
Long E-mails and Internet Connections

Merciadri Luca
Luca.Merciadri@student.ulg.ac.be

Abstract. Fetching e-mails is a daily task. However, when an e-mail size overcomes a given threshold,
e-mail communication becomes more difficult, because slow. This is principally due to the outgoing
speed of cheap Internet connections. We propose here a mechanism which limits this problem.

Keywords: E-mails.

1 Introduction

Fetching e-mails is a daily task. E-mail communication has become a real alternative to traditional communi-
cation medias, which are principally represented by (mobile) phones (through SMS or calls). However, when
an e-mail size overcomes a given threshold, e-mail communication becomes more difficult, because slow.
This is principally due to the outgoing speed of cheap Internet connections. We propose here a mechanism
which limits this problem.

2 Context

A traditional way to communicate through e-mails is to choose to ANSWER to a read e-mail. This can be
achieved on various e-mail clients (with or without a WWW GUI interface). Using this very useful method,
one’s e-mail can become quickly long, thus having a big size.

The phenomenon (which was explained in Section 1) only appears when, once an e-mail has been sent,
this e-mail is reused many times to continue a given discussion related to the subject of the first mail. We
only consider two persons sending e-mails using POP and SMTP protocols, that is, the most used protocols
because of their simplicity and reputation.

In a more formal way, let’s take two persons Pi (i ∈ {1, 2}) communicating through e-mail. One of these
Pi, say P2, sends a first e-mail to the other (P1). Once this e-mail has been read, P1 answers for the first time
(to P2), and the reply is thus sent, then received, by P2. Such a transaction is equivalent to two sessions.
A session sj , j ∈ S, is thus successively defined by an e-mail reception, reading, replying and sending (by
only one person, as shown before), the S set being the set of all the sessions.

If at least one of the Pi has to communicate regularly with the other Pi about the same precise subject,
each of these Pi’s e-mail clients will, when receiving an e-mail of the other Pi, attach the rest of the e-mail
to the current e-mail. That is very useful in an e-mail conversation to know precisely what one is answering
to, or even to proof other’ words.

It is clear that if

1. |S| � (that is, if the cardinal of the set of all the sessions is bigger and bigger, the number of sessions
being bigger and bigger), the fetching of the s-related e-mails will take more and more time,

2. |S| (mod 2) = 0, both Pi are replying to these e-mails. We here consider an infinite conversation (that
is, S is an infinite set at a given point, but it keeps being finite for our examples).

We consider two extreme cases:

1. A session is formed by an everage amount of 10 words, such as

What do you think about this? I really like it.

2. A session is formed by an average amount of 1000 words, such as 100 times the given sentence.

We illustrate the phenomenon for both cases at Table 1, p.2 with a connection having a theoretical speed
of 4096Kbps (2048 Kbps in practical measures) for Reception, and 256 Kbps (resp. 32.25 Kbps in pratical
measures) for Sending. This connection is in Belgium, and no other task is performed during the test. Values
of |S| are rounded to be in Z.

2.1 Results

(s) # Sessions
Size of the e-mail Fetching time Sending time Total session time |S| (10 wds. avg.) |S| (1000 wds. avg.)

...
...

...
...

... (N.A., too few words)

2 Ko (16 Kb) 0.0078125 0.4961240 0.5039365 2
...

10 Ko (80 Kb) 0.0390625 2.4615385 2.5006010 10
...

50 Ko (400 Kb) 0.1953125 12.3076923 12.5030048 50
...

100 Ko (800 Kb) 0.3906250 24.6153846 25.0060096 100 1
170 Ko (1360 Kb) 0.6640625 41.8461538 42.5102163 160 1.7 ≈ 1
200 Ko (1600 Kb) 0.781250 49.2307692 50.0120192 200 2
500 Ko (4000 Kb) 1.9531250 123.076923 125.030048 500 5

...
...

...
...

...
...

Fig. 1. Results of e-mail sessions.

3 Interpretation

One can clearly notice that, according to Table 1,

1. If the average amount of words in a session is equal to 10, the sending time of the e-mail becomes too
big (and is considered very slow) after 10 sessions,

2. If the average amount of words in a session is equal to 1000, the sending time of the e-mail becomes too
big (and is considered very slow) after 0.1 session(!)

These remarks have sense, as e-mail is a quick communication way, and waiting more than 2 seconds to send
an e-mail is too much. Furthermore, sending time of an e-mail handicaps total session time, which leads to
a slower communication.

4 Proposition

Whatever the average number of words in a session, and according to the results of Table 1, a proposition
has to be developed in order to lower

1. the sending time,
2. (and) the fetching time

of such e-mails. The fetching time is a little bit less important, as there needs to be at least 500 10-words-
composed sessions (resp. 5 1000-words-composed sessions) to make fetching time as much annoying as
sending time.

On one hand, when P2 is replying to P1, P2 does not need to send the whole e-mail (that is, the current
answer, and the quotation of both old answers) to its SMTP server.

On the other hand, when P1 receives P2’s reply to P1’s e-mail, it would still be appreciable for P1 to
receive the complete e-mail.

Based on these two assumptions, we now give a method which would enhance the speed of delivery of
such e-mails: output and input speeds.

4.1 POP Server As a Quotation Gateway

We here consider arbitrarily one of the Pi, i ∈ {1, 2}. Let’s take P2. If P2

1. has a POP account, and that
2. sees his e-mail client not being configured to automatically delete fetched messages from the server,

an efficient way to communicate can be considered; it is schematized at Figure 4.1, p. 3. It would greatly
enhance the replying time of P2, still providing P1 with the whole message.

If the second condition is not fulfilled, the method can be adapted easily. The first condition is always
verified, as P2 is assumed to be only using a POP server for his e-mails’ fetching.

Completey (i.e. from the beginning to the end) using SMTP server as a quotation gateway would not be
a good idea, as a SMTP server is made to send e-mails, not to hold them.

The connection from P2 to P2’s POP server could be achieved easily and securely with an authentification,
even if P2’s POP and P2’s SMTP servers are not on the same group of machines.

P2

P1

P2’s SMTP

P2’s POP

Current answer

Other conversations in current mailAsk for other conversations

The steps would thus be the following ones:

1. (1 time) One of the Pi (say P2) sends his first message to the other Pi (say P1), through P2’s SMTP server,
2. (1 time) The other (P1) receives P2’s e-mail thanks to P1’s POP server,
3. If the e-mail which P1 has just received, has a size near the defined threshold, a signal is sent to P1’s

SMTP server,
4. P1 replies to P2 through P1’s SMTP server:

(a) If the signal has been sent, every text in the e-mail, except current text (text of this session), will
be sent and attached by P1’s SMTP server to P2’s new e-mail (from P1), the current text being sent
by P1;

(b) If the signal has not been sent, the communication keep using traditional methods until the next
signal,

5. The process restarts until P1 ↔ P2 communication is finished (hypothetically, never).

5 Benefits

The main concepts which had to be respected using a given method were the following:

1. The Pi’s are able to see in an opaque way (i.e. without changing anything in their habits) quotations
of old messages in the same e-mail,

2. Pi’s I/O times must be kept as small as possible.

These two objectives are respected with our proposition. However, we have not quantified yet how much
such a method would be interesting for the Pi’s. The main advantage of our method is that, to lower Pi’s
e-mails’ replies’ I/O times, it uses the servers’ Internet connections, but not in an outrageous way.

For example, assuming e-mail replies’ composition (i.e. appending of previous quotations and old text
to the current message) tasks are time-negligible (as they only use CPU time, this assumption can be done
as this task is easy), the time of a session expression, multiplied by a d constant, equals

d · tsession := tf + ts,

can divided by a d factor, thus giving

tsession =
tf + ts

d
, (1)

tf and ts being respectively the amounts of time needed to fetch and to send the complete e-mail. We define
d := df + ds, df and ds being respectively the factors of fetching and sending, with

df =
sf

2400
(2)

ds =
ss

256
, (3)

sf and ss being respectively the practical (i.e. measured, not theoretical) speeds of reception and sending
of the servers.

It leads to a global expression

tsession =
tf + ts

sf

2400
+ ss

256

. (4)

In this expression, if we let sf → +∞ and ss → +∞ (that is, servers’ fetching and outgoing speeds are
positively infinite), thus asking simultaneously

lim
sf→+∞

df = +∞, (5)

lim
ss→+∞

ds = +∞, (6)

we can consider

lim
df → +∞,

ds → +∞

tsession = lim
df → +∞,

ds → +∞

tf + ts
sf

2400
︸ ︷︷ ︸

=df

+
ss

256
︸︷︷︸

=ds

= 0, (7)

as tf > 0 and ts > 0, thus showing that the Pi’s fetching and sending times won’t be as limited as before.

6 Theoretical Results

If we let, for example, sf = 24 000 Kbps and ss = 25 600 Kbps, we have

tsession =
tf + ts

10 + 100
=

tf + ts

110
; (8)

that is, d = 110. In the case where this method was not used, we can consider sf and ss being respectively
equal to the Pi’s sf and ss speeds, as the transaction is limited by the Pi. It thus leads to

tsession =
tf + ts

2
, (9)

and, as
110

2
= 55, (10)

it shows us that a server executing our method, and having sf = 24 000 Kbps and ss = 25 600 Kbps, thus
speeds being 10 times equal to Pi’s ones, gives a 55 global improvement.

7 Conclusion

In Section 1, we introduced the problem. Context and results were given in Section 2. We then interpreted
results in Section 3, and made a proposal in Section 4. Benefits were exposed in Section 5; they were
illustrated by a theoretical example in Section 6. This proves that this method is effective, and working. It
should next be implemented.

