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ABSTRACT
We discuss two group theoretical aspects of the classification and construction
of six-quark states related to the NN problem. One concerns the coupling schemes
available in the literature and a unitary transformation is derived between the
TS and CS coupling schemes. The other gives a prescription for using molecular
orbitals as single particle quark states.

1. Introduction

Since the nucleon is now treated as a composite object one expects that
its structure will influence the nucleon-nucleon interaction at short
separation distances, when the two interacting nucleons overlap very
strongly. If the quark core radius is of the order of 0.5 fm or 0.7 fm for an
equivalent radius one expects the quark structure to be effective in a range
up to about 1 fm. In this range the nucleon-nucleon system can be viewed as
a six-quark system confined in a region of space and interacting via gluon
exchange. In nonrelativistic quark models the confinement is achieved by
the spin-independent interaction!™ in the MIT bag® by appropriate boundary
conditions and in the soliton bag® by an additional scalar field or through a
chromo-dielectric function” mediated by a scalar field. A description of the
nucleon-nucleon interaction within the frame of quark models has been the
subject of much research and we refer the reader to reviews written, for
example, by Oka and Yazaki8 or Myhrer and Wroldsen.?
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The purpose of the present contribution is to discuss some group
theoretical aspects of the six-quark system, inasmuch as the classification and
construction of six-quark states is a central problem in any derivation of the
nucleon-nucleon interaction. In principle the choice of a basis is irrelevant if
a very large number of states is included but in practice one has to use a
finite set which has to contain the most important ones. The discussion we
give here is valid for any nonrelativistic or relativistic model which
provides the single particle states necessary to build six-quark states.

The symmetries of the six-quark states are related to the degrees of
freedom characterizing the quarks : orbital (O), colour (C), flavour or isospin
(T) and spin (S). There are two distinct aspects related to the construction of
six-quark states which we wish to present here. One is concerning the orbital
part of the wavefunction and the other to the coupling schemes.

2. Coupling Schemes

Having four distinct degrees of freedom O, C, T and S in the N-N
problem, several coupling schemes are possible in constructing totally
antisymmetric six-quark states. There are two classification schemes
available. One is based on the intermediate CS coupling and the other on the
TS coupling. The TS coupling scheme allows to naturally construct the
physical NN and AA states!0 from symmetry states. The CS coupling scheme
favours symmetry states for which the expectation value of the spin-spin
interaction is lowest. These are not necessarily physical states. A unitary
transformation has been derived!! to relate states in the two coupling
schemes. The chosen orbital symmetries are [42]o in the TS = (01) and [33]O
in the TS = (00) sector. This allows to determine the correct CS composition
of the NN state. For example the (TS) = (01) or (10) result is shown in
Table 1.

TABLE 1. The content of NN in the CS scheme for TS = (01) or (10) .
60222} [2]5(42)cs [42]5{321) s [42]g (3111)qs [42], 222) s [42]{21 11}es

i 1 4
3 645 215

31 20

1
NN -
2742 5 27

One can see that among the [42], states the largest contribution comes from
[21111](}3 (54.9 %) and [222]6 (33 %) symmetries. On the other hand the
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symmetry [42]~ gives the lowest (negative) contribution to the expectation
value. As this state contributes to less than 1 % the dominant states should
first of all be taken into account.

3. Molecular Orbitals

Here we use the TS coupling scheme, where one first couples the
colour singlet [222]. state to a specific orbital symmetry [f], to give a state

of symmetry [f'] which has to be coupled to the dual [f g state in order to
give an antisymmetric [16] state which reads

\ifé = ( ( [ﬂo [222](: ) ['f,] [f‘]-rs ) [16] " (1)

The difference with respect to Harvey's scheme or other studies is that we
use molecular single-particle states, ¢ and 7, instead of cluster model states
R (right) and L (left). The molecular orbitals are states of definite parity in
contrast to cluster model states. Here ¢ has positive and n negative parity.
They are eigenstates of the same hamiltonian which incorporates a mean
field. Hence they are orthogonal at any separation. For the scattering
problem, from © and m it is convenient to construct orthogonal pseudo-
right and pseudo-left orbitals, r and  as

r -1
( )=22(cin). 2
L

The rQ states recover the R,L. cluster model states at large separation. The
algebra with rf states is much simpler than that with R,L states because of
their orthogonality. The transformation from the 1 tothe o,x
representation of the relevant six-quark states was given in Table 1 of Ref.

" 12. In practical calculations it is simpler to work with r instead of o,&

states. One can return to the ©,m states after the six-body matrix elements
have been reduced to linear combinations of one- and two-body matrix
elements by using the fractional parentage technique. In Refs. 13 and 14 we
performed and compared calculations based on a cluster model basis on the
one hand and a molecular basis on the other hand. Reference 13 refers to a
constituent nonrelativistic quark model and Ref. 14 to a current (relativistic)
quark model, the prototypical MIT model. In both cases we found that the
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ground state energy was substantially lowered through the use of molecular
orbitals, by making an appropriate choice of six-quark basis states. We found
that at zero separation configurations of type snpé—“ (n # 3), which are
missing in the cluster model basis, are very important. As an example in
Table 2 we reproduce results for the TS = (01) or (10) sectors in the MIT case.
~ The first three basis states form the "physical" basis in Harvey's transfor-

3
mation10 and contain configurations of type r°4 . The other molecular
2 4 S
configurations are of type r4£ +1° 0 or rsﬁ +rl , denoted by 42" and
51+, respectively. ’

TABLE 2. Eigenvalues (MeV) of the MIT hamiltonian (bag energy plus quark single-particle
energies plus one gluon exchange) for TS = (01) or (10) in the cluster R,L basis and molecular r,
basis. In each case nxn is the matrix to be diagonalized ; 1 x 1 represents the diagonal matrix
elements before diagonalization.

R,L (cluster) r, | (molecular)

channel 1x1 3x3 . 1x1 7x7 amplitude
NN 71 10 0.02 -82 -0.911
AA 354 237 418 242 -0.035
ce 543 721 1010 436 - 0.060
42+ [6] {33}) 763 581 -0.274
(42+ [42] {33]) 968 772 -0.188
(42+ [42] {51)) 586 968 0.186

(51+ [6] {33}) 578 1403 0.140

In the calculations mentioned above the results are for a united bag
(zero separation) which is the extreme situation relevant for short distance
interactions. At present we consider applications of the molecular orbital
basis at finite separations (deformed bags) within a more realistic model, the
chromo-dielectric model. Partial results can be found in L. Wilets' invited
talk at this conference.1®
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