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Important configurations in six-quark N-N states. II. Current quark model
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Quark basis states constructed from molecular-type orbita1s were shown previously to be more
convenient to use than cluster model states for N-X processes. The usual cluster model representa-
tion omits configurations which emerge naturally in a molecular basis which contains the same
number of spatial functions. The importance of the omitted states was dexnonstrated for a constitu-
ent quark model. The present work extends the study to the prototypical current quark model,
namely the MIT bag. In order to test the expansion for short-range N-N interactions, the eigen-
states and eigenenergies of six quarks in a spherical bag, including one-gluon exchange, are calculat-
ed. The lowest eigenenergies are lowered significantly with respect to the usual cluster model. This
reaSrms the importance of dynamics for obtaining the needed short-range repulsion.

I. INTRODUCTION

In previous papers' we discussed the advantages of
molecular orbital wave functions to describe processes in-
volving six quarks, especially X-X scattering. In contrast
to cluster model functions (see, e.g., Ref. 3), single-
particle molecular wave functions are orthogonal and
possess definite parity with respect to the center of coor-
dinates of the system. Molecular-type states, which have
simple structure and yet preserve these characteristics,
can be constructed from elementary functions, such as
linear combinations of the displaced oscillator functions
that are used in cluster model calculations. Single-
particle orthogonality and parity are preserved during
collision within the independent particle model (IPM) ap-
proximation; however, one needs to go beyond the IPM,
including two-body interactions and correlations when
calculating X-Xprocesses.

The required algebra is considerably simplified by the
use of molecular functions. Of course, both cluster and
molecular bases are complete, but the natural truncations
of the sets can lead to quite different results. Our objec-
tive has been to test various approximation schemes, and
to offer to the practitioners the algebra and a selection of
the important configurations for calculations based upon
various models.

The structure of six-quark configurations was discussed
in Ref. 1. In Ref. 2, we compared the use of displaced
Gaussian cluster model functions with the corresponding
molecular basis for the case of a constituent quark model
of the kind used by Harvey and Le Tourneux. We diag-
onalized the Hamiltonian for united-cluster geometry;
this was deemed relevant to short and intermediate
ranges in the collision process. In both cases, we used
configurations based on pseudo-left and -right Gaussians.
In contrast with the usual cluster model configurations
R 1. , we found that the 1owest eigenenergies were
dramatically reduced by using the same number of ap-

propriately chosen molecular functions, both in the T=O,
S=1 and T=0,S =0 sectors.

II. THE MIT BAG

8 =(145 MeV) =57 MeV/fm, Z&=1.84 . (3)

The total energy E& of the quarks moving freely in the
bag is

x;Eg= gX;
i=1

In the present work, we consider a current quark mod-
el, namely the prototypical MIT model. The Hamiltoni-
an contains a volume energy, the (somewhat dubious)
Casimir zero-point energy, a boundary condition for the
quarks, and one-gluon exchange, where the gluons are
confined by the perfect dielectric properties of the vacu-
um. In analogy with what we did in the constituent
quark model case, the energies of two separated nucleon
bags, each containing three quarks in s states with respect
to their respective bag centers, is compared with the en-
ergy obtained for a united spherical bag of six quarks
containing only s~&2 and p3/2 (~m~ =

—,') states. These are
the spherical limits of the lowest molecular states and are
also the only ones which (usually) survive in cluster-type
calculations.

The analytic form of the Hamiltonian is

H =E~+Eg+E~E .

The energy Ez associated with a bag of radius R is

Eg 3
+BR —Zp /R

where 8, the pressure of the vacuum on the bag, and Zp,
the zero-point energy constant, are phenomenological pa-
rameters, taken as in Ref. 5.
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TABLE I. The two-quark interaction matrix elements ob-
tained from Table I of Ref. 6. First column: the type of transi-
tion El or M/ and the type of single-particle states s =—s»2 and
p—:p3/2 exchanging the gluon. Second column: the coefficient
C;J of Eq. (6). Third column: the matrix element of the spin
operator between two-body states, defined in Eq. (9).

s1/2 s1/2 s1/2 P3/2 P3/2 P3/2 P3/2 s1/2
1

1/2 1/2 P3/2 P3/2 P3/2 s 1/2 P3/2

FIG. 1. One-gluon exchange diagrams for the six-quark
states considered.
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calculating the color electric and magnetic energies from
currents of quarks by solving Maxwe11's equations. In
the following we shall use the results of Ref. 6, obtained
in the static cavity approximation of the MIT bag model.
Accordingly, EGE can be written as

A A,

(6)
i&j

where A, /2 are the generators of the SU(3) color group
and'

A's =2.2 (7)

The coefficients C;. and the matrix elements of the spin
operators S; are given explicitly in Table I for all two-
body matrix elements necessary in these calculations.
Both C; and S;. have been extracted from Table I of Ref.
6. In each of the matrix elements of Table I we found it
useful to indicate the multipole producing the transition
from the initial to final state. The spin operators require
special discussion due to our truncation of the p-state
space to p3/2 states only. First one must project into this
space as indicated in Ref. 6. Second one has to define
two-body "pseudospin" states in order to apply tech-
niques conveniently used previously for displaced oscilla-
tor basis functions in nonrelativistic models. In fact,
the truncation of the p space helps to make a better com-
parison with these models.

If we denote the spin states by

X(3/2), (1/2) t ~ X(3/2), —()/2) (8)
where X,- is the number of quarks in an i state and
co; =x;/8 its eigenenergy. At zero-quark mass the values
of x; needed are

x, =2.043, x =3.204 .
1/2 1 3/2

The gluon exchange E&E is the two-body part of the
Hamiltonian, and in the present case represents the one-
gluon exchange contribution of the diagrams in Fig. 1.
As indicated in Ref. 6, this contribution is equivalent to

the pseudospin states lS,M & are

TABLE II. Eigenvalues of the Hamiltonian in selected six-quark bases for TS=(01). First column: the state; second column: di-
agonal matrix elements in the cluster model basis R,I.; third column: eigenvalues for the cluster model; fourth column: diagonal ma-
trix elements in the molecular-type basis, r, l; fifth to ninth columns: eigenvalues for bases for various sizes; last column: the corn-
ponents of the lowest state.

Channel
R,L (cluster)

1X1 3X3 1X1 3X3 4X4
r, h (molecular)

5X5 6X6 7X7 Amplitude

CC
(42+[6][33J)
(42 [42][33])
(42+[42][51])
(51+[6][33])

71
354
543

10
237
721

21
434

1021
768
990
550
737

19
426

1032

1

352
654

1238

—18
298
633
943

1379

—48
295
497
703
957

1380

—51
294
497
689
894
964

1384

—0.933 75
0.018 11

—0.049 15
—0.228 47
—0.17106

0.201 65
0.056 95
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TABLE III. Eigenvalues of the Hamiltonian in six-quark bases for TS=(00) for up to seven molecular basis states.

Channel
R,L (cluster)

1X1 3X3 1X1 3X3 4X4
r, I (molecular)

5X5 6X6 7X7 Amplitude

NN

CC
(42 [51[[42[)
(51-1511[421)
(33[33~[222I)
(331331[ 31111)

107
393
578

—60
160
978

118
324

1015
427
668

1002
1217

—69
286

1239

—77
128
555

1279

—100
109
508
755

1280

—104
101
504
754
943

1355

—116
80

409
562
763

1335
1738

—0.839 49
0.307 48

—0.329 26
0.203 21
0.163 58
0.107 27
0.11254

Then the isospin-spin part of the wave function can be
classified according to SU(4).

The six-quark basis states are given in Ref. 1. In order
to calculate matrix elements of Eq. (1) it is necessary to
write the six-quark states as linear combinations of prod-
ucts of four- and two-quark states. These are obtained
with the help of fractional parentage coefFicients, alterna-
tively called K matrices. All necessary K matrices are
given in Refs. 1 and 7. They have been obtained with a
consistent phase correction. Then the six-body matrix
elements reduce to the two-body matrix elements of
Table I. One can notice that the spin operator S,
behaves generally as a tensor-type operator, i.e., its ma-
trix elements depend on M for given S except for
(ss~Mlss) and (pp~F2[pp), where the behavior is of
spin-spin type and central type (independent of S), re-
spectively. The nonrelativistic analog of S; are the ten-
sor and the spin-spin terms of the hyperfine interaction.

III. NUMERICAL RESULTS

In Ref. 1 we proposed a classification scheme with 16
channels in the TS=(01) or (10) sector and seven chan-
nels in the TS=(00) sector. Among these, there are two
asymptotically physical channels, NN and hA. The rest
of these channels couple to the "physical" states at short
separations, but the expectation values of their energies
become infinite at infinite separation. The new
configurations appearing in our scheme as a result of us-
ing molecular orbitals are 42—states with four quarks in
one bag and two in the other, or 51—+ states with five
quarks in one bag and one in the other. These kinds of
configurations do not appear in the usual cluster model.
In Ref. 2 we found that only a restricted number of chan-
nels couple strongly to NN and have to be retained in the
description of the lowest six-quark state at zero separa-
tion (Z=O). The significant 42 —or 51—+ states have orbit-
al symmetry [6] for TS=(01) and [51] .for TS=(00).
Their isospin-spin symmetry is {33[ and [42I, respective-
ly, i.e., cornrnon to that of the NN, b 6 or CC channels.
Six-quark MIT bag eigenvalues are given in MeV in
Tables II and III for TS= (Ol) and TS= (00), respectively.
They correspond to a bag radius of

R =6.5 GeV '=1.28 fm, (10)
i.e., close to the equilibrium value, obtained through the
minimization of the lowest eigenvalue. The value in Eq.
(10) is near the equilibrium radius of a six-quark system,
all in s state, found to be 6.7 GeV ' in Ref. 8.

The MIT model calculations presented here have some

similarities with and differences from the constituent
model calculations reported earlier. In both cases we find
that configurations of the type l r +l r are important
and lead to a significant lowering of the energies.

In the case TS= (01) (Table II), we find that four of the
configurations listed are dominant and give a significant
lowering of the lowest eigenvalue with respect to the clus-
ter model. These four states account for 99.40% of the
wave-function probability. The importance of some oth-
er members of the complete set of 16 basis states was test-
ed by diagonalizing matrices containing them along with
the first four states. Their importance was found to be
negligible.

In the (00) case, Table III, all seven basis states were
included and all seven were found to be significant. This
is in contrast to the constituent model calculations where
"nonasterisked" states were not important. In all, the en-

ergy lowering is 56 MeV below the 3 X 3 cluster model.

IV. CONCLUSIONS

As in the nonrelativistic quark model studied earlier,
we find that for a spherical bag with six quarks coupled
to NN quantum numbers, calculations using
configurations based on molecular orbitals lead to a very
significant lowering of the energy compared with
configurations based on the cluster model. In the
TS=(01) case, we find that only four states contribute
significantly, while in the (00) case all seven states are im-
portant. Although we consider more configurations than
cluster model calculations, the number of spatial func-
tions is the same, being only the lowest s and p states.
The results clearly indicate the importance of molecular-
type orbitals at short (and presumably intermediate) bag
separations, and bring into serious question conclusions
based on limited cluster model basis states.

As in our previous work, we wish to emphasize here
that the collision process involves dynamics as well as
statics, and the present study addresses only the issue of
statics. The importance of dynamics in obtaining short-
range repulsion has been demonstrated by Schuh, Pirner,
and Wilets. The present work is tendered as a guide to
practitioners in the field of quark models of N-N interac-
tions.
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