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Important configurations in six-quark N-N states
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We present an analysis of six-quark basis states constructed from molecular-type single-particle
orbitals. In the present work, we employ a nonrelativistic constituent quark model with one-gluon
exchange approximated by a spin-spin interaction. The orbitals are constructed from appropriate
combinations of two-center Gaussians. The calculations are performed in the limit of zero separa-
tion, and is deemed relevant to short distances. We study the contributions of configurations which
are natural in the molecular basis but had been neglected previously in cluster model calculations.
We find a dramatic lowering of the energy due to these configurations.

I. INTRODUCTION of even and odd parity are

A description of the nucleon-nucleon interaction is one
of the fundamental challenges of quantum chromo-
dynamic (@CD) models in the low energy (confinement)
regime. Of the various models which have been discussed
in the literature, here we address those containing expli-
cit quark structure. These include both constituent
quark nonrelativistic potential models, and current quark
relativistic bag or soliton models. A common problem
which all quark models face is the representation of the
quark wave functions for various nucleon-nucleon "sepa-
rations. "

In a previous paper, ' we discussed the important ad-
vantages of molecular orbitals. We presented a
classification scheme and the explicit construction of six-
quark basis states which are relevant to N-N scattering
and bound states.

Molecular orbitals are natural to mean field or general
independent particle model (IPM) approximations.
Among the various quantum numbers characterizing an
IPM state, we call special attention to parity, since
single-particle parity is conserved during a collision
within the mean-field approximation.

The nonrelativistic cluster model has been used exten-
sively to calculate the N-N interaction. In that model,
single-particle wave functions are the nonorthogonal
"right" and "left" orbitals

R„(r)=g„(r—Z/2)

and

L„(r) =1(j„(r+Z/2),

where Z is the intercluster distance and P„ is frequently
taken to be the ground state (n =0) oscillator function of
width independent of Z. As discussed in Ref. 1, orthogo-
nal molecular-type wave functions can be constructed as
simple linear combinations of the cluster functions R„
and L„. There we considered explicitly the case n =0.
For that case (suppressing n ), the two molecular orbitals

cr(r) —= [2(1+(R
~

L ) )] '~ [R(r)+L(r)] . (1.1)

For the scattering problem, it is convenient to construct
orthogonal pseudo-right and pseudo-left orbitals, r„(r}
and l„(r), which for large separations approach R„(r)
and L„(r):

r(r)
I ( )—:2 '

[tr ( r )+77( r )]

r(r}
i( )

——2 ' '[s(r)+p(r)] . (1.2)

From the s and p orbitals, various six-quark
configurations can be constructed; they are of the type
s"p " or r"1 ", with n =0, 1,2, . . . , 6. In Table I of

The use of orthogonal functions greatly simplifies the
mathematics of generating states of the proper space-
spin-isospin-color symmetries.

Of course, both the cluster model states and the molec-
ular states form a complete basis set. However, there are
configurations which appear naturally in the molecular
basis but which hitherto have been ignored in cluster
model calculations. These configurations were listed ex-
plicitly in Ref. 1.

In order to evaluate the importance of the neglected
configurations, we consider here the case of zero separa-
tion (the united cluster) because it is especially simple and
because it offers an extreme case of configuration mixing.
Our conclusions will be relevant for short separations. In
this study, we diagonalize a commonly used nonrelativis-
tic Hamiltonian in six-quark basis states. We use only
configurations which are generated by the lowest cluster
model functions, namely Os states. Therefore, in the fol-
lowing we suppress the subscript n. At Z=0, the corre-
sponding molecular basis has two functions, s and p
(m =0), and the corresponding pseudo-right and -left
functions read
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Ref. 1 we gave the transformation between the (r, l ) and
(o, m) representations. Note that for Z=O, cr~s and
K~p.

In the cluster model, the nonorthogonal R and L func-
tions have been used only to construct configurations of
the type R L, which are then properly symmetrized and
normalized. Care must be taken in the spherical limit be-
cause R and L become identical, and spatially antisym-
metric pairs vanish. A proper limiting procedure is ob-
tained by letting Z~0 in the functions and in the overall
normalization (see Ref. 2).

Harvey has selected those configurations which ap-
proach, asymptotically, the physical NN and hA states
and a particular hidden color state CC. As a function of
Z, these states will here still be denoted by NN, hh, and
CC. If we reexpand these three configurations in terms of
molecular parity eigenstates, we find that the admixture
of various single-particle parities varies with Z. As
Z~ ~, they all contain equal probabilities of even and
odd parity functions, but at Z =0 they contain only s
and s p components for T=O, S=1 or T=1,S=0, and
s p and s p for T =O,S=0. The explicit spherical struc-
ture is given below.

This paper is offered as an aid to the practitioners of
cluster model and mean-field calculations in order to sim-
plify their work, to provide group theoretical coefficients
for constructing basis states, and to identify important
basis configurations so as to reduce computation time.

II. THE SIX-QUARK BASIS STATES

(2.1)

The six-quark basis states constructed in Ref. 1 are to-
tally antisymmetric. The group theoretic classification
scheme is an extension of that done by Harvey. Thus we
build a totally antisymfnetric state of six quarks accord-
ing to

'Ps=( Iit6[f]C6[f']](g )16([f"]7S'))(,4)
',

i.e., we first couple an orbital function f6 of partition [f]
to an SU, (3) singlet color function C6 of partition [f'] to
give a state belonging to the [f"] representation of the
permutation group S6. This is combined with the spin-
isospin state I 6 of dual symmetry [f"] to form a totally
antisymmetric state.

In order to calculate matrix elements of a model Ham-
iltonian (see Sec. III), it is necessary to resolve the func-
tions P6, C6, and I 6 as linear combinations of products
g4Pz, C4cz, and I 4yz, i.e., into states of four and two
quarks so as to reduce the calculation of six-body matrix
elements to two-body matrix elements. The required
linear combinations are obtained with the help of
coefficients of fractional parentage (cfp).

For the orbital space, Harvey has provided the
coefficients for states $6[f ] having configurations of the
type r I, i.e., three quarks which are asymptotically in a
left (1) cluster and three in a right (r) cluster. The
coefficients we need are the same as for his a b
(
—=S+S ) configurations. Our classification scheme, '

based on molecular orbitals, introduces extra
configurations r l and r l (four and two quarks in each
cluster), and r l and l r (five and one per cluster). Here
we ignore the configurations r and I; they are spurious

p
2

H=g m+
2ml

1

2M'

+ g R; A,J[u, (r; )+cr; cr u (r,")], (3.1)

where M=+; m;, P=g; p;, and the R are the set A,

(a=1, . . . , 8), the generators of the SU(3) color group.
For v, as a function of the interquark spacing r we use
the parametrized form of Ref. 7,

v, = ~e-" '+ar2+C, (3.2)

and v is simply the contact term

u =D5(r) . (3.3)

The parameters A, 8, C, D, and a, together with the har-
monic oscillator size parameter P, have been fit in Ref. 7
to the baryon spectrum. Among the sets offered there,
we have selected

3 =0, 8 = —621 MeV fm

C=776 MeV, D = —109.5 MeV fm

a=0.2737 fm, P=0.456 fm .

(3.4)

in the limit of infinite separation and they do not couple
to NN and hb, states at zero separation. Using the same
phase conventions as Harvey, we have calculated the cor-
responding cfp. They are presented in Tables I and II.
Cases not shown are trivial: Either 1 or 0.

As pointed out by Harvey, the color cfp are not re-
quired in practice because they disappear into the nor-
malization property. In spin-isospin space, we consider
within our classification scheme all the SU(4) representa-
tions of Harvey's Table I. With the exception of the
I411I representation one can find the corresponding cfp
in either Ref. 2 or 3. As demonstrated in Sec. III, the
I411I, together with many others (those without an as-
terisk in Harvey's Table I), can be neglected and it is
therefore unnecessary to calculate such cfp.

Another necessary ingredient of the six-quark state is
the so-called E matrix. The E matrix is a linear com-
bination of terms which are products of specific factors of
6ebsch-Gordan coefficients of the symmetric group S6
and S5. They appear from the coupling of the orbital to
the color space. For details, see Appendix B of Ref. 2.
Harvey has calculated the elements of the K matrices of
the "asterisked" SU(4) representations. They contain di-
baryon states. The others are asymptotically unphysical
and play the role of "hidden color" states. One purpose
of the present work is to study quantitatively their contri-
bution at Z =0. In Table III we present the K matrix ele-
ments for all representations without an asterisk. We fol-
low the notation of Ref. 2.

III. THE QUARK-QUARK INTERACTION

To examine the utility of molecular orbitals over clus-
ter states, here we consider a nonrelativistic constituent
quark model. In such models, a description of one-gluon
exchange is given by the usual magnetic hyperfine in-
teraction. For simplicity in the present study, we re-
strict ourselves to the spin-spin term. In baryon spectros-
copy, ' this is the major contribution to the spectrum.
Thus we consider the Hamiltonian (A=c =1)
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TABLE I. Orbital two-body fractional parentage coeScients for the symmetry states [f] containing
the cpnfiguratipns r I pr r I .

412 4.12

[4]:P]
r 212:r2

[4] [11]
r I:rl

[6]

[51]

[42]

412 r4, 12

[31]:P]
r 212:r2

[31]:[11]
r I:rl

[51]

[42] 1

2

214 14:r'
[4]:P]

r 212,12

[4]:[1 1]
rl :rl

[51]

[42]

v'-,' +1
0

214 14:r'
P 1]:P]

r2
[31]:[11]

rl :rl

[51]

[42]

TABLE II. Same as Table I but for the configurations r'I or
rl'.

[4]:P]
r4:rl r'I:r2

[4l:[1ll
r4:rl

The kinetic term is treated nonrelativistically, with quark
mass m =362 MeV. The results given in the next section
are relative to two-nucleon masses, which each is

MN ——940 MeV.
Each six-quark basis state considered in the calculation

has been expanded in terms of products of antisymmetric
states of four and two particles by using the technique de-
scribed in Ref. 2 and the tables available therein and in
this paper in Sec. I. In this way, any six-body matrix ele-

ment becomes a linear combination of two-body matrix
elements. In Table IV we give all necessary two-body
matrix elements obtained for v, [see (Eq. 3.2)] and v

[see Eq. (3.3)] with the parametritation (3.4).
In Table II of Ref. 1 we listed all available six-quark

states obtained from our truncated molecular orbital
space and all SU(4) isospin-spin representations which
lead to totally antisymmetric states. In this way we ob-
tained a space spanned by 16 vectors for the T=O, S=1
or T= 1,S=0 sectors, by seven vectors for the
T=O, S=O sector, and by 25 vectors for the T=1,S=1
sector. The present study tries to answer the question as
to which of these vectors are the most important and if a
reduction of the basis of each sector can be made without
altering the results.

[6]

[51]

[6l

[51]

[4]:P]
I :rl

[4]:[11]
I :rl

IV. RESULTS

We have performed numerical calculations for the sec-
tors T=0,S=1 and T=O, S=0 The output of. the ma-
trix diagonalization is given in Tables V and VI, respec-
tively. In the first column of each table we list the basis
states in the notation of Ref. 1. The NN and Ab states,
together with the CC state, have been defined by Har-
vey ' for the cluster basis. In the Z~O limit, they have
a different orbital space content in the cluster and in the
molecular bases. In the cluster basis they are



1148 FL. STANCU AND L. WILETS

NN(cluster)= —,'((s [6]I33})+2(s p [42][33j ) —2(s p [42]I51j)),

bh(cluster)= —(2(s [6][33j)+4(sp [42]I33j )+5(s p [42][51j )),
&4S

CC(cluster)= —(2(s [6][33j)—(s p [42][33j))v'5

38

(4.1)

for (T=O,S=1) or (T= 1,S=0), and

NN(cluster)= —(&5(s p[51][42j )+2(s p [33]I42j )+6(s p [33]I6j)),v'45

bb(cluster)= —(&20(s p[51]{42j)+4(s p [33][42j) —3(s p [33][6j)),
&45

CC(cluster)= —,'(+2(s p[51][42j ) —&5(s p [33]t42j ))

(4.2)

TABLE III. The matrices K(f[pq]f'[p'q']
~
f"[p"q"]). For each distinct matrix, the first line indicates [f][f'] and the line

below it gives pqp'q' with an overbar for a symmetric and a tilde for an asymmetric pair. The rows are labeled by [f"]p"q". For de-

tails, see Ref. 2.

[321]
12

13

23

[51] [222]

11 33 12 33 12 23

0

0 - —1 0

0 0

12

13

23

[51] [222]
11 23 12 23 12 33

V-', -v'-', o

—V'-', O V'-',

—1 0 0

[321]
12

13

23

11 33

0

0

[42] [222]
12 33 22 33 12 23
—v'-,' o —v'-',

-v' —,', v' —,',

—V'-,' O -V'-,'

12

13

23

[42] [222]
11 23 12 23 22 23

0 —1 0
-v' —,', -v'

—,', o

12 33

0

[42]
11

22

12

[42] [222]

11 33 12 33 22 33
v' —,'. o v' —,".

1 0 1

0 —Q2 0

12 23

0

12

[42] [222]

11 23 12 23 22 23 12 33

[3111]
14

[42] [222]
11 33 12 33 22 33

O O

o Q-', o

12 23

+Q-',
—v'-,'

14

34

[42] [222]
11 23 12 23 22 23 12 33

+v' —',.' —v' —,'.v' —,".—v' —,'.
V'-.' v'-'. o v'-'.

[33]
22

[33] [222]
22 33 12 23

12

[33] [222]
22 23 12 33

Q-,')

[411]
13

[33] [222]
22 33 12 23

v'-,' -v'-,'
v'-,'

13

23

[33] [222]
22 23 12 33

1 0
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for ( T=O,S=0). In the molecular basis the same states have a richer structure. From Refs. 1, 2, and 8 we obtain

1
NN(molec) =—

3
((s [6]{33j)—(p [6]{33j))— ((s p [6]{33j)—(s p [6]{33j))

+v'2((s p [42][33j ) —(s p [42]{33j )}—v'2((s p2[42][51j }—(s2p4[42]{51j ))

b, h(molec) = 1

v'4S ((s [6]{33j)—(p [6][33j)}— ((s p [6){33j)—(s p [6]{33)) (4.3}

+2v'2((s p [42]{33 j ) —(s p [42][33j ) }+ —((s p [42]{51 j ) —(s p [42]{51 j ) )v'2

CC(molec) = 1

v'5 ((s [6]{33j)—(p [6][33j))— ((s p'[6]{33j)—(s p [6]{33j))

—((s p [42][33j)—(s p [42]{33j))V'2

for T=O, S=1 (or T= 1,S=0), and

NN(molec) = 1

&4S
((s p[51]{42j)—(sp [51]{42j))— (s p [51][42j)

+2(s p [33)[42j}+6(sp [33][6j)

hb, (molec) = 1

v'45 2
((s p[51]{42j ) —(sp [51]{42j}}—&5(s p [51]{42j)

+4(s3p3[33][42j)—3(s p [33]{6j)

(4.4)

CC(molec )=—1
3 2

((s p[51]{42j)—(sp [51]{42j)}—(s p [51]{42j ) —&5(s'p'[33][42j )

TABLE IV. Two-body matrix elements for the confinement
potential, Eq. (3.2), and the spin-spin interaction of Eq. (3.3)
with the parameters of Eq. (3.4).

&ss
i

v ass)
&pp I

v
I pp &

&sp i
v

i
sp )

388.62
130.36
129.13
259.49

—73.32
—54.99
—36.66
—36.66

for (T=0,S=0},i.e., for each s "p" (n&3), a comple-
mentary configuration appears in the molecular basis.
For other six-quark states the limiting configurations can
be read directly from Table I of Ref. 1 by making the re-
placement 0 ~s, m~p.

Due to the complex structure of the states, we found it
more convenient to work out analytically the six-quark
matrix elements in the (r, 1) single-particle basis (Ref. 1,
Table I, second column) and return to the (s,p ) states at
the level of two-body matrix elements only.

In the second and fourth columns of Tables V and VI
we give the expectation values of the Hamiltonian (3.1}
for each six-quark state in the cluster (R,L ) basis and in
the molecular (r, l ) basis, respectively. The third column
is the result of diagonalization of a 3&(3 matrix in the

(R,L ) basis. This is what the cluster model calculations
of Ref. 9 would give at zero separation. The fifth column
and beyond are the results of diagonalization of matrices
of various sizes in the molecular (r, 1) basis.

For both sectors, the 3X3 (r, 1 ) matrix gives higher en-
ergies than the (R,L) basis. However, the enlargement
of the space by the addition of the asymptotically un-
physical 42*,51* configurations has a dramatic effect in
lowering the ground state energies in both sectors. The
last column in these tables gives the amplitudes of the
corresponding basis states in the ground state wave func-
tion.

Let us first look at the effect of the nonasterisked
isospin-spin states neglected by Harvey. In the examples
considered here, these are the three {321 j states of the
T=0,S=1 sector and the [222 j state of the T=0,S=0
sector. One sees that they contribute only 2 MeV and 1

MeV, respectively, to the lowering of the ground state.
The other nonasterisked configurations have a similar
effect. The reason is that they couple to other states only
through the spin-spin interaction (and the tensor interac-
tion if included), and this contribution is much smaller
than that of the confining potential. Therefore all
nonasterisked configurations can be safely neglected.

In both the (0,1) and (0,0) sectors there are three basis
states which appear to dominate the lowest eigenstate. In
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TABLE V. Results of the diagonalization of the Hamiltonian (3.1) in various six-quark bases, built from cluster model R,L or
molecular r, I orbitals, for the T=O,S=1 sector. Column one: the basis state; column two: diagonal matrix elements in the cluster
model; column three: eigenvalues (3X3) for the cluster model; column four: diagonal matrix elements for the molecular orbital
basis, columns five —ten: eigenvalues for matrices of various sizes; column eleven: the components of the lowest state associated with
the largest matrix.

R,L (cluster) r, I (molecular)

Channel 1X1 3X3 1X1 3X3 4X4 5X5 6X6 7X7 10X10
Lowest state
components

NN

CC
(42+[6][33j)
(42+[42][33j)
(42+[42][51j)
(51+[6][33j)

(42+[51][321j)
(42+[42][321j)
(33[42][321j)

903
1372
1083

592
1163
1603

961
1687
1840
2099
2223
1658
1613
1879
2136
2485

952
1594
1942

423
1590
1939
2635

415
1440
1869
2344
2742

413
1308
1495
2158
2344
2750

311
1292
1494
1578
2159
2344
2903

309
1285
1490
1573
1655
2107
2162
2345
2722
2933

0.847 84
0.039 65
0.059 47
0.435 44
0.091 32

—0.030 52
0.276 13

—0.01055
—0.01678
—0.023 19

the (0, 1) sector, these are the first, fourth, and seventh in
the list, and together carry a total probability of 98.5%.
In the (0,0) sector the states are the first, fourth, and fifth,
carrying a total probability of 99.9%. As discussed fur-
ther in the following, the Ah and CC basis states ap-
parently are not important. To verify this, we have diag-
onalized the corresponding 3)& 3 Hamiltonian matrices in
each of these sectors.

For the (0, 1) sector we obtain a lowest eigenvalue of
329 MeV compared with 309 MeV for the 10& 10 matrix,
and 592 MeV for the (R,L ) cluster 3 && 3 matrix.

For the (0,0) sector, we obtain 215 MeV, only 2 MeV
higher than using the 6)&6 matrix, in contrast with 914
MeV for the (R,L ) cluster 3 X 3 matrix.

These results show that the molecular NN basis state is
the main component in the lowest eigenstate, and that
molecular Ab, and CC components are not important. It
also shows that among the configurations r"l ", with n

different from 3, the totally symmetric state is far more
important than the mixed symmetry states [42] for
T=O, S=1. Its role can be explained through its large
coupling to the NN state, dominated by the confining po-
tential. Table IV shows, in fact, that the two-body matrix
elements are a few times larger for the confining potential
than for the spin-spin interaction. It turns out systemati-

cally that whenever the symmetry of the wave functions
allows only a spin-spin coupling, this is an order of mag-
nitude smaller than the other matrix elements and has lit-
tle effect in the diagonalization, as shown above for
nonasterisked configurations. The three states which we
have identified in each sector are sufficient to obtain re-
sults dramatically lower than the three component (R,L )

results.
We can understand more about the first three vectors

in both models with the help of the details given below.
An alternative way would have been to work directly
with the symmetry states instead of performing the trans-
formations (4.1)—(4.4). In Tables VII and VIII we give
the matrix elements of H, Eq. (3.1), for the symmetry
states for the T =O, S= 1 and T=O, S=0 sectors, respec-
tively, in both the cluster and molecular models. Let us
consider the T=O, S=1 sector. From Eq. (4.1) we see
that within the cluster model the s p limiting
configuration appears with probability 0.89, 0.91, and 0.2
in the NN, Ah, and CC states, respectively. One might
expect that the CC state would be below the nearly de-
generate NN and hh states because it carries less diago-
nal excitation energy due to the smaller probability of
two quarks in the p state. But from Table VII one can
see that the coupling between symmetry states has an im-

TABLE VI. Same as Table V, but for the T=O, S=0 sector and at most a 6X 6 matrix in the molecular basis.

Channel 1X1

R,L (cluster)

3X3 lx1 3X3 4X4

r, I (molecular)

5X5 6X6
Lowest state
Components

NN

CC
(42 [51][42j)
(51 [51][42j)
(33[33][222j)

1046
1446
1800

914
1251
2128

1070
1644
2226
1592
1456
2038

1068
1606
2266

253
1604
2266
2408

214
1155
1605
2282
2731

213
1154
1594
2045
2285
2735

0.739 81
0.009 36
0.024 28
0.644 84
0.19061
0.029 79
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TABLE VII. The matrix of H in the symmetry basis
i
i ) (i =1,3) used to define the NN, b,h, and

CC states in the T=O,S=I sector. In the cluster model,
~

1)=(s [6]L33j); i2)=(s p [42][33j);
i
3)=(s~p2[42][ 51j ). In the molecular orbital basis,

i
1)= 4(&5((s [6][33j ) —(p [6][33]))

—v3((s p2[6][33])—(s p [6][33j))); i
2) =I/&2((s p [42]{33j)—(s p [42][33j));

~

3)
=1/v 2((s4p2[42][51])—(s2p [42][51j)).

State

726.3
—265.6

103.1

R,L (cluster)
2

—265.6
1447.0
206.4

103.1
206.4

1185.2

1590.1
—331.1

105.9

r, I (molecular)
2

—331.1
1514.4
347.6

105.9
347.6

1383.4

portant role in changing this picture. We find that it
lowers the NN state from 1270 MeV to 903 MeV and it
lifts the hh state from 1254 MeV to 1372 MeV and the
CC state from 917 MeV to 1185 MeV. We stress that the
coupling is not always pure magnetic. In the above-
mentioned case the [6]I33j and [42]I33j states have a
nonzero spin-independent coupling (confinement) due to
their identical isospin-spin structure. This contribution
represents 92% of the entire coupling of the two states.
The NN, Lh, and CC approach each other suf5ciently to
couple among themselves and produce the results of the
third column of Table V.

For molecular orbitals the situation is more complicat-
ed due to the excitation of two, four, and six quarks into
p states. It turns out that the symmetry states [6][33j
and [42]I 33 j appear nearly degenerate and slightly
higher than the [42][51j state (see Table VII). This indi-
cates that a part of the excitation of the p configuration
appearing in [6][33j is compensated by the spin-spin in-
teraction. The coupling between the symmetry states
pulls down the NN state separating it from the hh state
by about 700 MeV. The remaining coupling becomes so
weak that the NN, b 6, and CC states practically do not
mix any more, as seen from Table V.

A similar discussion can be carried out for the
T=0,S=0 sector with the help of Eqs. (4.2) and (4.4) and
Table VIII. The conclusion is that the Harvey transfor-
mations (4.1)—(4.4) produce an important subdiagonaliza-
tion.

By extrapolation one can also draw conclusions about
the T=1,S=O sector. This differs from the T=O,S=1
sector through the effect of the spin-spin interaction only.
As the coupling is dominated by the confinement poten-
tial, one would expect that the most important states for

the T=1,S=O sector should be the same as for the
T =O,S=1 sector.

For the T= 1,S= 1 sector, one can certainly neglect all
the nonasterisked isospin-spin states as for the other
cases. This sector contains NN, hh, and Nh as physical
states. The NN state probably has non-negligible cou-
pling to unphysical states of the type (51 [51]I42j ) and
(41 [51](42j). As these have a multiplicity of two each,
there will be in all five important basis vectors contribut-
ing to the lowest state after the Harvey transformation. '

The calculations discussed above were done for a value
of P which minimizes the ground state energy of a three-
quark system. Such a value does not minimize the energy
of a six-quark system. We therefore studied the effect of
the six-quark energies due to variation of P. The result is
displayed in Figs. 1 and 2 for the (T=O,S=1) and
(T=0,S=0) sectors, respectively. The new minimum is
reached within 10% of the three-quark value in all cases,
and the qualitative discussion above holds.

A quantity of interest is the p-state occupation. For
the ten state molecular basis, we find, for the ground
state, the probabilities in the (0,1) sector

P(s )=0.3746, P(s p )=0.3801,

P(s p )=0.2459, P(p )=0.0002

for a total p-quark probability of 29%; the number of p-
quarks is six times this number. In the three state cluster
basis, the corresponding number is only 6.5%.

In the (0,0) sector, we find

P(s p)=0. 1286, P(s p )=0.5663, P(sp )=0.3062

for a p-quark probability of 56%%uo compared with the

TABLE VIII. Same as Table VII, but for the T=O,S=0 sector. In the cluster model,
j 1)= —(s'p[51][42] ), i

2) = —(s~p'[33][42j );
~

3)= —(s~p'[33][6] ). In the molecular basis,
i
1)= —.v 6/4((s'p[51][42] )—(sp'[51][42j )+—'(s p~[51][42])); i

2) = —(s~p'[33][42] ); i
3)

= —(s'p'[33] [6j ).

State

1033.8
—204.5
—107.1

R,L (cluster)
2

—204.5
2047.3

—215.1

—107.1
—215.1
1211.4

1681.6
—343.5
—142.1

r, I (molecular)
2

—343.5
2047.3

—215.1

—142.1

—215.1
1211.4
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r, l (3x3)
r, l (3x3}

1.0- R, L (3x3)

R, L {3x3) 0.8-

r, l (6.6}
r, l {7x7) r, l (4x4)

r, l (5.5)

0
0.4 0.5 0.6 0.8

{fm)

0 cc

0.4 0.5

P {fm)

0.6 0.8

FIG. 1. The lowest state energy as a function of the oscillator
size parameter P for the T=0,S= 1 sector. The arrow indicates
the three-quark minimum.

FIG. 2. Same as Fig. 1, but for the T=0,S=0 sector.

three-state cluster basis result of 27%. The p-quark prob-
abilities are significantly higher than what is obtained in
the more restrictive cluster calculations.

The quark mean-square radius is proportional to —,
'

times the s-quark probability plus —,'times the p-quark

probability, and is also proportional to P . This leads to
an increase in the rms radius, relative to three-quark
bags, of 14% for the (0, 1) sector and 22% for the (0,0)
sector.

More generally, one requires the expectation value of
the Hamiltonian as a function of Z, and here we have cal-
culated only the Z =0 point relative to Z = ~. As

should be well known, even this does not solve the
scattering or bound state problem, because one must cal-
culate the dynamics of the process (see, for example, Har-
vey, LeTourneux, and Lorazo, Ref. 9).

ACKNOWLEDGMENTS

One of us (Fl. S.) is most grateful to Malcolm Harvey
for a helpful discussion and for a detailed check of some
of the K matrix calculations. One of us (L.W. ) wishes to
acknowledge the hospitality of Lawrence Berkeley Labo-
ratory and Stanford Linear Accelerator Center where he
was on sabbatical leave when this work was carried out.

'On sabbatical leave 1987—88 to Lawrence Berkeley Laborato-
ry, Berkeley, CA and Stanford Linear Accelerator Center,
Stanford, CA.

'Fl. Stancu and L. Wilets, Phys. Rev. C 36, 726 (1987);a prelim-
inary version of the present work has appeared in Proceed-
ings of the International Workshop XVI on Gross Properties
of Nuclei and Nuclear Excitations, Hirschegg, Austria, 1988.

~M. Harvey, Nucl. Phys. A352, 301 (1981).
3J. P. Elliott, J. Hope, and H. A. Jahn, Philos. Trans. R. Soc.

London 246, 241 (1953).

4A. de Rujula, H. Georgi, and S. I. Glashow, Phys. Rev. D 12,
147 (1975).

~N. Isgur and G. Karl, Phys. Rev. D 18, 4187 (1978); 19, 2653
(1979).

R. Sartor and Fl. Stancu, Phys. Rev. D 31, 128 (1985).
7M. Harvey and J. LeTourneaux, Nucl. Phys. A424, 419 (1984).
M. Harvey, Nucl. Phys. A481, 834 (1988).
M. Harvey, J. LeTourneaux, and B. Lorazo, Nucl. Phys. A424,

428 (1984)~


