be considered drawn from the same distribution. 20 

4 Conclusion 

The main purpose of this study is to develop a practical and automatic method to implement one of the most commonly 

used techniques of baseflow separation, namely the RDF. We supposed that this objective can be best attained by a 

calibration procedure with an objective function expressing the phenomenological knowledge of the relation between 

the calibrated (baseflow) and the reference quantities (total flow) that has always been implicitly employed in the 25 

standard graphical procedures involving visual inspection. This function was devised using: (i) the time variation in the 

expected correspondence between the baseflow and the stream flow during dry and wet periods, and (ii) the upper limit 

imposed by the stream flow on the baseflow during recession periods. The finally adopted objective function is given 

in Eq. (9). 

 30 

A series of validation tests were realized to assess the validity and robustness of the proposed method. The first 

verification was made on the optimizable property of the objective function, i.e. if it presents a clearly identifiable 

optimum in the parameters space. The second evaluation focused on the physical and numerical plausibility of the 

parameters values obtained at this optimum. The physical part was evaluated by comparing these values between several 

watersheds sharing the same geomorphological and soil characteristics, while the numerical part was evaluated by 35 

comparing these values with those obtained by a standard adjustment technique. The last validation procedure was 
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carried out on the baseflow hydrographs yielded by the proposed method. Due to the inaccessible nature of this flow 

component, results were compared to those extracted using more objective and elaborate methods, the CMB method 

and the HGS model. Another series of analysis was performed to test the robustness of the method to: (i) the 

identification of the recession periods needed in applying the new objective function, and (ii) the length of the discharge 

flow time series. 5 

 

In its application on five watersheds of the Meuse basin in Belgium, the objective function showed a clear unique 

optimum with the associated parameters values being consistent with values obtained from more standard calibration 

methods and physically coherent between the studied watersheds. On the other hand, the good match between the 

baseflow estimates of RDF and CMB methods on two catchments and between RDF and HGS on 28 catchments 10 

suggests that the proposed formulation of the objective function is well adapted and reliable to calibrate the RDF 

parameters. The method was proved to be robust in terms of recession periods definition and length of flow time series. 

The main advantage of the developed calibration procedure is to combine a high degree of practicality and a low-cost 

(as for graphical methods) with a total reproducibility (as in tracer methods). In this respect, the developed method is 

not only more operational, but also more objective than standard graphical methods which involve visual inspection by 15 

the user. 

 

Future research could focus on testing our new method on more catchments for which tracer-based hydrograph 

separation are available (Zhang et al., 2017), as well as investigating the applicability of the objective function developed 

here to separate different components of the quick flow i.e. overland flow from interflow. The relatively poor results of 20 

the comparison between RDF and HGS on some catchments should be further explored using another method of 

recession period identification (Cheng et al., 2016). Since all the analyses in this study were made on undisturbed 

watersheds with minor developments, it would be of high relevance to test the method validity and performance on 

more developed watersheds that are affected by human abstraction of groundwater or substantial land use changes. 
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