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Abstract

Predicting the behaviour of various engineering systems is commonly performed using mathe-
matical models. These mathematical models include application-specific parameters that must
be identified from measured data. The identification of model parameters usually comes with
uncertainties due to model simplifications and errors in the experimental measurements. Quan-
tifying these uncertainties can effectively improve the predictions as well as the performance of
the engineering systems.

Bayesian inference provides a probabilistic framework for quantifying these uncertainties in
parameter identification problems. In a Bayesian framework, the user’s initial knowledge, which
is represented by a probability distribution, is updated by measurement data through Bayes’
theorem.

In the first two chapters of this thesis, Bayesian inference is developed for the identification
of material parameters in elastoplasticity and viscoelasticity. The effect of the user’s prior
knowledge is systematically studied with respect to the number of measurements available. In
addition, the influence of different types of experiments on the uncertainty is studied.

Since all mathematical models are simplifications of reality, uncertainties of the model it-
self may also be incorporated. The third chapter of this thesis presents a Bayesian framework
for parameter identification in elastoplasticity in which not only the uncertainty of the exper-
imental output is included (i.e. stress measurements), but also the uncertainty of the model
and the uncertainty of the experimental input (i.e. strain). Three different formulations for
describing the model uncertainty are considered: (1) a random variable which is taken from
a normal distribution with constant parameters, (2) a random variable which is taken from a
normal distribution with an input-dependent mean, and (3) a Gaussian random process with a
stationary covariance function.

In the fourth chapter of this thesis, a Bayesian scheme is proposed to identify material
parameter distributions, instead of material parameters. The application in this chapter are
random fibre networks, in which the set of material parameters of each fibre is assumed to be a
realisation from a material parameter distribution. The fibres behave either elastoplastically or
in a perfectly brittle manner. The goal of the identification scheme is to avoid the experimentally
demanding task of testing hundreds of constituents. Instead, only 20 fibres are considered.

In addition to their material randomness, the macroscale behaviours of these fibre networks
are also governed by their geometrical randomness. Another question aimed to be answered in
this chapter is therefore is ‘how precise the material randomness needs to be identified, if the
geometrical randomness will also influence the macroscale behaviour of these discrete networks’.
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First, I would like to thank Prof. Stéphane Bordas who provided this opportunity for me to
do this PhD. Throughout the whole period of my PhD Prof. Bordas supported me continuously
and he was always available for any discussion, either this discussion was about scientific subjects
or future career and life plans. I really appreciate the freedom that he provided for me to do
my research in a way that I prefer. He has been patient throughout this PhD, allowed me to
make mistakes and corrected me when I went too far off course. I am very happy to know such
a humble and supportive person in my life and I know that I can trust him with all his advice
as he always wants the best for me.

I am also grateful to my co-supervisor assoc-Prof. Ludovic Noels for his support, guidance,
and advice throughout the research specially for the time that I was in Liège. It was so nice to
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Glossary

Aleatory uncertainty The natural randomness of a process, which
cannot be reduced.

Conditional probability distribution Conditional probability distribution π(y|x)
provides the plausibility of proposition y,
given proposition x.

Copula A function that joins one dimensional
marginal distributions to their joint, multi-
variate distribution.

Correlation A general term for the dependence between
pairs of random variables.

Correlation coefficient A measure for the strength of the dependency
between pairs of random variables.

Covariance A measure that shows how two random vari-
ables depend on each other.

Covariance matrix A symmetric matrix in which the off-diagonal
elements are covariances of pairs of random
variables and the diagonal elements are vari-
ances of random variables.

Credible interval (region) An interval (or a region in the multivariate
case) of a distribution in which it is believed
the parameters lie with a certain probability.

Cumulative distribution function (CDF) A distribution that measures the probability
that a random variable is less or equal to a
given value.

Dependence and independence Two events are statistically independent if
the occurrence of one has no influence on the
probability of the occurrence of the other one
(i.e. π(x) = π(x|y)). They are dependent if
the occurrence of one has an influence on the
probability of the occurrence of the other one
(i.e. π(x) 6= π(x|y)).
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Epistemic uncertainty Uncertainty due to limited data and/or the
modeller’s limited knowledge about the sys-
tem.

Event A set of outcomes of an experiment.

Joint distribution A multivariate distribution.

Laplace approximation An approximation of a distribution with a
Gaussian distribution centred at MAP.

Likelihood function If the conditional probability distribution
π(y|x) is regarded as a function of x for given
fixed y, the function is called a likelihood
function. The likelihood describes the plausi-
bility of a parameter, given observation data.

Marginal distribution The probability distribution of a single vari-
able or a combination of subsets of variables
in a multivariate distribution (e.g. π(x), π(y),
π(x, y), π(x, z) and π(y, z), for joint distri-
bution π(x, y, z)). A marginal distribution is
obtained by integrating a multivariate distri-
bution over one or more (but not all) other
variables.

Markov chain A stochastic model to describe a sequence of
events in which the probability of each event
only depends on the previous event.

Markov chain Monte Carlo (MCMC) methods A set of techniques to draw samples (i.e. sim-
ulate observations) from probability distribu-
tions by the construction of a Markov chain.

Maximum a posteriori probability (MAP) point A point at which the posterior distribution is
(globally) maximum.

Mean (expected value) A measure for the central value of the under-
lying distribution.

Multivariate distribution A probability distribution of two or more ran-
dom variables.

Pearson correlation coefficient The covariance of two random variables di-
vided by the product of their standard devia-
tions.

Point estimate A scalar that measures a feature of a popula-
tion, e.g. the mean value, the MAP point.

Population The total set of all possible observations that
can be made.
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Posterior distribution (posterior) The probability distribution that describes
one’s knowledge about a random variable or
parameter after obtaining new measurements.

Posterior predictive distribution (PPD) The distribution of unobserved measurements
(observations), given the measured (observed)
data.

Prior distribution (prior) The probability distribution that describes
one’s a-priori knowledge about a random vari-
able or parameter.

Probability The likelihood (or plausibility) that a certain
event occurs.

Probability density function (PDF) The equation that describes a continuous
probability distribution.

Probability distribution A function that provides the probabilities of
the occurrence of various possible outcomes of
an experiment.

Random sample A randomly chosen sample.
Random variable A variable of which the value depends on the

outcome of a random experiment.
Realisation The value that a random variable takes or

the outcome of an experiment after its occur-
rence.

Sample A set of observations from a population with
the purpose of investigating particular prop-
erties of the population.

Standard deviation A measure for the possible deviation of a ran-
dom variable from its mean. Large standard
deviations indicate large possible differences;
and vice versa.

Variance The standard deviation squared.
Verification (validation) point A measurement (observation) used to assess

the quality of a prediction based on the identi-
fied parameters, that is not used for the iden-
tification itself.

More definitions on statistical concepts can be found in [3] and [4].
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Chapter 1

Introduction

Mathematical models are critical to understand and make predictions about systems arising
in the natural, engineering and social sciences. Mathematical models describe systems using
mathematical language. They can be used to understand the behaviour of the systems at hand,
make predictions and study the importance of different components of the model and of the
parameters involved.

Models can therefore be seen and exercised as descriptive or predictive. In the first case,
models help make sense of a large amount of (past) information and to describe underlying phe-
nomena, e.g. the melting of ice caps based on Global positioning system (GPS) measurements.
In the latter case, models are used to anticipate events, e.g. predict the weather. In this case,
known variables, sometimes called explicative are used to explain the behaviour of unknown
variables. These two uses of models are not independent, in the sense that past information is
typically used to make predictions about the future.

The same mathematical model can be descriptive of a wide variety of systems. For example,
the pricing of options can be described with the same model as that of underground water flow.
One critical task is therefore to identify the best model and its parameters which is able to
describe a system and make associated predictions.

In mechanics of materials, ‘mathematical models’ used at a given material point are com-
posed of:

1. Governing equations;

2. Constitutive equations;

3. Kinematic equations;

4. Geometrical models;

5. Initial and boundary conditions.

In this thesis, we focus on mathematical models arising in the description and simulation of
the mechanical behaviour of engineering materials, i.e. how stresses are related to strains. We
therefore focus on constitutive equations and on the identification of the associated parameters.

The identification of material parameters is usually performed by measuring the output of
a model for a given input. As illustrated in Fig. 1-1 the description of the system of interest
consists of a mathematical model, an input variable (i.e. u), some output (i.e. f) and a parameter
set x.
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Figure 1-1: Schematic for a true process in an identification problem and its simulation [1]. Note that the input
variable in the true process is not necessarily the same as that in the simulation. Furthermore, ωu and ωy denote
realisations of error in the input and output respectively.

Mathematical models are simplifications of the true phenomena at play and predictions are
thus subject to uncertainty, both because of the choice of the model and because of the identi-
fication of the associated parameters. Furthermore, experimental measurements (observations)
are noisy. The ability to quantify uncertainties provides the user with the ability to assess the
importance of certain parameters on quantities of interest and obtain confidence intervals or
trust regions, which provides more control on the quality of the simulation outputs.

Uncertainty can be divided into aleatory uncertainty and epistemic uncertainty. Aleatory
uncertainty refers to the natural uncertainty which is irreducible [5]. An example is a ‘coin flip-
ping experiment’ in which the prediction of the output ‘heads’ or ‘tails’ is aleatory. Epistemic
uncertainty is due to the fact that the modeller has limited knowledge on the system of interest
[5]. This type of uncertainty can be divided into model uncertainty (e.g. solution approxima-
tion, modelling simplification, parameter uncertainty) and data uncertainty (e.g. measurement
uncertainty). Unlike aleatory uncertainty, epistemic uncertainty is reducible. The task of a
statistical identification framework is therefore to quantify these uncertainties.

A probabilistic framework with Bayesian updating gives the possibility to quantify the mod-
elling uncertainties as well as to identify the parameters of the mathematical models. In a
Bayesian framework the user’s uncertainty about the parameters is represented by probability
distributions. From a Bayesian perspective, these probability distributions are not real things
but are chosen models, or derived from modelling assumptions, to represent the user’s uncer-
tainty about the values of quantities such as model parameters and measurement and model
prediction errors. The prior choice for the probability distribution, which incorporates the user’s
a-priori knowledge about the unknown parameters, is updated by data through Bayes’ theo-
rem. The Bayesian inference is used in this thesis as the approach to deal with uncertainties
and identification of the parameters of the constitutive equations.

1.1 Parameter identification methods in solid mechanics

1.1.1 Least squares method

We focus here on constitutive models (i.e. the material model) which are used to describe the
behaviour of material points. The least squares method (LSM) [6–8] is a common tool for pa-
rameter identification. In this approach the summation of the squared differences between the
model output and the experimental measurements is considered as an objective function that
must be minimised with respect to the parameters in order to determine their most appropriate
values. An important characteristic of this approach, which may be considered as a disadvan-
tage, is that the error in the experimental measurements is not considered explicitly. Moreover,
the identified parameter values are deterministic.
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Bayes’ rule
π(x|y) = π(x)π(y|x)

π(y)

Gather
measurements

Model

Prior
original belief

(π(x))
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updated belief

(π(x|y))

Updating

Figure 1-2: Bayesian updating scheme for data modelling. Once the measurements are collected and the model
is selected, Bayes’ rule is employed to update the user’s uncertainty level with new information (measurements).
Note that probability distribution π(y|x) is the likelihood function and describes the plausibility of obtaining the
measurements, given the parameter set x.

1.1.2 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is an approach which estimates the parameters of the
model by maximising the likelihood function, which expresses the likelihood to observe a mea-
surement, given parameter set x [9]. If the likelihood’s value for parameter set x1 is larger than
its value for parameter set x2, x1 is considered to be more plausible than x2. More details
on likelihood functions and their construction are given in the next chapters. The outcome
of MLE is also deterministic but it does explicitly account for the error in the measurements.
MLE is employed in various studies for the identification of dynamical systems [10–12] and in
solid mechanics [13–15].

1.1.3 Bayesian inference

Bayesian approaches are rigorous probabilistic frameworks for uncertainty quantification and
parameter identification. The approaches use probability as their logic [16]. The probability
distributions are employed to address uncertainty due to limited information (epistemic un-
certainty) or due to inherent randomness (aleatory uncertainty). In Bayesian frameworks, the
probability distribution that represents the user’s initial belief (about a parameter or model) is
updated with the information of the measurements according to Bayes’ rule [17].

Fig. 1-2 schematically presents the workings of Bayesian updating. First, we collect the
measurements and the model of which its parameters are to be identified. Second, the model
and the data are incorporated in the Bayes’ rule block and after constructing the likelihood
function (π(y|x)) the prior (π(x), i.e. the user’s initial belief) is updated. Once the posterior
(π(x|y)) is obtained for the first measurement, it is used as the prior for the next measurement.
Note that the prior describes the user’s original belief and the updated belief is described by
the posterior. Note furthermore that the definition of the likelihood function is the same as in
MLE (i.e. π(y|x) describes the plausibility of a measurement set, given the model parameters
[18]).

The following points may be considered as some of the advantages of Bayesian inference:

(1) It provides the possibility to combine one’s prior knowledge with the measurements.

(2) It provides an n% credible region in which it is believed the parameter values are present
with n% certainty (where the level of probability n can be adjusted by the user) [19].
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(3) Analysing hierarchical models (in which the parameters at one level depend on those at
another level) in a Bayesian setting is relatively straightforward [20].

(4) LSM and MLE may result in non-unique parameter values [16]. A Bayesian framework
can overcome this issue.

Some of the points of criticism on Bayesian inference are:

(1) It may be hard to define the prior [19]. Sensitivity analyses may alleviate this difficulty
however [19].

(2) The resulting posterior can be heavily influenced by the prior [19].

(3) Using Bayesian inference can be computationally expensive for models with a large number
of parameters.

More conceptual discussions on Bayesian inference can be found in [19–21].

1.1.4 Markov chain Monte Carlo

Once the posterior is obtained using the Bayes’ formula, it can be used to generate possible
parameter realisations. Except for some simplistic cases however, it is impossible to perform
the corresponding analyses without numerical tools (e.g. calculating mean value, covariance
matrix, i.e. a matrix that measures the correlation between the parameters, posterior predictions
i.e. calculation of the new measurements based on the current measurements). These statical
summaries and analyses can be approximated by drawing mutually independent samples from
the posterior distribution [2]. Various types of sampling algorithms are presented in [22], but
most often, as in this thesis, Markov chain Monte Carlo (MCMC) algorithms [23, 24] are
employed to draw samples from the posterior distribution [25–33].

MCMC techniques were first introduced in physics [34] after the introduction of the Monte
Carlo approach by Metropolis and Ulam [35]. In various statistical problems and problems
related to Bayesian inference, integration over high-dimensional probability density functions
(PDFs) or PDFs that are analytically not tractable needs to be performed (e.g. to determine
the mean). Monte Carlo integration [36] is a numerical integration technique in which random
point locations are used to integrate functions. The samples in MCMC technique are drawn
from the target distribution (here posterior) by running a constructed Markov chain (i.e. a
stochastic model for describing a sequence of events in which the probability of each event only
depends on the previous event).

An important advantage of MCMC techniques is that they are relatively simple to imple-
ment, even if the target distribution is complex [37]. These techniques can furthermore be
employed if direct sampling is not possible [38]. The MCMC approach can be slow to converge
on the other hand. Difficulties in assessing the chain convergence is another disadvantage of
these techniques [39]. Checking the trace plot of the drawn samples and evolution of estimators
such as mean value of the approximated distribution are some common approaches of conver-
gence assessment for the MCMC techniques [40]. Note that the chain is supposed to converge
to a stationary distribution and not to a deterministic number.

1.2 Aim and novelty

This thesis has two main objectives. First, a Bayesian framework for the identification of
material parameters in solid mechanics is presented (elastoplasticity and viscoelasticity are the
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considered material models). Bayesian inference is not new to identify parameters [41–45], but
none of the existing studies consider the effect of uncertainty in the model (model error), as
well as that of both the system input and output. Investigating these effects is one of the main
novelties of this thesis which is presented in Chapter 4. As mentioned before in Subsection 1.1.3,
an important point of criticism on Bayesian inference is the effect of the prior on the resulting
posterior. This is therefore carefully studied in Chapters 2 and 3, amongst others with respect
to the number of available measurements.

Second, a scheme based on Bayesian inference is presented to not identify material pa-
rameters, but to identify parameters of material parameter PDFs if only a limited number of
measurements is available. The application of this identification scheme are random fibre net-
works in which it is assumed that the material parameters of each fibre are realisations from a
single PDF. The accuracy of the identification scheme is not only investigated on its own, but
also with respect to different levels of geometrical randomness that is present in fibre networks.

1.3 Outline

The outline of this thesis is as follows. In Chapter 2 a relatively gentle introduction of the
framework for the identification of elastoplastic material parameters is given. In this chapter
we focus on elastoplastic material models because: (1) these models are widely used in the field
of solid mechanics, and (2) the class of elastoplastic material models contains both simple (linear
elastic) and more complex, nonlinear C0-continuous responses (elastoplasticity with nonlinear
hardening).

Bayesian inference is employed in Chapter 3 to identify material parameters in viscoelasticity.
The standard linear solid model is the material model of interest and the experiments of interests
are a relaxation test, a constant strain-rate test and a creep test. The objectives of this chapter
are: (1) to show the effect of the prior for viscoelasticity, (2) to show the effect of number
of measurements, and (3) to show how different types of experiments influence the identified
parameters and their uncertainties.

In Chapter 4 the identification of elastoplastic material parameters using Bayesian inference
is presented whilst considering both the error in the input (strains) and the output (stresses),
as well as the model uncertainty.

In Chapter 5 the Bayesian scheme for the identification of material parameter distributions is
presented. The recovered distributions are not only directly compared to the true distributions,
but also to the predicted distributions if geometrical randomness is present. Finally, conclusions
as well as recommendations for future work are presented in Chapter 6.

Remark 1. Throughout this thesis all experimental measurements are created numerically,
allowing one-to-one comparisons between the true values and identified parameter values.
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Chapter 2

A tutorial on Bayesian inference to
identify material parameters in solid
mechanics1

Abstract

The aim of this chapter is to explain in a relatively easy manner how Bayesian inference can
be used to identify material parameters of material models for solids. Bayesian approaches
have already been used for this purpose, but most of the literature is not necessarily easy
to understand for those new to the field. The reason for this is that most literature focuses
either on complex statistical and machine learning concepts or on relatively complex mechanical
models. In order to introduce the approach as gently as possible, we only focus on stress-strain
measurements coming from uniaxial tensile tests and we only treat elastic and elastoplastic
material models. Furthermore, the stress-strain measurements are created artificially in order
to allow a one-to-one comparison between the true parameter values and the identified parameter
values.

2.1 Introduction

The most commonly used approach to identify parameters of mechanical descriptions for solid
materials is to formulate an error function that measures the difference between the model
response and the experimental data [45]. This error function is then minimised with respect
to the material parameters in order to determine their values. Such an approach provides a
deterministic estimate of parameter values, unable to account for the unavoidable uncertainties
of each parameter associated with experimental observations.

An alternative, and rather different approach is to use Bayesian inference (BI). Using Bayes’
theorem, a probability density function (PDF), the so-called posterior distribution (or the pos-
terior for short) can be formulated as a function of the material parameters of interest. Subse-
quently, the PDF is analysed to determine relevant summaries, such as the mean of the material
parameters, the material properties at which the PDF is maximum (called the ‘maximum-a-
posteriori-probability’ or ‘MAP’ point) and the covariance matrix (i.e. a matrix that measures
the correlation between the parameters). The PDF can only be explored analytically for a
limited number of straightforward cases. Hence, numerical methods are commonly employed,

1Reproduced from: H. Rappel, L.A.A. Beex, J.S. Hale, L. Noels and S.P.A. Bordas, A tutorial on Bayesian
inference to identify material parameters in solid mechanics, ready to be submitted.
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e.g. Markov chain Monte Carlo (MCMC) techniques [25, 26, 28, 29]. An alternative is to first
approximate the PDF (e.g. by a Laplace approximation) and then determine the statistical
summaries of the approximated distribution (e.g. mean, MAP point and covariance matrix)
[43, 46].

In contrast to deterministic identification approaches, approaches using BI can quite care-
fully incorporate several uncertainty sources, such as the noises coming from different exper-
imental devices, as well as a possible model uncertainty [47]. On top of that, all parameter
values come with their individual uncertainty, that is also measured in terms of the parameter
values. This is in contrast to conventional deterministic identification approach which come
with one residual as a measure for the full set of parameters, which is obviously not expressed
in terms of the parameters themselves. Additionally, BI provides an intrinsic statistical regu-
larisation which makes inverse problems with limited observations solvable [48]. On the other
hand, applying Bayes’ theorem for material parameter identification does require the measure-
ment noise to be known, i.e. the noise distributions and their parameters must be established,
although they can also be treated as unknown parameters that need to be identified and hence,
they appear in the posterior. The numerical techniques to analyse the posterior PDFs may
furthermore need careful attention.

The developments of BI in the field of parameter identification for mechanical models started
with the identification of elastic constants. Isenberg [41] proposed a Bayesian approach for
the identification of elastic parameters in 1979. Various researchers subsequently used the
framework to identify elastic material parameters based on dynamic responses [42–44]. Lai and
Ip [49] used BI to identify the elastic properties of a thin composite plate. Daghia et al. [50]
used the Bayesian framework for the dynamic identification of the elastic constants of thick
laminated composite plates. Koutsourelakis [51] used Bayesian inference to identify spatially
varying elastic material parameters. In 2010, Gogu et al. [45] presented an introduction in the
Bayesian approach for the identification of elastic constants, and compared the results with those
of a deterministic identification approach. The influence of the prior distributions was however
not systematically studied. In another study, Gogu et al. [52] used a Bayesian framework to
identify elastic constants in multi-directional laminates.

BI is also used for the parameter identification of nonlinear constitutive models. Muto and
Beck [53] and Liu and Au [54] used the approach for parameter identification of hysteretic
models, whereas Fitzenz et al. [55] used BI to identify parameters of a creep model of quartz.
Most [56] used a Bayesian updating procedure for the parameter identification of an elastoplastic
model without hardening (perfect plasticity). Rosić et al. [57] used linear Bayesian updating via
polynomial chaos expansion for an elastoplastic system. BI is also employed for the identification
of viscoelastic material parameters in [30, 58].

Another study that uses Bayes’ theorem to identify material parameters is the work of
Nichols et al. [59]. They employed a Bayesian approach to identify the nonlinear stiffness of a
dynamic system. Furthermore, Nichols et al. [59] used the method to find the location, size and
depth of delamination in a composite beam. Abhinav and Manohar [60] used BI to characterise
the dynamic parameters of a structural system with geometrical nonlinearities. The approach is
also employed to assess the quality of different models with respect to measured data (i.e. model
selection): e.g. hyperelastic constitutive models for soft tissue [61], phenomenological models for
tumour growth [62], models for damage progression in composites due to fatigue [63] and fatigue
models for metals [64]. Sarkar et al. [40] used the Bayesian method to identify thermodynamical
parameters of cementitious materials. BI is also used in the fields of heat transfer and fluid
mechanics for inverse problems [26, 65].

Bayesian inversion relies on concepts that may be complex to grasp for those who are only
familiar with deterministic inversion methods. The primary objective of this chapter is to show
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how Bayesian inference can be applied for the stochastic identification of material parameters.
We focus on elastoplastic material models in this chapter for two reasons: (1) they are widely
used in the field of mechanics, and (2) the family of elastoplastic material models contains
both simple (linear elasticity) and more complex, nonlinear, C0-continuous responses (linear
elasticity-nonlinear hardening) to describe material behaviour. This chapter focuses on results
of uniaxial tensile tests in order to be as straightforward as possible. In addition to introducing
the general idea of identification approaches based on BI as gently as possible (to our abilities),
we also discuss some enhancements, such as not only incorporating the error in the stress, but
also incorporating the error in the strain and the uncertainty of the model. Those enhancements
are not discussed in much detail, but references to other works are included.

The structure of this chapter is as follows. Section 2.2 briefly discusses the employed material
models in this chapter. Section 2.3 discusses the theoretical fundaments behind Bayes’ theorem.
Furthermore, this section describes a Bayesian approach for the stochastic identification of
elastoplastic material parameters, when only the stress measurements include stochastic errors.
In Section 2.4, MCMC methods as the numerical techniques to analyse the posterior distribution
are explained. In this section, we also explain the posterior predictive distribution (PPD) as
an approach for predicting unobserved measurements. In Section 2.5, a considerable number of
results are presented. In Section 2.6, some advanced concepts, such as incorporating the error
in the strain and the model uncertainty, are discussed. We also briefly discuss how the approach
differs if a viscoelastic material model is used instead. In Section 2.7, conclusions are finally
presented.

Remark 2. As mentioned before, we consider stress-strain data coming from uniaxial tensile
tests in this chapter. As the force is measured in tensile tests, the measured stress and its error is
assumed to be proportional to the measured force and its error (the parameters of its distribution
are to be identified using separate calibration experiments). Strain measurements are commonly
based either on the clamp displacement or determined using digital image correlation (DIC).
In both cases, the parameters of the error distribution of the strain can be determined using
calibration experiments.

Remark 3. Throughout this chapter bold letters and symbols denote vectors and matrices.
Furthermore, capital letters denote random variables.

2.2 Material models

In this chapter, BI is developed to identify the parameters of four one-dimensional material
models: linear elasticity, linear elasticity with perfect plasticity, linear elasticity with linear
hardening and linear elasticity with nonlinear hardening. Hardening is considered to be isotropic
and associative. For each model, the identification is based on the results of monotonic uniaxial
tensile tests. Below, material responses are given for monotonic tensile loading.

2.2.1 Linear elasticity

The linear elastic model assumes a linear relationship between the stress and the strains. In
the one dimensional case, this writes:

σ(ε,x) = Eε, (2.1)

where σ is the stress, ε is the strain, x is the material parameter vector (here x = E) and E is
Young’s modulus and assumed to be constant in the domain.
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Figure 2-1: The stress-strain response of (a) linear elastic-perfectly plastic model and (b) linear elastic-linear
hardening model during monotonic tension.

2.2.2 Linear elasticity-perfect plasticity

The linear elastic-perfectly plastic model neglects the effect of work hardening, assuming that
purely plastic deformation occurs when the stress reaches its yield value. The total strain (ε)
in this chapter is additively split into an elastic part εe and a plastic part εp:

ε = εe + εp, (2.2)

and the stress is defined as a function of the elastic strain, εe:

σ(ε,x) = Eεe = E(ε− εp). (2.3)

The yield condition at which plastic yielding occurs, is written as:

f(σ) = |σ| − σy0 ≤ 0, (2.4)

where σy0 is the initial yield stress and f is the yield function. Consequently, x =
[
E σy0

]T
.

Furthermore, the flow rule for the plastic strain can be written as:

ε̇p = α̇
∂f

∂σ
, (2.5)

where α denotes the cumulative plastic strain. Finally, the Kuhn-Tucker conditions [66] must
hold:

α̇ ≥ 0, f(σ) ≤ 0, α̇f(σ) = 0. (2.6)

The stress-strain response of the linear elastic-perfectly plastic model during monotonic
tension can be written as:

σ(ε,x) =

{
Eε if ε ≤ σy0

E

σy0 if ε >
σy0
E

. (2.7)

Using the Heaviside step function (h(·)), Eq. (2.7) can be conveniently expressed as:

σ(ε,x) = Eε

(
1− h

(
ε− σy0

E

))
+ σy0h

(
ε− σy0

E

)
, (2.8)

Fig. 2-1(a) presents this response graphically.
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2.2.3 Linear elasticity-linear hardening

The linear elastic-linear hardening model is identical to the linear elastic-perfectly plastic model,
except for the yield function, which writes:

f(σ) = |σ| − σy0 −Hα ≤ 0, (2.9)

where H is the plastic modulus. Hence, x =
[
E σy0 H

]T
.

Consequently, the stress-strain response of the model during monotonic tension writes:

σ(ε,x) =

{
Eε if ε ≤ σy0

E

σy0 +Hεp if ε >
σy0
E

, (2.10)

which can again be expressed using the Heaviside step function:

σ(ε,x) = Eε

(
1− h

(
ε− σy0

E

))
+

(
σy0 +

HE

H + E

(
ε− σy0

E

))
h
(
ε− σy0

E

)
. (2.11)

Fig. 2-1(b) shows this response graphically.

2.2.4 Linear elasticity-nonlinear hardening

The linear elastic-nonlinear hardening model also only differs from the linear elastic-perfectly
plastic model through the yield function, which writes:

f(σ) = |σ| − σy0 −Hαn ≤ 0, (2.12)

where n is an additional plastic material parameter and hence, x =
[
E σy0 H n

]T
.

For monotonic uniaxial tension, the stress-strain response can be written as:

σ(ε,x) =

{
Eε if ε ≤ σy0

E

σy0 +Hεnp if ε >
σy0
E

, (2.13)

or using the Heaviside step function:

σ(ε,x) = Eε

(
1− h

(
ε− σy0

E

))
+

(
σy0 +H

(
ε− σ(ε,x)

E

)n)
h
(
ε− σy0

E

)
. (2.14)

Fig. 2-2 shows this stress-strain response.

It is important to note that Eq. (2.14) is an implicit function of the stress (σ(ε,x) appears
both on the left hand side and right hand side of Eq. (2.14) and cannot analytically be deter-
mined if ε is known). This is in contrast to the stress-strain expressions of the previous material
models for monotonic tension (Eqs. (2.1), (2.8) and (2.11)), which are all explicit functions
(i.e. σ(ε,x) can analytically be computed when one has ε).

2.3 Bayesian inference

2.3.1 Concepts

We start by considering random eventsA andB, and the discrete probabilities of each event: P(a)
and P(b). The probability that events A and B both occur, is given by the joint probability,
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Figure 2-2: The stress-strain response of the linear elastic-nonlinear hardening model during monotonic tension.

P(a, b), which can be expanded as:

P(a, b) = P(a|b)P(b) = P(b|a)P(a), (2.15)

where P(a|b) and P(b|a) are conditional probabilities. Conditional probability P(a|b) expresses
the probability that event A occurs, if it is certain that event B occurs. Using Eq. (2.15), the
simplest form of Bayes’ theorem can be written as:

P(a|b) =
P(a)P(b|a)

P(b)
. (2.16)

If one regards two continuous random variables X ∈ Rnp and Y ∈ Rnm , instead of discrete
variables, where X is a random vector with np unknown parameters and Y a random vector with
nm measurements, Eq. (2.16) can be rewritten in terms of the following probability distribution
functions (where π denotes a PDF):

π(x|y) =
π(x)π(y|x)

π(y)
, (2.17)

where π(x), π(y|x) and π(x|y) are referred to as the prior distribution (i.e. the PDF that
includes one’s prior knowledge), the likelihood function (i.e. the PDF of the observed data y,
given unknown parameters x) and the posterior distribution (i.e. the PDF of the unknown
parameters x, given the observations y), respectively.

Using the law of total probabilities [67] which relates the marginal probabilities (π(x) and
π(y)) to the conditional probabilities (π(y|x)), the denominator in Eq. (2.17) can be written
as:

π(y) =

∫
Rnp

π(x)π(y|x)dx. (2.18)

Since the data (y) is already measured, the denominator in Eq. (2.17) is a constant number,
C ∈ R+. This constant number can be regarded as a normalisation factor that ensures that the
integral of the posterior (π(x|y)) equals 1:

π(x|y) =
1

C
π(x)π(y|x). (2.19)
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Hence, one can rewrite Eq. (2.19) as:

π(x|y) ∝ π(x)π(y|x). (2.20)

Note that the statistical summaries of the posterior distribution (i.e. the mean, the MAP point
and the covariance matrix) do not depend on the absolute posterior, but only on its shape.

In order to obtain the posterior in Eq. (2.20) (i.e. the PDF of the vector of unknown pa-
rameters, given the observations π(x|y)), the likelihood function (π(y|x)) and the prior (π(x))
need to be formulated. First, the likelihood function is considered.

In order to construct the likelihood function, a noise model has to be formulated and a
noise distribution (πnoise) has to be determined. For the moment, we assume that the noise
distribution is known (including its parameters). The noise model used in this chapter is
additive, which is frequently employed, amongst others in [48, 50]. The additive noise model
can be written as follows:

Y = f(X) + Ω, (2.21)

where X ∈ Rnp denotes again the vector with the unknown material parameters, Y ∈ Rnm
the vector with the measured data and Ω ∈ Rnm the noise vector. f : Rnp → Rnm denotes
the material description and is a function of the unknown material parameters (X). Given the
realisations X = x and Ω = ω, and assuming that the parameters (X) and the error (Ω) are
statistically independent, the likelihood function reads:

π(y|x) = πnoise(y− f(x)), (2.22)

where πnoise(ω) is the PDF of the noise (which is assumed to be identified based on separate
calibration experiments, see Subsection 2.5.1). Substitution of Eq. (2.22) in Eq. (2.20) yields:

π(x|y) ∝ π(x)πnoise(y− f(x)). (2.23)

A critical aspect of the Bayesian framework is the selection of the prior distribution (π(x))
[48] in which a-priori knowledge about the parameters is translated in terms of a PDF. The
influence of the prior distribution diminishes if the number of observation increases [17], which
is considered in more detail in Section 2.5.

Once the posterior is formulated (Eq. (2.23)), the mean parameter values, MAP parameter
values and the covariance matrix can be extracted from it. We will use Markov chain Monte
Carlo methods for this, since they are the most commonly employed approaches to do so. These
techniques are discussed in Subsection 2.4.1. Only for linear elasticity, we analytically analyse
the posterior.

Remark 4. The parameters of the noise distribution can also be treated as unknown parameters
that need to be identified. In that case, they appear as variables in the posterior, together with
the material parameters. For tensile testers in well-controlled environments however, it is fair
to say that the noise distribution and its parameters can be identified using a separate calibration
process (see Subsection 2.5.1).

2.3.2 Application to the material responses during monotonic uniaxial ten-
sion

In this subsection, we apply the aforementioned Bayesian framework to the four material re-
sponses during monotonic uniaxial tension. Effectively, this means that we replace model f(x)
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in Eqs. (2.21) and (2.23) by the four material responses σ(ε,x). We will see that the result-
ing posterior distribution for linear elasticity can be analysed analytically, but the posteriors
for the other three material descriptions need to be analysed numerically. The reasons for
this is two-fold. First, the other three responses are only C0-continuous. Second, the linear
elastic-nonlinear hardening description is an implicit relation.

Linear elasticity

The only unknown material parameter in the linear elastic model is the Young’s modulus (E).
Based on Section 2.3, the additive noise model for a single stress measurement can be written
as follows:

Y = Eε+ Ω, (2.24)

where Y is the measured stress and Ω is the random variable representing the noise in the stress
measurement. We consider the noise distribution to be normal and hence, it can be written as:

πnoise(ω) =
1√

2πsnoise
exp
(
− ω2

2s2noise

)
. (2.25)

Using Eq. (2.22), the likelihood function can now be expressed as:

π(y|E) = πnoise(y − Eε) =
1√

2πsnoise
exp
(
− (y − Eε)2

2s2noise

)
. (2.26)

Substitution of Eq. (2.26) in Eq. (2.23) then yields the following expression for the posterior:

π(E|y) ∝ π(E)exp
(
− (y − Eε)2

2s2noise

)
. (2.27)

If we use a prior in the form of a modified normal distribution as follows:

π(E) ∝

{
exp
(
− (E−E)2

2s2E

)
if E ≥ 0

0 otherwise
, (2.28)

the posterior distribution reads:

π(E|y) ∝

{
exp
(
−
[
(E−E)2

2s2E
+ (y−Eε)2

2s2noise

])
if E ≥ 0

0 otherwise
, (2.29)

where E and sE are the mean and standard deviation of the prior distribution, respectively.
Note that the Young’s modulus cannot be negative for an actual material, which is taken into
account in the prior distribution (Eq. (2.28)).

If we now consider the posterior distribution of the previous measurement to be the prior
distribution of the current measurement, the posterior for all nm measurements can be expressed
as:

π(E|y) ∝ exp
(
−
[
(E−E)2

2s2E
+

nm∑
i=1

(yi−Eεi)2

2s2noise

])
, E ≥ 0, (2.30)

where π(E|y) = π(E|y1, · · · , ynm). Eq. (2.30) can now be written in the following form:

π(E|y) ∝ exp
(
− (E−Epost)2

2s2post

)
, E ≥ 0, (2.31)
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where Epost and spost are the mean and standard deviation of the posterior distribution, which
is again a normal distribution (with the condition E ≥ 0). Both can be expressed as:

Epost =
s2noiseE+s2E

nm∑
i=1

εiyi

s2noise+s
2
E

nm∑
i=1

ε2i

, spost =

√
s2noises

2
E

s2noise+s
2
E

nm∑
i=1

ε2i

. (2.32)

Hence, it is possible to analytically examine the posterior distribution for linear elasticity
if the noise model is additive and the noise distribution as well as the prior distribution are
(modified) normal distributions. For the other cases below, we use numerical techniques.

Linear elasticity-perfect plasticity

The parameters to be identified for the linear elastic-perfectly plastic model are the Young’s

modulus and the initial yield stress, which are stored in the parameter vector x =
[
E σy0

]T
.

Since we consider the same experimental equipment and conditions as in the case of linear
elasticity (i.e. the measured stresses are still polluted by noise stemming from the same normal
distribution and the measured strains are still exact), the same additive noise model applies:

Y = σ(ε,x) + Ω, (2.33)

where σ(ε,x) is referred to as the theoretical stress and is expressed in Eq. (2.8). Using Eq. (2.25)
for the noise distribution, the likelihood function for a single stress measurement reads:

π(y|x) = πnoise(y − σ(ε,x)) =
1√

2πsnoise
exp
(
− (y − σ(ε,x))2

2s2noise

)
, (2.34)

or:

π(y|x) =
1√

2πsnoise
exp

(
−

(
y − Eε

(
1− h

(
ε− σy0

E

))
− σy0h

(
ε− σy0

E

))2

2s2noise

)
. (2.35)

Taking the physical constraints into account that the Young’s modulus and the initial yield
stress must be nonnegative, the following prior distribution is selected:

π(x) ∝

{
exp
(
− (x−x)TΓ−1

x (x−x)
2

)
if E ≥ 0 and σy0 ≥ 0

0 otherwise
, (2.36)

where x is the mean value vector of the prior distribution and Γx is the covariance matrix of
the prior. Substitution of Eq. (2.33) and Eq. (2.34) in the reduced variant of Bayes’ formula of
Eq. (2.23), yields the following posterior distribution for nm measurements:

π(x|y) ∝ exp

(
−
[

(x− x)TΓ−1x (x− x)

2
+

nm∑
i=1

(
yi − Eεi

(
1− h

(
εi − σy0

E

))
− σy0h

(
εi − σy0

E

))2

2s2noise

])
.

(2.37)

We again note that the probability of obtaining a negative Young’s modulus and yield stress is
zero thanks to the selected prior distribution.
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It is important to realise that the presence of the Heaviside function in the posterior entails
that the posterior cannot be analysed analytically. Hence, the adaptive MCMC approach is
employed to analyse the posterior for in Section 2.5.

Linear elasticity-linear hardening

The parameter vector for the linear elastic-linear hardening model reads x =
[
E σy0 H

]T
.

Assuming again the same experimental equipment and conditions (and hence, the same noise
model and noise distribution), the likelihood function for a single measurement reads:

π(y|x) ∝ exp

(
−

(
y − Eε

(
1− h

(
ε− σy0

E

))
−
(
σy0 + HE

H+E

(
ε− σy0

E

))
h
(
ε− σy0

E

))2

2s2noise

)
.

(2.38)

In addition to the physical constraints for the Young’s modulus and the initial yield stress,
we also use that plastic modulus H must be nonnegative. The following prior distribution is
therefore selected:

π(x) ∝

{
exp
(
− (x−x)TΓ−1

x (x−x)
2

)
if E ≥ 0 and σy0 ≥ 0 and H ≥ 0

0 otherwise
. (2.39)

Using Bayes’ formula, the posterior distribution for nm measurements reads:

π(x|y) ∝ exp

(
−
[

(x− x)TΓ−1x (x− x)

2
+

nm∑
i=1

(
yi − Eεi

(
1− h

(
εi − σy0

E

))
−
(
σy0 + HE

H+E

(
εi − σy0

E

))
h
(
εi − σy0

E

))2

2s2noise

])
. (2.40)

Linear elasticity-nonlinear hardening

The parameter vector for the linear elastic-nonlinear hardening material description is x =[
E σy0 H n

]T
. Considering no change of experimental equipment (and hence, the same

noise model and noise distribution), the expression for the measured stress again reads as
Eq. (2.33), where σ(ε,x) is given by Eq. (2.14). It is important to note that in contrast to the
previous cases, theoretical stress σ(ε,x) is not a closed form expression (see Eq. (2.14)). The
likelihood function for a single measurement is:

π(y|x) ∝ exp
(
− (y − σ(ε,x))2

2s2noise

)
, (2.41)

where σ(ε,x) is numerically determined by solving Eq. (2.14). Choosing the prior distribution
in the form of a modified normal distribution as:

π(x) ∝

{
exp
(
− (x−x)TΓ−1

x (x−x)
2

)
if E ≥ 0 and σy0 ≥ 0 and H ≥ 0 and n ≥ 0

0 otherwise
, (2.42)
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and employing the Bayes’ theorem, the posterior distribution for nm measurements reads:

π(x|y) ∝ exp

(
−
[

(x− x)TΓ−1x (x− x)

2
+

nm∑
i=1

(yi − σ(εi,x))2

2s2noise

])
. (2.43)

2.4 Numerical procedures

2.4.1 Markov chain Monte Carlo method (MCMC)

Once the posterior is constructed, it needs to be analysed to determine the statistical summaries.
For the aforementioned case of linear elasticity, the statistical summaries were established ana-
lytically, but for the other cases we need to determine them numerically because they are only
C0-continuous. We will use a Markov chain Monte Carlo (MCMC) technique for this.

MCMC techniques are frequently employed, derivative-free numerical approaches to investi-
gate posteriors [68–70]. They draw samples from the posterior to do so. Below, the fundamental
concepts of the Monte Carlo method are discussed, as well as the adaptive Metropolis algorithm
to perform the sampling.

Monte Carlo method

The main purpose of the Monte Carlo method is to approximate integrals of the following form:

I =

∫
Rnp

g(x)π(x)dx, (2.44)

where π is the PDF of interest (in our case the posterior) and g : Rnp → Rng is an integrable
function over Rnp . This integral can be approximated using the following quadrature:

Î =
1

ns

ns∑
i=1

g(xi), (2.45)

where {xi}nsi is the set of samples drawn from the PDF of interest (π) and the hat on Î represents
the numerically approximated equivalent of I. The drawing of samples from π implies that most
of the samples are in the domain in which numerical evaluations of π are nonzero. Note that Î
converges according to [71]:

lim
ns→+∞

1

ns

ns∑
i=1

g(xi) = I. (2.46)

The numerical approximation of the components of the covariance matrix for g(x) (Γ̂g) is [24]:

(Γ̂g)jk =
1

ns − 1

ns∑
i=1

(
gj(xi)− Ij

)(
(gk(xi)− Ik

)
, j = 1, 2, · · · , ng, k = 1, 2, · · · , ng. (2.47)

The mean of the posterior (xpost) can be computed by substituting g(x) = x and π = πpost
in Eq. (2.44), which yields:

xpost =

∫
Rnp

xπpost(x)dx = lim
ns→+∞

1

ns

ns∑
i=1

xi. (2.48)
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Furthermore, the components of the posterior’s covariance matrix are approximated as follows:

(Γ̂post)jk =
1

ns − 1

ns∑
i=1

(
(xi)j − (xpost)j

)(
(xi)k − (xpost)k

)
, j = 1, 2, · · · , np, k = 1, 2, · · · , np.

(2.49)

If we assume that a large number of samples is taken (i.e. ns is large), the MAP point can
furthermore be approximated as [71]:

M̂AP = argmax
xi;i=1,...,ns

π(xi). (2.50)

The essential part of a Monte Carlo procedure is the drawing of admissible samples (xi).
Below, the standard and adaptive Metropolis algorithms are discussed as means to draw samples.
The adaptive one is the algorithm used in Section 2.5.

The standard Metropolis-Hastings and the adaptive Metropolis algorithms

The standard Metropolis-Hastings approach is a frequently employed MCMC algorithm [71].
The basic idea of the Metropolis-Hastings algorithm is to explore the PDF of interest by making
a random walk across the parameter space x. Considering sample xi and its evaluation of the
PDF, π(xi), new sample xp is proposed by drawing from a proposal distribution (q in Algorithm
2.1). If the PDF evaluated at the proposed sample (π(xp)) multiplied by the evaluation of the
proposal distribution evaluated at xi, given the proposed sample (q(xi|xp)), is larger than the
PDF at the current sample (π(xi)) multiplied by the evaluation of the proposal distribution
at the proposed sample given the current sample (q(xp|xi)), the proposed sample is always
accepted as the new sample. However, if π(xp)q(xi|xp) < π(xi)q(xp|xi), the proposed sample
may be accepted based on the ratio of scalar r in Algorithm 2.1. The ratio is compared to a
random number generated from a uniform distribution. If the ratio is greater than the random
number, the proposed sample is accepted. If the ratio is smaller than the random number, the
proposed sample is rejected, and the current sample becomes the new sample. Otherwise, the
proposed sample becomes the new sample. The algorithm is repeated for ns samples.

Algorithm 2.1 The standard Metropolis-Hastings algorithm

1: select the initial sample x0 ∈ Rnp
2: for i = 0, 1, 2, ..., ns − 1 do
3: draw xp ∈ Rnp from the proposal distribution q(xp|xi) in Eq. (2.53)

4: calculate the ratio r(xi,xp) = min
(

1,
π(xp)q(xi|xp)
π(xi)q(xp|xi)

)
. π(·) denotes the target distribution (i.e. posterior).

5: draw u ∈ [0, 1] from uniform probability density
6: if r(xi,xp) ≥ u then
7: xi+1 = xp
8: else
9: xi+1 = xi

10: end if
11: end for

In case of a symmetric proposal distribution (as in this chapter), the following relation holds:

q(xi|xp) = q(xp|xi). (2.51)
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Consequently, step 4 in Algorithm 2.1 simplifies to:

r(xi,xp) = min
(

1,
π(xp)

π(xi)

)
. (2.52)

Note that the Metropolis-Hastings algorithm with a symmetric proposal distribution is com-
monly called the Metropolis algorithm.

A commonly employed approach to check the stability and convergence of the algorithm
is by tracing the generated samples and analysing their characteristics, after the algorithm is
finished. The evolution of the mean value and the standard deviation can for instance be checked
for convergence [40]. We refer the readers for more information to the review on assessing the
convergence of the MCMC by Sinharay [39].

The efficiency of the algorithm is influenced by the initial sample (x0) and the proposal
distribution (q) [48]. The most common proposal distribution for the Metropolis-Hastings al-
gorithm (as employed here) is of the following Gaussian form:

q(xi|xp) = q(xp|xi) ∝ exp
(
− 1

2γ2
‖xi − xp‖2

)
, (2.53)

where γ is the parameter that determines the width of the proposal distribution and must be
tuned to obtain an efficient and converging algorithm. An efficient starting value is γ = 2.38√

np

[72], where np is the number of unknown parameters and hence, the dimension of the posterior
for the cases presented above.

To overcome the tuning of γ, Haario et al. [73] introduced the adaptive proposal (AP). The
AP method updates the width of the proposal distribution, using the existing knowledge of the
posterior. The existing knowledge is based on the previous samples. For sample nK + 1, the
update employs the following formulation:

q(xp|xi) ∼ N(xi, γ
2RnK), (2.54)

where N(xi, γ
2RnK) denotes a normal distribution with mean xi and covariance matrix γ2RnK ,

of size np × np. To establish RnK , all nK previous samples are first stored in matrix K of size
nK × np. RnK , is then computed as:

RnK =
1

nK − 1
K̃
T
K̃, (2.55)

where K̃ = K−Kmean and Kmean reads:

Kmean =


kmean

kmean
...

kmean


nK×np

, (2.56)

and kmean is a row matrix of length np which is determined as follows:

kmean =
1

i

[
nK∑
i=1

(K)i1
nK∑
i=1

(K)i2 · · ·
nK∑
i=1

(K)inp

]
. (2.57)

The following relation is used for N(xi, γ
2RnK) in this chapter:

N(xi, γ
2RnK) ∼ xi +

γ√
nK − 1

K̃
T
N(0, InK), (2.58)
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where InK is the identity matrix of size nK × nK and N(0, InK) is the nK-dimensional normal
distribution.

Note that it is computationally inefficient to update the proposal distribution after each new
sample is generated. In the numerical examples in this chapter therefore, updating takes place
once per 1000 sample generations. Algorithm 2.2 shows the Metropolis-Hastings algorithm with
the symmetric AP proposal (Eq. (2.58)) that is employed here.

Algorithm 2.2 The Metropolis algorithm with AP proposal

1: select the initial sample x0 ∈ Rnp and set γ = 2.38√
np

2: for i = 0, 1, 2, ..., ns − 1 do
3: draw xp ∈ Rnp from the proposal distribution q(xp|xi) in Eq. (2.58)

4: calculate the ratio r(xi,xp) = min
(

1,
π(xp)
π(xi)

)
. π(·) denotes the target distribution (i.e. posterior).

5: draw u ∈ [0, 1] from uniform probability density
6: if r(xi,xp) ≥ u then
7: xi+1 = xp
8: else
9: xi+1 = xi

10: end if
11: per 1000 samples
12: update matrix K̃
13: end for

2.4.2 Posterior predictive distribution (PPD)

Once the posterior is established, the posterior predictive distribution can be used to predict new
measurements, given the current measurements. A comparison between the newly generated
measurements and the current (yet observed) measurements may then indicate if a different
model and/or prior need to be used. For instance, if the envelope of the new measurements
differs substantially from the envelope of the current measurements, the current measurements
are unlikely to be generated using the current model and/or prior and the user may want to
select a new model and/or prior.

Considering measurements y =
[
y1 · · · ynm

]T
, the posterior predictive distribution of new

measurement ynew for new strain εnew, given the current measurements, reads [16]:

π(ynew|y, ε, εnew) =

∫
Rnp

π(ynew|x, εnew)π(x|y, ε)dx, (2.59)

where ε =
[
ε1 · · · εnm

]T
is the vector of the strains at which stresses y were measured. Note

that we have so far neglected ε in the notation.

Computing the integral in Eq. (2.59) is usually challenging for high dimensional problems.
However, the Monte Carlo Markov chain can be employed to draw samples from the PPD for
a new measurement (ynew), given measurement vector y. This can be achieved by employing
a sampling procedure twice. First, samples are drawn from the posterior distribution for the
parameters, given the measurements (π(x|y, ε)). Note that this is already performed during the
numerical analysis of the posterior and hence, if those samples are saved, this procedure does
not have to be applied again. Second, the ith sample is replaced in π(ynew|xi, εnew), which is
subsequently used to generate a sample for new measurement ynewi .
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2.5 Examples

All formulations derived in the previous section are investigated below. The effect of the prior
distribution on the posterior distribution is studied, as well as the ability of the current for-
mulations to recover a material parameter distribution when they are taken from a specific
distribution. Also, BI’s ability to recover correlations between different material parameters is
exposed. First however, we will identify the noise distribution and its parameters.

2.5.1 Noise distribution

To determine the noise distribution and its parameters, two sets of ‘calibration experiments’
can be performed. First, a test is performed without any specimen. The stress-strain measure-
ments of this test are shown in Fig. 2-3(a). It shows that the PDF of the noise in the ‘stress
measurements’ is a normal distribution with a zero mean and a standard deviation of snoise.

Second, the evolution of the noise distribution (including its parameters) is determined.
To this purpose, a tensile test is performed on a calibration specimen (of which the Young’s
modulus is known). The artificially generated results are presented in Fig. 2-3(b). The mean
stress value varies linearly with the strain. Standard deviation snoise remains the same however.

Thus, the ‘calibration measurements’ indicate that an additive noise model can be used and
the stresses are polluted by realisations coming from a normal noise distribution with standard
deviation snoise. Now, we will employ BI to identify the Young’s modulus of the linear elastic
model.

ε

σ

πnoise(ω)

(a) Fitted noise distribution

ε

σ

(b) The shifted noise distribution

Figure 2-3: Schematic of the stress-strain measurements (red circles) of the ‘calibration experiments’, including the
noise distributions (dashed). The theoretical stress-strain relation (which is exact for the calibration experiments)
is presented as a solid line in the diagram on the right.

2.5.2 Linear elasticity

Identification of the Young’s modulus In the first example, a specimen with a Young’s
modulus of 210 GPa is considered, which is to be identified. ‘calibration experiments’ were
performed and the noise in the stress follows the normal distribution of Eq. (2.25) with snoise =
0.01 GPa. For only one stress measurement of y = 0.1576 GPa with corresponding strain
ε = 7.25 × 10−4, the posterior distribution is calculated using Eq. (2.31). Selecting the prior
distribution as in Eq. (2.28) with mean E = 150 GPa and a relatively large standard deviation
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of sE = 50 GPa, the posterior reads:

π(E|y) ∝ exp
(
− (E−Epost)2

2s2post

)
, E ≥ 0, (2.60)

where Epost = 212.6486 GPa and spost = 13.2964 GPa.

Fig. 2-4 shows this posterior distribution, as well as the prior distribution and the value
predicted by the least squares method, for one and five measurements. Fig. 2-5 presents the
linear elastic responses for one and for ten measurements. The figure also shows the stress-strain
responses using Young’s moduli drawn from the 95% credible region (i.e. the region that contains
95% of the posterior) of the posterior as well as the posterior predictions. One can see that
envelope associated with the 95% credible region is narrower than the 95% prediction interval.
Note that the 95% prediction interval is obtained using the posterior predictive distribution and
its upper and lower bounds read:

prediction bounds = PPD± 2sPPD, (2.61)

where PPD denotes the mean of posterior predictive distribution for the new measurement
(i.e. ynew in (2.59)) and sPPD denotes its standard deviation.

Two points can be observed in Fig. 2-4. First, the strain at which a measurement is made
has a strong influence on the posterior. This can be observed by comparing the posterior of
Fig. 2-4(a) with that in Fig. 2-4(b) for only one measurement (the distribution in red, denoted
by π(E|y1)). The latter distribution is significantly wider and its MAP point is relatively distant
from the specimen’s Young’s modulus. Hence, a measurement made at a comparatively large
strain reduces the width of the posterior distribution (i.e. reduces the uncertainty).

The second remark is that for an increasing number of measurements, the posterior becomes
narrower and the MAP point moves closer to the specimen’s Young’s modulus.

By comparing the MAP point for a single measurement in Fig. 2-4(b) (Epost = 207.2821 GPa)
with the result of the least squares method for the same measurement (Els = 210.2216 GPa),
one can notice the effect of the selected prior distribution. One interpretation of this is that the
least squares method gives a more accurate result than BI (although this depends the selected
prior), as the result of the least squares method is closer to the specimen’s Young’s modulus
than the MAP point determined using BI. On the other hand, the result determined using the
least squares method is not the actual Young’s modulus of the specimen (210 GPa), whereas
the posterior distribution of BI does include this value. Furthermore, the MAP point and mean
value of BI, come with an uncertainty in terms of the parameter value itself. This can be
considered as an advantage if one wants to include this uncertainty, instead of including one
deterministic value.

The main point is that BI cannot be directly compared to the least squares method, because
contrary to the latter, BI results in a posterior probability distribution that represents the
probability of each possible value to occur.
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(a) One observation (b) Five successive observations

Figure 2-4: Linear elasticity: The prior, the posterior and the value predicted by least squares method for one
measurement (a) and five measurements (b). The distributions are not normalised. The strain at which a
measurement is made has a considerable influence on the posterior. This can be observed when the posterior of
(a) (π(E|y), red line) is compared to the posterior of (b), if only the first measurement is considered (π(E|y1),
red line). An increase of the number of measurements results in narrower posteriors, with their MAP estimates
closer to the true Young’s modulus.

(a) One observation (b) Ten observations

Figure 2-5: Linear elasticity: The measurements, the posterior prediction and the stress-strain curves created
using the posterior and mean for (a) one measurement and (b) ten measurements. The envelope associated with
the 95% credible region is narrower than the 95% prediction interval.

The influence of the prior Now, we will study the effect of the prior distribution on the
MAP point (which is the same as the mean value for the normal posteriors in this subsection).
In Fig. 2-6 the MAP points are shown as a function of the mean and the standard deviation
of the prior. The MAP points are presented for different numbers of measurements. As can be
seen, an increase of the number of measurements results in a flatter surface, which means that
the influence of the prior distribution decreases.

Recovering material heterogeneity A last important point to show using the linear elastic
model is BI’s ability (or inability for the current formulation) to capture the intrinsic heterogene-
ity of the material parameters. The question here is thus if BI is able to recover the distribution
of the Young’s modulus if several specimens are tested and their Young’s moduli are taken
from a specific underlying distribution. To this end, 25 specimens are considered of which the
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Figure 2-6: Linear elasticity: The influence of the prior (i.e. the mean value and the standard deviation) on the
resulting MAP point for different numbers of measurements. Increasing the number of the measurements results
in a flatter surface which indicates a decreasing influence of the prior distribution.

Young’s moduli are taken from a normal distribution with a mean value of 210 GPa and a
standard deviation of 10 GPa (blue curve in Fig. 2-7). For each specimen ten measurements
are made. The same noise model and noise distribution are applied.

The resulting posterior is presented by the red curve in Fig. 2-7, which is a (modified)
normal distribution with Epost = 215.3971 GPa and spost = 0.8561 GPa. The posterior is
substantially narrower than the distribution of the specimens’ Young’s moduli and hence, using
the BI formulations of this chapter, the material heterogeneity cannot be captured. This entails
that the width of the posterior distributions (represented by spost in this subsection) is only
a measure of the uncertainty of the MAP points and the mean value and not of the material
heterogeneity.
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Figure 2-7: Linear elasticity: The distribution of the specimens’ Young’s moduli and the resulting posterior. The
PDFs are not normalised. The current formulation is clearly not able to recover the material heterogeneity. To
be able to recover the material heterogeneity, one needs to consider both the intrinsic uncertainty of the material
parameters as well as that of the measurements.
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2.5.3 Linear elasticity-perfect plasticity

Identification of the material parameters In the first example of this subsection, a linear
elastic-perfectly plastically behaving specimen is considered with Young’s modulus E = 210 GPa
and yield stress σy0 = 0.25 GPa. Twelve measurements are generated by employing the same
noise distribution as in the previous subsection. The prior distribution of Eq. (2.36) is further-
more selected with the following mean vector and covariance matrix:

x =

[
200
0.29

]
GPa, Γx =

[
2500 0

0 2.7778× 10−4

]
GPa2. (2.62)

Consequently, the posterior of Subsection 2.3.2 is of the form of Eq. (2.37), which is inves-
tigated by the MCMC approach given in Subsection 2.4.1. Running the chain for 104 samples
whilst burning the first 3000 samples (i.e. the first 3000 samples are not used to determine the
mean, the covariance matrix and the MAP estimate) yields:

x̂post =

[
208.9859
0.2578

]
GPa, Γ̂post =

[
29.807 4.1064× 10−4

4.1064× 10−4 1.5067× 10−5

]
GPa2, (2.63)

and

M̂AP =

[
208.4475
0.2578

]
GPa, (2.64)

where the hat sign (̂·) denotes the numerical approximation.

Fig. 2-8(a) shows the samples generated by the adaptive MCMC approach which are used
to approximate the posterior distribution. The domains presented in Fig. 2-8(b) show which of
the measurements are included in the purely elastic part and which fall within the elastoplastic
part. These discrete domains are a result of the C0-continuity of Eq. (2.8). In domain ‘a’ (in
which no samples are generated by the adaptive MCMC approach), all the measurements are
considered to be in the elastoplastic part. In domain ‘b’ on the other hand, the first measurement
(the one with the smallest strain) is considered to be in the purely elastic part and the others
remain in the elastoplastic part. Continuing like this, in domain ‘c’ the second measurement
is also considered to be in the purely elastic part. Finally, in domain ‘m’ all measurements
are considered to fall within the elastoplastic domain. Based on Fig. 2-8(b) the MAP point is
clearly located in the domain in which the first six measurements are considered to be in the
purely elastic part and the remaining in the elastoplastic part.

The 95% credible region is shown together with the posterior distribution in Fig. 2-9(a). The
possible stress-strain responses inside the credible region as well as the posterior predictions are
presented in Fig. 2-9(b). The posterior distribution seems to be roughly of an elliptical shape
with its primary axes almost along the E-axis and σy0-axis. This entails that the correlation
between the two material parameters is not significant. One has to notice though, that the
assumed prior is uncorrelated. In other words, the prior covariance matrix (Γx) is diagonal. It
is therefore interesting to investigate the influence of the off-diagonal term of the prior covariance
matrix on the posterior covariance matrix. In Fig. 2-10, this influence is graphically presented
for the three terms of the posterior covariance matrix (note that both the prior covariance
matrix and the posterior covariance matrix are symmetric). It seems that an increase of (Γx)12
leads to some decreasing trend for (Γ̂post)11 and some increasing trend for (Γ̂post)12. However,
it is difficult to assess whether or not these trends can be considered as meaningful.
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approach (top view) including different do-
mains

Figure 2-8: Linear elasticity-perfect plasticity: Two different views of the samples generated by the adaptive
MCMC approach to approximate the posterior. The colours represent the value of the posterior, which in the
left image is also shown along the z-axis. In Fig. 2-8(b) several domains are shown. Each of these domains
corresponds to a region for which the number of measurements considered to be in the purely elastic part is
constant (e.g. zero in domain a and one in domain b).
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and the stress-strain curves

Figure 2-9: Linear elasticity-perfect plasticity: The 95% credible region and the posterior distribution (a), the
measurements, the posterior prediction and the stress-strain curves created using the 95% credible region of the
posterior (b).
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(a) Effect of (Γx)12 on (Γ̂post)11 (b) Effect of (Γx)12 on (Γ̂post)12

(c) Effect of (Γx)12 on (Γ̂post)22

Figure 2-10: Linear elasticity-perfect plasticity: Effect of the off-diagonal component of the prior’s covariance
matrix on the posterior’s covariance matrix. It seems that an increase of (Γx)12 leads to a decreasing trend of

(Γ̂post)11 and a increasing trend of (Γ̂post)12. However, it is difficult to assess whether or not a true trend is
present in these results.

The influence of the prior on the correlation between the material parameters
The next example focuses on the ability of the current formulation to capture a correlation
between the Young’s modulus and the initial yield stress when they are correlated. To this
end, ten specimens are considered of which the material parameters are governed by a normal
distribution with the following mean vector and covariance matrix:

xspc =

[
210
0.25

]
GPa, Γspc =

[
100 10−4

10−4 1.1111× 10−4

]
GPa2. (2.65)

For each specimen, twelve measurements are made. Using the same prior as in the previous
example (see Eq. (2.62)) and the adaptive MCMC approach for 104 samples whilst burning the
first 3000 samples, yields:

x̂post =

[
211.1077
0.2519

]
GPa, Γ̂post =

[
5.5373 −8.396× 10−4

−8.396× 10−4 1.8174× 10−6

]
GPa2. (2.66)

The MAP point is given by:

M̂AP =

[
210.5923
0.2521

]
GPa. (2.67)

These results show that the correlation of the posterior is not the same as that of the
distribution of the actual material. This corresponds closely with the observation that the
formulations in this chapter are unable to capture any of the intrinsic uncertainty of the material
parameters. Fig. 2-11 shows the effect of the off-diagonal component of the prior’s covariance
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matrix (Γx) on the components of the posterior’s covariance matrix (Γpost). Again, no real
trends can be observed.

(a) Effect of (Γx)12 on (Γ̂post)11 (b) Effect of (Γx)12 on (Γ̂post)12

(c) Effect of (Γx)12 on (Γ̂post)22

Figure 2-11: Linear elasticity-perfect plasticity: Effect of the off-diagonal components of the prior’s covariance
matrix on the posterior’s covariance matrix if the measurements are generated from ten specimens with their
material parameters drawn from a normal distribution given in Eq. (2.65). No real trends can be observed.

2.5.4 Linear elasticity-linear hardening

Identification of the material parameters This subsection deals with the Bayesian for-
mulation for the linear elastic-linear hardening material description. A specimen with Young’s
modulus E = 210 GPa, initial yield stress σy0 = 0.25 GPa and plastic modulus H = 50 GPa is
regarded. Twelve measurements are created by employing the same noise distribution as in the
previous subsection. The prior distribution is given by Eq. (2.39) with the following properties:

x =

200
0.29
60

 GPa, Γx =

2500 0 0
0 2.7778× 10−4 0
0 0 100

GPa2. (2.68)

The adaptive MCMC algorithm for 104 samples whilst burning the first 3000 samples yields:

x̂post =

207.4586
0.2533
55.9187

 GPa, Γ̂post =

 36.5642 −1.2746× 10−2 −3.7886
−1.2746× 10−2 4.0359× 10−5 −2.6218× 10−2

−3.7886 −2.6218× 10−2 66.8214

 GPa2,

(2.69)
and

M̂AP =

206.9528
0.2548
55.2838

 GPa. (2.70)
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Fig. 2-12 shows the generated samples by the adaptive MCMC approach in the E − σy0 − H
space, including the projections on the E − σy0, E −H and σy0 −H planes.

The 95% credible region is presented in Fig. 2-13(a) and the stress-strain responses associated
with it, as well as the posterior prediction are shown in Fig. 2-13(b).
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Figure 2-12: Linear elasticity-linear hardening: Samples generated by the adaptive MCMC approach to approx-
imate the posterior distribution and its projection on the three planes.
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(a) The 95% credible region (b) The measurements, the posterior prediction
and the stress-strain curves

Figure 2-13: Linear elasticity-linear hardening: The 95% credible region and the posterior distribution (a) and
the measurements, the posterior prediction and the stress-strain curves associated with the 95% credible region
(b).

2.5.5 Linear elasticity-nonlinear hardening

Identification of the material parameters In this subsection, twelve measurements are
generated using E = 210 GPa, σy0 = 0.25 GPa, H = 2 GPa, n = 0.57 (which are to be identified)
and the same noise distribution as in the previous subsections. The prior distribution is selected
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in the form of Eq. (2.42) with the following mean vector and covariance matrix:

x =


200
0.29
2.5

0.57 GPa−1

 GPa, Γx =


2500 0 0 0

0 2.7778× 10−4 0 0
0 0 0.1111 0
0 0 0 0.0025 GPa−2

GPa2. (2.71)

Running the adaptive MCMC approach for 104 samples and burning the first 3000 samples
yields:

x̂post =


210.444
0.254
2.1937

0.5988 GPa−1

 GPa,

Γ̂post =


24.3496 −8.1743× 10−3 0.1501 −2.2095× 10−3 GPa−1

−8.1743× 10−3 9.5238× 10−5 −6.8472× 10−4 1.8694× 10−4 GPa−1

0.1501 −6.8472× 10−4 9.5319× 10−2 5.4179× 10−3 GPa−1

−2.2095× 10−3GPa−1 1.8694× 10−4 GPa−1 5.4179× 10−3 GPa−1 1.0629× 10−3 GPa−2

 GPa2,

(2.72)

and

M̂AP =


210.0794
0.2536
2.198

0.5978 GPa−1

 GPa. (2.73)

The stress-strain responses associated with the 95% credible region of the posterior and the
posterior prediction are presented in Fig. 2-14.

Figure 2-14: Liner elasticity-nonlinear hardening: The measurements, the stress-strain curves associated with
the 95% credible region and the posterior prediction.
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2.6 Additional concepts for parameter identification from uni-
axial tensile results

In the previous sections, we have introduced BI for the identification of elastic and elastoplastic
parameters. The formulation of the framework was relatively basic. In this section, we will
discuss, without too many details, some changes to the framework if (1) a viscoelastic model
is considered instead, (2) not only the stress measurements are uncertain, but also the strain
measurements, and (3) the model itself is uncertain as well.

2.6.1 Viscoelasticity

Viscoelasticity differs from the aforementioned elastoplasticity by its rate-dependency (whilst
no plastic deformation occurs). Consequently, the rate-dependency must be identified, besides
one or more stiffness parameters. The rate at which uniaxial tensile tests are performed thus
comes into play. On the other hand, the mechanical responses are C1-continuous, which results
in C1-continuous posteriors. This may be considered as more straightforward to treat with
MCMC approaches than the posteriors of the aforementioned elastoplastic descriptions.

Instead of performing uniaxial tensile tests at a constant rate, one may also choose to use
(uniaxial) relaxation tests or creep tests. In a relaxation test, a user-selected displacement
(i.e. strain) is enforced as fast as possible in the beginning of the test and then kept constant.
The result of this is a stress-time response. In a creep test, a user-selected force (i.e. stress) is
prescribed as fast as possible in the beginning of the test and then kept constant. The result of
this is a strain-time response. In relaxation and creep tests, the stress-strain response for the
material descriptions in this chapter must be replaced by a stress-time response or a strain-time
response. As these are both C1-continuous, their posteriors are also C1-continuous and hence,
the MCMC algorithm to explore them is easier to implement than for elastoplasticity.

The study of Rappel et al. [30] shows that the effect of the prior on the mean and MAP
point in viscoelasticity is larger than for elastoplasticity. The influence is especially larger
for the damping parameter. Although an increase of the number of measurements decreases
the influence of the prior, its influence on the damping parameter remains recognisable. The
uncertainty level of the identified parameter values is furthermore substantially larger if uniaxial
tensile tests at constant strain-rates are used than if relaxation or creep tests are used. More
detailed information can be found in [30].

2.6.2 Noise in both stress and strain

The additive noise model when both the stresses and strains are contaminated by stochastic
noise, can be expressed as follows: {

Y = σ(ε,x) + Ωy

ε∗ = ε+ Ωε∗
, (2.74)

where ε∗ denotes the measured strain, ε the theoretical strain, Ωy the error of the stress mea-
surement and Ωε∗ the error of the strain measurement. Because the information from both
the measured stress and the measured strain is used here, Bayes’ formula for multiple variables
must be employed [74]:

π(x|y, ε∗) =
π(x)π(ε∗)π(y|x, ε∗)

π(ε∗)π(y|ε∗)
. (2.75)
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Since the denominator in Eq. (2.75) is a constant number, the equation above can be written
as:

π(x|y, ε∗) ∝ π(x)π(y|x, ε∗). (2.76)

The likelihood function, π(y|x, ε∗), must be determined by integration (over ε [17]), because
π(y|x, ε) can be determined directly, but π(y|x, ε∗) not. To this end, we write:

π(y|x, ε∗) =

∫ a

0
π(y|x, ε)π(ε|ε∗)dε, (2.77)

where a denotes the physical upper bound of the tensile tester (i.e. the ratio of the original length
of the specimen and the maximum distance that the clamps can move). Using Eq. (2.74), one
can express conditional probabilities π(y|x, ε) and π(ε|ε∗) as follows:

{
π(y|x, ε) = πy(y − σ(ε,x))

π(ε|ε∗) = πε∗(ε∗ − ε)
, (2.78)

where πy(ωy) and πε∗(ωε∗) are the noise distributions of the errors in the stress measurements
and the strain measurements, respectively. For nm independent measurements, we write:

π(y|x, ε∗) =

nm∏
i=1

π(yi|x, ε∗i ), (2.79)

where y =
[
y1 · · · ynm

]T
is the vector of nm stress measurements, ε∗ =

[
ε∗1 · · · ε∗nm

]T
is the

vector of measured strains and π(yi|x, ε∗i ) is given in Eq. (2.77). Further details on the resulting
likelihoods for different material models is presented in [32].

We show now a simple example for linear elasticity with one measurement point, given by
y = 0.1576 GPa and ε∗ = 7.25 × 10−4. It is furthermore assumed that both noise distribution
are normal distributions with a zero mean and sy = 0.01 GPa and sε∗ = 0.0001 for the noise in
stress and the noise in the strain, respectively.

In Fig. 2-15 the posteriors are shown if only the noise in the stress measurement is considered
and if the noise in the stress measurement as well as in the strain measurement is considered.
The prior is also presented, which is in form of Eq. (2.28) with mean E = 150 GPa and standard
deviation sE = 50 GPa. Not only is the posterior for the double uncertainty case wider than
the other one, it is also asymmetric.
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Figure 2-15: Noise in the stress and strain: The prior and posterior when both the stress and the strain are
corrupted by noise (black dots), the posterior when only the stress is contaminated (red) and the value predicted
by the least squares method (blue dashed). The posterior for the case with noise in the stress and strain is wider
than the posterior for the case with noise in the stress only. Note furthermore that the posterior if only the noise
in the stress is considered is a (modified) normal distribution (symmetric), but the posterior if both noises are
incorporated neither is a (modified) normal distribution, nor is it symmetric.

Fig. 2-16 shows the posterior predictions for the same case, except that ten measurements
are considered. One can see that incorporating the error results in a wider envelope that includes
more validation points. Note that the validation points are only used to assess the quality of
the predictions based on the identified material parameter (i.e. E) and not for identification of
the material parameter.

(a) Uncertainty in both the stress and the
strain measurements

(b) Uncertainty in the stress only

Figure 2-16: Noise in the stress and strain: The measurements, the validation points, the posterior prediction
and the stress-strain curves associated with the 95% credible region of the posterior for (a) noise in the stress and
the strain and (b) noise in the stress only. One can see that the uncertainty is larger for the case with noise in
the stress and strain, than that for the case with noise in the stress only. Consequently, the posterior predictions
if both the noise in the stress and strain is incorporated, includes more validation points.

Incorporating not only the error in the stress, but also the error in the strain often results
in a larger uncertainty (wider posterior) and consequently, the posterior prediction interval
encompasses more measurement data. More information can be found in [32].
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2.6.3 Model uncertainty

So far in this chapter, the modelling error (model uncertainty) has not been incorporated.
However, no model is completely correct and model uncertainty as an error source may be
incorporated. A framework able to do so was developed by Kennedy and O’Hagan [47] (the
‘KOH’ framework). In this framework, the difference between theoretical model response σ(ε,x)
and true response σtrue is written as an additive uncertainty term [75]:

Y = σtrue + Ω, (2.80)

with

σtrue = σ(ε,x) + d(ε,xd), (2.81)

where d(ε,xd) denotes the model uncertainty, which can be assumed to depend on the input
(i.e. strain ε here), and xd denotes the parameter vector of the model uncertainty. Assuming
that both the form and parameters of the noise distribution of the stress measurements are
known, the likelihood function now reads:

π(y|x,xd) = πnoise(y − σ(ε,x)− d(ε,xd)). (2.82)

Note that we have not incorporated the error in the strain measurements for simplicity. Readers
are referred to [32] for the case that the error in the strain also is considered.

Using Eqs. (2.23) and (2.82), the posterior distribution for a single measurement can be
written as:

π(x,xd|y) ∝ π(y|x,xd)π(x)π(xd). (2.83)

For several independent measurements, the final likelihood function is the product of the like-
lihood function for each measurement:

π(y|x,xd) =

nm∏
i=1

πnoise(yi − σ(εi,x)− d(εi,xd)). (2.84)

After establishing the posterior, the posterior needs to be sampled numerically (see Sub-
section 2.4.1) in order to obtain the statistical summaries (e.g. mean value, MAP point or
covariance matrix). Note that the posterior distribution of Eq. (2.83) is a joint distribution of x
and xd. In order to sample the marginal distribution of each parameter (e.g. the Young’s mod-
ulus), one only needs to consider the samples of that specific parameter in the joint posterior
distribution (i.e. Eq.(2.83)) and ignore those of the other parameters [22].

Various formulations have been employed in different studies to express the model uncer-
tainty term given in Eq. (2.81). Probably the simplest way is to represent the model uncertainty
using a single deterministic variable [76]. It can also be described by a deterministic, input-
dependent function [15]. Another way to express this uncertainty is to describe it by a random
variable coming from a normal distribution and include the parameters of this distribution in
the posterior distribution [32, 75, 76]. The parameters of the normal distribution from which
the model uncertainty is originating can also be input-dependent functions (i.e. strain) [32, 75].
The model uncertainty can also be represented as a Gaussian process [47, 77, 78]. Some more
formulations to describe model uncertainty can be found in [75].

As an example here, we consider a nonlinear curve (i.e. dashed line in Fig. 2-17(a)) as our
true material response whilst the material response uses linear elasticity. Thirty measurements
are generated artificially (see Fig. 2-17(a)). Model uncertainty is described by a random variable
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coming from a normal distribution with constant parameters and hence, the mean and standard
deviation of this normal distribution appear as parameters in the posterior.

The marginal posteriors of the Young’s modulus are presented in Fig. 2-17(b). One can
observe that the incorporation of model uncertainty in this example results in a wider posterior
distribution that includes the true value, although its MAP point is located further away from
the true value. If the error in the strain is incorporated as well, the posterior at the true value
increases even more.

The posterior predictions for these three cases are shown in Fig. 2-18. Incorporating model
uncertainty clearly results in a wider prediction interval. If both the error in the strain and
model uncertainty are incorporated however, the prediction interval becomes even wider and
all measurement points and validation points are present within its bounds.

(a) True curve (b) Marginal posteriors of Young’s modulus

Figure 2-17: Model uncertainty: (a) The true stress-strain curve from which the measurements are generated,
as well as the linear stress-strain curve with the true Young’s modulus. (b) The marginal posterior distribution
of the Young’s modulus with no model uncertainty (red curve), with model uncertainty and error in the stress
(blue curve) and with model uncertainty and error in both the stress and the strain measurements (black curve).
Incorporating model uncertainty results in a posterior distribution that includes the true Young’s modulus. In
case the error in the strain is considered as well, the probability at the true Young’s modulus increases even
further.
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(a) Error in the stress (b) Error in the stress and model un-
certainty

(c) Errors in the stress and strain
and model uncertainty

Figure 2-18: Model uncertainty: The measurements, validation points and the posterior predictions. One can
see that if model uncertainty is considered, the prediction interval becomes wider. Furthermore, only if model
uncertainty as well as the errors in both the stress and the strain measurements are incorporated, all measured
and validation points are inside the prediction interval.
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2.7 Conclusions

Bayesian inference (BI) can be used to identify the parameters of a material model from ex-
perimental measurements. Unlike deterministic identification approaches (e.g. the standard
least squares method), which result in a single value for each parameter, the result of BI is a
parameter distribution. The parameter distribution is based on (1) a-priori knowledge about
the parameters and (2) the acquired measurement data. Although the parameter distribution
provides knowledge about the uncertainty of the parameters, it still assumes that only one pa-
rameter set is to be identified. This point has been addressed in an example given in Section
2.5.

Although BI has been employed in various studies for parameter identification, most may
not be straightforward to understand for those who are new to the subject. In this chapter, we
have aimed to explain BI in a basic manner. For this purpose, a number of Bayesian inference
formulations are presented to identify elastic and elastoplastic material parameters from uniaxial
tensile results. Elastic and elastoplastic material models are chosen for two reasons: (1) they
are widely used in solid mechanics and (2) they include the most simple material behaviour
(linear elasticity), as well as increasingly complex descriptions such as linear elasticity-nonlinear
hardening, which entails C0-continuous, implicit responses.

The following conclusions can be made based on the examples given in Section 2.5:

(1) The results of BI cannot directly be compared to those of the least squares method, since
the result of BI is a distribution and that of the least squares method is a single value.

(2) If one wants to compare the two nevertheless, point estimators such as the mean and MAP
point can be compared to the results of the least squares method. It is shown in Fig. 2-6
that the selected prior distribution may significantly influence the results. Fig. 2-6 also
shows that the influence of the prior decreases significantly if the number of measurements
increases.

(3) The standard deviations and correlations of the material parameters established using the
‘standard’ BI formulations presented in this chapter, do not reflect the heterogeneity of
the material parameters. In other words, they are not representative for the standard
deviations and correlations of the intrinsic material parameter distributions, but only for
the level of uncertainty. The reason is that the formulations in this chapter still assume
that a unique set of parameter values is the solution of the identification problem.
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Chapter 3

Bayesian inference to identify
parameters in viscoelasticity1

Abstract

This chapter discusses Bayesian inference (BI) as an approach to identify parameters in vis-
coelasticity. The aims are (i) to show that the prior has a substantial influence for viscoelasticity,
(ii) to show that this influence decreases for an increasing number of measurements and (iii) to
show how different types of experiments influence the identified parameters and their uncer-
tainties. The standard linear solid model is the material description of interest and a relaxation
test, a constant strain-rate test and a creep test are the tensile experiments focused on. The
experimental data are artificially created, allowing us to make a one-to-one comparison between
the input parameters and the identified parameter values. Besides dealing with the aforemen-
tioned aims, we believe that this chapter forms a comprehensible start for those interested in
applying BI in viscoelasticity.

3.1 Introduction

A frequently employed approach to identify model parameters from a set of experimental data is
the least squares method (LSM, see e.g. [8]). The standard LSM formulates the squared differ-
ence between the measured data and the model response in terms of the parameters of interest
and minimises this difference with respect to the parameters of interest. Those parameters that
minimise the difference are the resulting parameter values. The residual is a measure for how
well the response fits the measurement data, but does not give insight in the uncertainty of the
identified parameter values.

Some enhanced LSM formulations incorporate the statistical information of the measurement
noise, in contrast to the standard LSM [79, 80]. Linearised approximations are however needed
to extract the most probable parameter values and the covariance (i.e. a measure that shows
how the random variables depend on each other). These approaches furthermore assume that
the measurement noise is symmetrically distributed with a constant variance. In other words,
they assume that the noise is independent of the measured value and that a particular positive
noise realisation is equally possible as a negative realisation of the same magnitude [81].

Bayesian inference (BI) can be used to formulate an alternative identification approach,
which may account for the fact that only a limited number of measurement data is available.

1Reproduced from: H. Rappel, L.A.A. Beex and S.P.A. Bordas, Bayesian inference to identify parameters in
viscoelasticity, Mechanics of Time-Dependent Materials, 22 (2), (2018) 221-258.
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It achieves this by incorporating an a-priori assumption on the parameter values. In practise,
this entails that the user has to specify a prior distribution (i.e. the prior). The influence of this
prior distribution can influence the identified parameter values significantly, but its influence
decreases for an increasing number of measurement data [61, 82].

An intermediate result of BI is a probability density function (PDF) in terms of the parame-
ters of interest, called the posterior distribution (or the posterior). Once the posterior distribu-
tion is established, its statistical characteristics need to be evaluated, e.g. the mean, the covari-
ance matrix and the parameter values at which the PDF is maximum (called the ‘maximum-
a-posteriori-probability’ or ‘MAP’ point). Most often, numerical methods like Markov chain
Monte Carlo [25, 26] are necessary to extract the statistical characteristics from the posterior
distribution. For posteriors with C2-continuity, Laplace approximations can be applied to evalu-
ate the quantities of the interest. The posterior is then approximated by a Gaussian distribution
[43, 46].

The application of BI to identify (elastic) material parameters was started by Isenberg
[41], to the best of our knowledge. For two decades afterwards, BI was not used for material
parameter identification. When the developments started again, it was amongst others used
for the identification of elastic constants from dynamic responses [42–44, 50, 60], the elastic
constants of composite and laminate plates [49, 50, 52, 59] and spatially varying elastic constants
[51]. An introduction to identify Young’s moduli using BI is presented in [45].

Approaches based on BI are also used to identify material parameters in elastoplasticity.
Some examples are the studies of Fitzenz et al. [55], Muto and Beck [53], Most [56], Rosić et
al. [57] and Liu and Au [54]. Rappel et al. [82] have recently written an introduction of how
BI can be employed for elastoplastic models. In an another study, Sarkar et al. [40] used the
Bayesian approach to identify thermodynamical parameters of cementitious materials.

These days, BI is also used as an approach to evaluate the quality of different mechanical
models with respect to each other, to which is referred as ‘model selection’. Some examples
are the studies of Madireddy et al. [61] for hyperelastic constitutive models for tissue, Oden
et al. [62] for phenomenological models for tumour growth, Chiach́ıo et al. [63] for models of
damage progression in composites due to fatigue, and Babuška et al. [64] for fatigue descriptions
of metals. Model selection is however out of the scope of this chapter.

BI is also used to identify viscoelastic parameters. Zhang et al. [83] used BI to characterise
the Young’s modulus of a viscoelastic polymer layer in a laminated structure. Their work
includes a validation. Mehrez et al. [84] employed BI to identify the viscoelastic properties of
aged and unaged asphalt. Miles et al. [85] applied BI to characterise the viscoelastic parameters
of a dielectric elastomer undergoing finite deformation. Hernandez et al. [58] employed the
Bayesian approach for the probabilistic identification of five viscoelastic parameters. Zhao and
Pelegri [86] used BI together with a finite element model to identify the time constant of a
Voigt-based tissue model. All mentioned studies (except [86]) are based on actual experimental
data. Kenz et al. [87] compared asymptotic theory, bootstrapping, and Bayesian estimation for
a viscoelastic wave propagation model. Also in this study, experimental data was used (for a
homogeneous tissue-mimicking gel).

None of the mentioned BI studies for viscoelasticity have focused on the influence of the
prior distribution however. Furthermore, none of them have investigated the influence of the
number of measurement data. Except for Zhao and Pelegri [86] none of the studies for vis-
coelasticity are able to compare the resulting values with the input values. Finally, none of
the aforementioned studies have compared the estimated parameter values for different types of
tests (e.g. relaxation test, constant strain rate test and creep test). Hence, BI was used in the
past to identify viscoelastic parameters, but if other prior distributions were selected, the num-
ber of measurements were different or other tests were used, the results of the aforementioned
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E1 η

Figure 3-1: The one-dimensional spring-dashpot representation of the SLS model.

studies would be different.

The aim of this chapter is to show how viscoelastic parameters identified by BI are depen-
dent on the selected prior distribution, the number of measurement data and the type of test.
The standard linear solid (SLS) model is the employed viscoelastic description and a tensile
relaxation test, a tensile constant strain-rate test and the creep test are the experiments of
interest. The measurements are generated artificially, including the noise realisations. This
allows us to compare the identified values with the input values and with the LSM values, in a
controlled and thorough manner. In order to investigate if better parameter values are obtained
by different types of tests, the values identified based on different tests are also compared to
each other.

The structure of the chapter is as follows. Section 3.2 briefly discusses the SLS model.
Section 3.3 presents the theoretical fundamentals of BI, the final expression of the posterior
distribution for the SLS model and the three types of experiments. Section 3.4 discusses the
MCMC method to numerically extract the most probable parameter values from the posterior
distribution (including the associated covariances). Section 3.5 briefly discusses the LSM and
genetic optimisation as the minimisation approach to find the parameter values identified by
LSM. Section 3.6 presents the examples. This chapter is closed with some conclusions (Section
3.7).

3.2 Material model

Viscoelasticity can be used to describe the stress-strain-time relation of time-dependent mate-
rials. These materials show both viscous and elastic behaviour under deformation [88]. Well-
known viscoelastic material models are the Maxwell model, the Kelvin-Voigt model, the stan-
dard linear solid (SLS) model and the generalised Maxwell model [88]. As the goal of this
chapter is to identify the parameters of the SLS model, the remainder of this section considers
this description.

The SLS model describes stress-relaxation and creep phenomena in viscoelastic systems
with only one rate-dependent parameter [89]. In one dimension, the model can schematically
be represented using two springs and a dashpot (see Fig. 3-1).

For uniaxial tension, the stress-strain-time relation of the SLS can be described by the
following differential equation [90]:

σ +
η

E1

∂σ

∂t
= E0ε+ (E0 + E1)

η

E1

∂ε

∂t
, (3.1)

where σ is the stress, ε is the strain, ∂
∂t denotes the derivative with respect to time, E0 is the

stiffness of the parallel spring, E1 is the stiffness of the spring in series with the dashpot and η
is the viscosity of the dashpot (see Fig.3-1).
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In a tensile relaxation experiment in which strain ε0 is applied infinitely fast and then kept
constant, the stress-time relation during relaxation resulting from Eq. (3.1) reads:

σ(x, t) = E0ε0 + E1ε0exp
(
− E1t

η

)
, (3.2)

where x =
[
E0 E1 η

]T
is the parameter vector. Fig. 3-2 shows the relaxation behaviour of

Eq. (3.2) schematically.

t

σ

σ
0

E
0
ε 0

Figure 3-2: A schematic stress-time curve for one-dimensional stress relaxation of the SLS model. It is assumed
that applied strain ε0 is prescribed infinitely fast, resulting in σ0 = E0ε0 + E1ε0.

For a constant strain-rate experiment in tension, in which the specimen is elongated with a
constant strain-rate ε̇0, the stress-time relation reads:

σ(x, t) = E0ε̇0t+ ηε̇0

(
1− exp

(
− E1t

η

))
. (3.3)

The stress-time response of the constant strain-rate test is shown in Fig. 3-3 schematically.

t

σ

η
ε̇ 0

E0ε̇0
1

Figure 3-3: A schematic stress-time curve for a one-dimensional constant strain-rate test of the SLS model. The
applied strain-rate is ε̇0.

In a creep test in tension a constant tensile stress σ0 is applied to the specimen infinitely
fast, which is then kept constant. Strain is the quantity that is measured in this experiment.
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The strain-time relation for a creep test of the SLS model reads:

ε(x, t) =
σ0
E0

+ σ0

( 1

E0 + E1
− 1

E0

)
exp
(
− E0E1t

η(E0 + E1)

)
. (3.4)

Fig. 3-4 shows the behaviour of Eq. (3.4) schematically.

t

ε

ε 0
σ
0
E

0

Figure 3-4: A schematic strain-time curve for a one-dimensional creep test in tension of the SLS model. It is
assumed that the constant stress σ0 is applied infinitely fast and then remains constant. The initial strain is
ε0 = σ0

E0+E1
.

3.3 Bayesian inference

Identification approaches based on BI are less common than those based on the LSM. An
intermediate result of Bayesian approaches is a probability density function (PDF) for the
parameters to be identified (the so-called ‘posterior distribution’ or ‘posterior’). The posterior
includes one’s prior knowledge about the parameters, as a PDF (the so-called ‘prior distribution’
or ‘prior’). Numerical techniques are most often required to extract the mean, the variance and
MAP point from the posterior. In this chapter, MCMC is employed for this, which is discussed
in Section 3.4.

This section focuses on the fundamentals of BI for continuous events (Subsection 3.3.1) and
BI for the specific application to the SLS model and the tensile uniaxial relaxation, constant
strain-rate and creep tests (Subsection 3.3.2).

Throughout this section capital letters denote random variables and bold ones denote vectors
and matrices. An important issue for this chapter is to recognise that we only consider a
statistical noise in the measured output, not in the experimental input. We thus consider the
time measurements to be exact. In [82] and [32], we have treated double uncertainties however.

3.3.1 Fundamentals of Bayesian inference

Bayes’ theorem

Consider two continuous random variables X ∈ Rn and Y ∈ Rk with associated PDFs π(x)
and π(y). Joint probability density function π(x,y) expresses the probability that both x and
y occur. This joint PDF can be expanded as:

π(x,y) = π(x)π(y|x) = π(y)π(x|y), (3.5)
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where π(y|x) and π(x|y) are conditional PDFs. Conditional PDF π(x|y) expresses the proba-
bility that x occurs, if it is certain that y occurs. Using Eq. (3.5), the simplest form of Bayes’
theorem can be written as:

π(x|y) =
π(x)π(y|x)

π(y)
. (3.6)

If we now consider x to be the vector with n identifiable parameters and y to be the vector
with k measurements, then π(x), π(y|x) and π(x|y) are the prior distribution (i.e. the PDF
that represents the original belief or prior knowledge), the likelihood function (i.e. the PDF of
the measured data y, given unknown parameters x) and the posterior distribution (i.e. the PDF
of unknown parameters x, given measured data y). Furthermore, π(y) is called the evidence
and can be calculated using the law of total probabilities [67] as follows:

π(y) =

∫
Rn
π(x)π(y|x)dx. (3.7)

As the measured data (y) is already known after the experiment, the evidence in Eq. (3.6)
(π(y)) is a constant number (C ∈ R+). It can thus be considered as a normalisation factor that
ensures that the integral of the posterior (π(x|y)) equals 1.

As the MAP point, the mean and the covariance matrix of the posterior are independent of
this normalisation factor, it suffices to rewrite Eq. (3.6) as follows:

π(x|y) ∝ π(x)π(y|x). (3.8)

Eq. (3.8) is the expression for the posterior in which we are interested. Based on Eq. (3.8)
it may be clear that in order to obtain the posterior distribution (π(x|y)), one needs to define
the prior (π(x)) and the likelihood function (π(y|x)). The prior is the PDF that expresses one’s
a-priori knowledge. It can have a significant influence on the estimated MAP point, mean value
and covariance matrix if the number of measurement data is small (see e.g. [48, 82] and the
results section of this chapter). On the other hand, if the number of measurement data is large,
the influence of the prior decreases [61].

Likelihood function

In order to construct the likelihood function, one needs to formulate the noise model (i.e. the
uncertainty model) and determine the type of noise distribution (πnoise), including its parame-
ters. This is often based on a calibration procedure of the experimental equipment. The most
common noise model in the literature is the additive noise model, in which the noise distribution
is independent of the theoretical model (f(x, t) in Fig. 3-5). Consequently, the noise only shifts
around the theoretical model (see Fig. 3-5 again).

The additive noise model is also employed in this chapter. For a consideration of other types
of noise models, the readers are referred to [48].

Given X ∈ Rn as the vector with the parameters to be identified, Y ∈ Rk as the vector with
the measurements, Ω ∈ Rk as the noise vector, f : Rn → Rk as the model dependent on the
unknown parameters and using the additive noise model, one can write the relation between
the measurements and the noise (i.e. the error in the measurements) as follows:

Y = f(X) + Ω. (3.9)

It can be noted that the measurements, Y, are made at a specific experimental input t. In
the relaxation and constant strain-rate tests, the stress measurements (Y) can be recognised
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t

y

f(x, t)

Figure 3-5: Schematic of additive noise. The noise around the known theoretical response f(x, t) is independent
of f(x, t) [2]. In this representation, an error in the time measurements is included as well.

as the experimental output and the strain measurements for the creep test. The experimental
input can be recognised as the time at which each stress or strain measurement is made (t). In
Eq. (3.9) we should thus have written f(X|t). We have however chosen not to do this in order
to simplify the notation.

If realisation X = x is given for Eq. (3.9), the only random variable on the right-hand side is
noise vector (Ω). Assuming that the noise vector and the unknown parameters are statistically
independent, the noise distribution is the likelihood function:

π(y|x) = πnoise(y− f(x)), (3.10)

where πnoise(ω) is the noise PDF (based on calibration experiments, see Subsection 3.6.1) and
Ω = ω is the noise realisation. Substituting Eq. (3.10) in Eq. (3.8) yields the posterior:

π(x|y) ∝ π(x)πnoise(y− f(x)). (3.11)

Once the posterior is established, one can calculate the statistical quantities of interest
(e.g. the MAP point, the mean and the covariance matrix).

3.3.2 Bayesian inference for the uniaxial tensile relaxation, constant strain-
rate and creep tests

In this subsection, we will employ the theory of the previous subsection to construct the posterior
for the one-dimensional SLS model and our experiments of interest in uniaxial tension.

The parameters of the SLS model to be identified are E0, E1 and η. Hence, the parameter

vector thus reads x =
[
E0 E1 η

]T
.

First we start with the relaxation test, in which the model (f(X) in Eq. (3.9)) is given by
Eq. (3.2) for one measurement. Employing these relations and considering only one measure-
ment point (measurement point i), Eq. (3.9) reads:

yi = E0ε0 + E1ε0exp
(
− E1ti

η

)
+ ωi, (3.12)

where yi is the measured stress, ti is the time at which yi is measured and ωi originates from
realisation Ω = ωi.
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To identify the statistical distribution of the measurement noise, calibration experiments
must be performed (discussed in Subsection 3.6.1). For now we assume that these calibration
experiments have exposed that a normal distribution with standard deviation Snoise can be used:

πnoise(ω) =
1√

2πSnoise
exp
(
− ω2

2S2
noise

)
, (3.13)

where Ω = ω is a realisation for the noise drawn from the distribution given by Eq. (3.13).

Using Eqs. (3.10) and (3.12) the likelihood function for measurement point i reads:

π(yi|x) = πnoise(yi − E0ε0 − E1ε0exp
(
− E1ti

η

)
) =

1√
2πSnoise

exp
(
−

(
yi − E0ε0 − E1ε0exp

(
− E1ti

η

))2
2S2

noise

)
. (3.14)

The next step is to choose the prior distribution (π(x)). As the material parameters cannot
be negative, a modified normal distribution is selected:

π(x) ∝

exp
(
− (x−xprior)

TΓ−1
prior(x−xprior)

2

)
if E0 ≥ 0 and E1 ≥ 0 and η ≥ 0

0 otherwise
, (3.15)

where xprior and Γprior are the mean vector and the covariance matrix of the prior, respectively.
The values in xprior and Γprior must be selected by the user. After all, they are assumptions (as
is the shape of the priori distribution).

Substituting Eqs. (3.3.2) and (3.15) in Eq. (3.8) yields the posterior for measurement point
i as follows:

π(x|yi) ∝ exp

(
−
[

(x− xprior)
TΓ−1prior(x− xprior)

2
+(
yi − E0ε0 − E1ε0exp

(
− E1ti

η

))2

2S2
noise

])
. (3.16)

Since the posterior for measurement point i can serve as the prior for measurement point
i+ 1, the posterior for k measurement points reads:

π(x|y) ∝ exp

(
−
[

(x− xprior)
TΓ−1prior(x− xprior)

2
+

k∑
i=1

(
yi − E0ε0 − E1ε0exp

(
− E1ti

η

))2

2S2
noise

])
, (3.17)

where π(x|y) = π(x|y1, y2, · · · , yk).
For the constant strain-rate test the only change is the employed model (f(X) in Eq. (3.9))
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which is given by Eq. (3.3). Hence, for the same noise distribution (Eq. (3.13)) and the prior
given in Eq. (3.15), the posterior distribution for k stress measurements reads:

π(x|y) ∝ exp

(
−
[

(x− xprior)
TΓ−1prior(x− xprior)

2
+

k∑
i=1

(
yi − E0ε̇0ti − ηε̇0

(
1− exp

(
− E1ti

η

)))2

2S2
noise

])
, (3.18)

where ε̇0 is the constant applied strain-rate and π(x|y) = π(x|y1, y2, · · · , yk).

As was mentioned previously the output for the creep test (Y in Eq. (3.9)) is the strain
measurements. The model f(X) for this case is given by Eq. (3.4). We furthermore assume
that the noise distribution is of the same for as for the previous two cases (Eq. (3.13)). Hence,
using Eqs. (3.4), (3.11), (3.13) and (3.15) the final form of the posterior for the creep test with
k strain measurements reads:

π(x|y) ∝ exp

(
−
[

(x− xprior)
TΓ−1prior(x− xprior)

2
+

k∑
i=1

(
yi − σ0

E0
− σ0

(
1

E0+E1
− 1

E0

)
exp
(
− E0E1ti

η(E0+E1)

))2

2S2
noise

])
, (3.19)

where yi is the measured strain at time ti, x is the parameter vector
[
E0 E1 η

]T
and σ0 is

the constant applied tensile stress.

Now the posterior is established for all three cases (relaxation, constant strain-rate and creep
test), we will use the MCMC approach to identify the mean parameter values, the parameter
values at which the posterior is maximum (i.e. the ‘MAP’ point) and the covariance matrix
of the posterior. The covariance matrix is a measure for the possible spread of the parameter
values, as well as how each parameter value depends on the others.

3.4 Markov chain Monte Carlo method (MCMC)

After establishing the posterior, one needs to determine the statistical properties of the posterior,
such as the MAP point, the mean and the covariance matrix. These statistical quantities can be
found analytically for straightforward cases, but often the use of a numerical technique cannot
be avoided. One such a technique is Markov chain Monte Carlo sampling [68–70]. MCMC
techniques are based on drawing samples from a target distribution (here the posterior) and
numerically approximating the quantities of interest (e.g. the mean). Below, the Monte Carlo
method and the adaptive Metropolis algorithm are discussed as means to obtain appropriate
samples.
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3.4.1 Monte Carlo method

The main goal of the Monte Carlo approach is to numerically approximate integrals of the
following form:

I =

∫
Rn

g(x)π(x)dx, (3.20)

where π is the target distribution (here posterior) and g : Rn → Rk is an integrable function
over Rn. Having a set of samples {xi}Ni drawn from target PDF π(x), the integral I can be
numerically approximated as follows:

Î =
1

N

N∑
i=1

g(xi), (3.21)

where Î represents the numerical approximation of I. Note that Î converges as follows [71]:

lim
N→+∞

1

N

N∑
i=1

g(xi) = I. (3.22)

The numerical approximation of the components of the covariance matrix for g(x) (Γ̂g)
reads [24]:

(Γ̂g)jm =
1

N

N∑
i=1

(
gj(xi)− Ij

)(
(gm(xi)− Im

)
, j = 1, 2, · · · , k, m = 1, 2, · · · , k. (3.23)

In our case, we substitute g(x) = x and π = πpost in the previous equations in order to
obtain the following relation for the mean of the posterior:

xpost =

∫
Rn

xπpost(x)dx = lim
N→+∞

1

N

N∑
i=1

xi. (3.24)

The components of the covariance matrix of the posterior (Γ̂post) are furthermore approximated
as follows:

(Γ̂post)jm =
1

N

N∑
i=1

(
(xi)j − (xpost)j

)(
(xi)m − (xpost)m

)
, j = 1, 2, · · · , k, m = 1, 2, · · · , k.

(3.25)

Assuming that the number of the drawn samples is large (i.e. N is large), the MAP point
can be approximated as follows [71]:

M̂AP = argmax
xi;i=1,...,N

π(xi). (3.26)

In next subsection the standard and adaptive Metropolis algorithms are discussed as means
to obtain appropriate samples. The adaptive Metropolis algorithm is employed in this chpater
as the sampling approach.
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3.4.2 The standard Metropolis algorithm

The Metropolis-Hastings approach is an often employed technique for sampling [71]. Its goal
is to explore the target PDF (i.e. the posterior) by making a random walk through parameter
space x. The procedure accomplishes this by basing each new sample on the previous sample.

We start by the consideration of sample xi. The posterior is evaluated for this sample (re-
sulting in πpost(xi)). Subsequently, a new sample xp is proposed using a proposal distribution
(q in Algorithm 3.1). If the value of the PDF at the proposed sample multiplied by the eval-
uation of the proposal distribution evaluated at xi, given the proposed sample (q(xi|xp)), is
larger than the PDF at the current sample (π(xi)) multiplied by the evaluation of the proposal
distribution at the proposed sample given the current sample (q(xp|xi)), the proposed sample
will be accepted as the new sample. Otherwise, the sample will be accepted or rejected, based
on the ratio r in Algorithm 3.1 and its comparison with a random number generated from a
uniform PDF. If the ratio is less than the random number drawn from the uniform distribution,
the proposed sample is rejected. If the ratio is larger, it is accepted. Algorithm 3.1 shows the
standard Metropolis-Hastings algorithm in practice.

Algorithm 3.1 The standard Metropolis-Hastings algorithm

1: select the initial sample x0 ∈ Rn
2: for i = 0, 1, 2, ..., N − 1 do
3: draw xp ∈ Rn from the proposal distribution q(xp|xi) in Eq. (3.29)

4: calculate the ratio r(xi,xp) = min
(

1,
π(xp)q(xi|xp)
π(xi)q(xp|xi)

)
. π(·) denotes the target distribution (i.e. posterior).

5: draw u ∈ [0, 1] from uniform probability density
6: if r(xi,xp) ≥ u then
7: xi+1 = xp
8: else
9: xi+1 = xi

10: end if
11: end for

For a symmetric proposal distribution (i.e. transition kernel, q in Algorithm 3.1), one can
write:

q(xi|xp) = q(xp|xi). (3.27)

Using Eq. (3.27), line 4 of the algorithm can then be rewritten as:

r(xi,xp) = min
(

1,
π(xp)

π(xi)

)
. (3.28)

The convergence and stability of the algorithm can be checked by focusing for instance on the
evolution of the mean value and the covariance matrix as a function of the number of the drawn
samples [40]. The approximated distribution converges to the posterior if the approximated
statistical quantities remain the same for an increase of the number of samples.

Factors that influence the efficiency of the algorithm are the proposal distribution (q) and
the initial sample (x0) [48]. The most common proposal distribution for the Metropolis-Hastings
algorithm (as employed in this chapter) is a normal distribution:

q(xi|xp) = q(xp|xi) ∝ exp
(
− 1

2γ2
‖xi − xp‖2

)
, (3.29)
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where γ is the standard deviation, which can be tuned to increase the efficiency. In the work of
Gelman et al. [72], γ = 2.38√

n
is given as an efficient starting value, where n is the dimension of

the posterior (i.e. the number of unknown parameters).

3.4.3 The adaptive Metropolis algorithm

The adaptive proposal (AP) is introduced by Haario et al. [73] to automatically tune γ and
by doing so, increase the efficiency of the Metropolis algorithm. AP bases its updates on the
knowledge of the posterior, gathered from previously drawn samples. The proposal distribution
in the adaptive Metropolis algorithm reads:

q(xp|xi) ∼ N(xi, γ
2Ri), (3.30)

where N(xi, γ
2Ri) denotes a normal distribution with mean xi and covariance matrix γ2Ri,

of size n × n. γ is the initially selected standard deviation and Ri is updated based on the
previous samples. Matrix Ri is established by first storing all i previous samples in matrix K
of size i× n. Ri is then computed as:

Ri =
1

i− 1
K̃
T
K̃, (3.31)

where K̃ = K−Kmean and Kmean reads:

Kmean =


kmean

kmean
...

kmean


i×n

, (3.32)

with kmean as a 1× n vector of the following form:

kmean =
1

i

[
i∑

j=1
(K)j1

i∑
j=1

(K)j2 · · ·
i∑

j=1
(K)jn

]
. (3.33)

In terms of K̃, one can rewrite the proposal distribution as follows:

N(xi, γ
2Ri) ∼ xi +

γ√
i− 1

K̃
T
N(0, Ii), (3.34)

where Ii is the identity matrix of size i × i and N(0, Ii) denotes an i-dimensional normal
distribution. In this chapter, the proposal distribution is updated once per thousand samples,
as it is inefficient to update the proposal distribution too often. Algorithm 3.2 shows the
Metropolis-Hastings algorithm with the symmetric AP proposal (Eq. (3.34)).

3.5 Least squares method and genetic minimisation

3.5.1 The least squares method

The LSM is based on measuring the squared difference between the measurement data and
the response of the model for the same experiment. Consequently, the squared difference is a
function of the parameters to be identified. In order to obtain the parameter values that give
the best model response for the measurement data, the squared difference is minimised with
respect to the parameters. Those parameter values that minimise the squared difference are
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Algorithm 3.2 The Metropolis-Hastings algorithm with symmetric AP proposal

1: select the initial sample x0 ∈ Rn and set γ = 2.38√
n

2: for i = 0, 1, 2, ..., N − 1 do
3: draw xp ∈ Rn from the proposal distribution q(xp|xi) in Eq. (3.34)

4: calculate the ratio r(xi,xp) = min
(

1,
π(xp)
π(xi)

)
. π(·) denotes the target distribution (i.e. posterior).

5: draw u ∈ [0, 1] from uniform probability density
6: if r(xi,xp) ≥ u then
7: xi+1 = xp
8: else
9: xi+1 = xi

10: end if
11: per 1000 samples
12: update matrix K̃
13: end for

the identified values. The difference that remains at the identified values (i.e. the residual) is a
measure for how well the model fits the experimental data.

The squared difference J(x|y) for the one-dimensional SLS model and relaxation experiment
in tension is:

J(x|y) =
1

2

k∑
i=1

(
yi − E0ε0 − E1ε0exp

(
− E1ti

η

))2
, (3.35)

In contrast to the Bayesian formulation, the noise distribution does not require to be known
explicitly in the standard LSM of Eq. (3.35). This saves calibration efforts. It does however
entail two assumptions about the noise: (1) it assumes an additive noise model and (2) it
assumes that the noise is symmetrically distributed.

The parameter values that give the best match between the measurement data and the
model response are denoted by xLSM. The squared difference must be minimised to obtain
them. We are thus interested in the following:

xLSM = argminx J(x|y), (3.36)

where argminx gives us the values of x that minimise J(x|y).

3.5.2 Genetic optimisation

Numerous approaches can be employed to tackle the minimisation problem of Eq. (3.36). In this
chapter, we employ genetic optimisation (GO). GO has the advantage that no initial guess is
required. Instead, it searches for the optimum in a domain. This may be considered convenient
for identification problems, because an appropriate initial guess for the parameters is not always
trivial to choose. Another advantage is that GO finds the optimum in an entire, even it contains
several local optima [91]. A particular advantage compared to the Newton-Raphson method is
that GO is entirely derivative-free. Hence, no issues with the conditioning of Hessians occur
(i.e. a squared matrix of second-order partial derivatives of a scalar valued function) [91].

The derivative-free character of GO entails some clear advantages as discussed above, but it
also makes GO substantially slower than optimisation approaches using derivatives [92]. This
can make the approach computationally prohibitive for large optimisation problems. For the
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case in this chapter however, this is not an issue, because the model is an equation (Eqs. (3.2)
and (3.36)) and only three parameters are to be identified.

The GO algorithm for the problem defined in Eq. (3.36) starts with the seeding of nu-
merous vectors in the parameter space. In fact, we start with 1000 vectors, given by E0 ∈
{0.5, 1.5556, · · · , 10}, E1 ∈ {0.5, 1, · · · , 5} and η ∈ {50, 63.3333, · · · , 170}. The squared differ-
ence (J) is computed for each of these vectors, and they are ranked based on their squared
difference. The first 100 with the smallest squared difference are subsequently used to create
new vectors, whilst the other ones are ignored. Each of the first 100 vectors will randomly
choose 10 other vectors out of these 100 vectors (which may include the same vector more than
once). With each partner vector j, vector i creates a new vector v, of which the values are
established as follows:

Ev0 = (rE0
1 Ei0 + (1− rE0

1 )Ej0)rE0
2 , (3.37)

Ev1 = (rE1
1 Ei1 + (1− rE1

1 )Ej1)rE1
2 , (3.38)

and

ηv = (rη1η
i + (1− rη1)ηj)rη2 , (3.39)

where rE0
1 , rE1

1 and rη1 are independently chosen from a uniform distribution in domain [0, 1] and
rE0
2 , rE1

2 and rη2 are independently chosen from a uniform distribution in domain [0.95, 1.05].

For the newly created vectors, the squared difference is computed and the newly created
vectors are ranked, together with the old vectors, based on their squared difference. Those 100
with the smallest squared difference (this can include old and new vectors) are then again used
to create new vectors and the process is repeated for 50 generations.

3.6 Results

This section presents the results of the Bayesian framework for the SLS model. The main points
we focus on are how the number of measurement points affects the results and the influence of
the prior, and how the three different tests influence the results. However, we start with the
calibration of the measurement noise for the relaxation experiment.

3.6.1 Noise calibration

In this subsection, we briefly discuss a procedure to identify the noise model, the noise distribu-
tion and its parameters. The noise is artificially created and hence, this subsection only aims to
outline a procedure of how to identify the noise. The noise here is generated using an additive
noise model and a normal distribution with a zero mean and Snoise = 0.5 MPa. The aim here
is thus to find this back. We only focus on the identification of the noise in the relaxation test,
because the procedure is principally the same for the other two tests (note that the output y
for the creep test is the measured strain).

We start with a test without specimens. The stress-time measurements of these tests show
that the noise in the stress behaves according to a normal distribution with a zero mean and a
standard deviation Snoise (see Fig. 3-6(a)). No noise in the time is observed.

Now we would like to know if this distribution depends on the measured stress. Therefore,
relaxation tests on a calibration specimen (of which parameters E0, E1 and η are known) are
performed. Some schematic results are shown in Fig. 3-6(b). The results show that the noise
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distribution does not evolve and only shifts with the exact response of the calibration specimen
(shown by the bold black curve in Fig. 3-6(b)).

The artificially created calibration experiments show that the additive model can be used to
describe the uncertainty and a normal distribution with a zero mean and a standard deviation
of Snoise pollutes the stress measurements.

t

y

πnoise(ω)

(a) The results of the ‘calibra-
tion tests’ without specimen

t

y

(b) The results of the ‘calibra-
tion tests’ with calibration spec-
imen, together with those with-
out specimen

Figure 3-6: Schematic of the stress-time measurements (blue circles) of the ‘calibration tests’, including the noise
distributions (red curves). The stress-time relation of the calibration specimen is presented by the bold black
curve in (b). The noise distribution shifts to the curve of the calibration sample, meaning that the additive noise
model can be used to describe the uncertainty.

3.6.2 Identification of the SLS parameters using the relaxation test and two
measurements

Bayesian inference

In this section we consider a relaxation experiment in tension on a specimen with E0 =
3.9455 MPa, E1 = 2.9636 MPa and η = 136.8035 MPa.s. The noise distribution is furthermore
identified in Subsection 3.6.1. The standard deviation of this normal distribution is identified
as Snoise = 0.5 MPa.

In the first example, we consider only two measurements: y1 = 4.1598 MPa and y2 =
1.9220 MPa, measured at t1 = 10 s and t2 = 80 s, respectively. The measurements are made
in the fast decaying part of the stress-time response (i.e. the nonasymptotic part of the curve
in Fig. 3-2). The prior is chosen to follow Eq. (3.15) with the following mean and covariance
matrix:

xprior =

 5.5
2

110 s

 MPa, Γprior =

1 0 0
0 0.4444 0
0 0 400 s2

MPa2. (3.40)

This yields a posterior in the form of Eq. (3.3.2). We run an MCMC chain of 104 samples
and we ‘burn’ the first 3000 samples (meaning that the first 3000 samples are not used to
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determine the mean, the covariance matrix and the MAP estimate). The result of this reads:

xpost =

 4.7082
2.4488

106.9068 s

 MPa, Γpost =

 0.3253 −0.0573 −1.4514 s
−0.0573 0.3487 0.3816 s
−1.4514 s 0.3816 s 373.7074 s2

 MPa2, (3.41)

and

MAP =

 4.6841
2.3969

106.6689 s

 MPa. (3.42)

Fig. 3-7 shows the samples drawn by the adaptive MCMC approach and their projections
on the planes E0−E1, E1−η and η−E0. Fig. 3-8 shows the 95% credible region (i.e. the region
that contains 95% of the posterior, approximated by an ellipsoid) and the associated stress-time
responses. The wide credible region is partially caused by the large standard deviation of the
noise distribution (Snoise = 0.5 MPa).

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 3-7: Samples drawn by the adaptive MCMC approach to approximate the posterior distribution. The
projections of the samples on three planes are also presented.
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(a) The 95% credible region (b) The measurements and the stress-time
curves

Figure 3-8: The 95% credible region of the posterior distribution (a) and the stress-time response associated with
the 95% credible region, together with the two measurements, the true response, the response associated with
the mean and the response associated with the MAP point (b). The 95% credible region (approximated by an
ellipsoid) contains 95% of the posterior. Note that the responses associated with the mean and the MAP point
are practically on top of each other.

The prior in BI may have a significant effect on the posterior for a small number of measure-
ments (as is the case here). To illustrate this influence, we now change the mean of the prior,
while keeping the covariance matrix of the prior constant. The following covariance matrix is
used for the prior:

Γprior =

1 0 0
0 0.4444 0
0 0 277.7778 s2

MPa2. (3.43)

Figs. 3-9 to 3-11 show that the mean value of a particular parameter in the posterior mostly
depends on the mean value of that same parameter in the prior (e.g. E

post
1 depends mostly on

the selected value of E
prior
1 ). For E

post
0 however, E

prior
0 and E

prior
1 both have an influence.

ηpost almost entirely depends on ηprior. This is caused by the fact that η has relatively the
smallest influence on the stress-time relation. After all, E0 is responsible for the plateau stress
and E1 (together with E0) is responsible for the initial stress at the start of the relaxation (see
Fig. 3-2). Parameters η and E1 are however together responsible for the time scale at which
the initial stress relaxes to the plateau stress (see Eq. (3.2)). Consequently, the sensitivity of
the stress-time relation is the smallest for η of the three parameters.

Fig. 3-12 shows the effect of the mean of the prior on the diagonal components of the posterior
(Γpost). The results show that the mean of the prior only affects (Γpost)33 in a systematic
manner. An increasing ηprior leads to an increase of (Γpost)33, whereas an opposite effect can

be observed for E
prior
0 and E

prior
1 .

The effect of the selected mean of the prior on the off-diagonal components of the Γpost

is shown in Fig. 3-13. The prior’s mean hardly has a systematic influence on the off-diagonal
components.
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Figure 3-9: The mean value of E0 of the posterior (E
post
0 ) as a function of the mean values of the prior (E

prior
0 ,

E
prior
1 and ηprior). E

post
0 is mostly dependent on the selected value of E

prior
0 and E

prior
1 , whereas ηprior has

substantially less influence.
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Figure 3-10: The mean value of E1 of the posterior (E
post
1 ) as a function of the mean values of the prior (E

prior
0 ,

E
prior
1 and ηprior). E

post
1 is mostly dependent on the selected value of E

prior
1 , compared to E

prior
0 and ηprior.
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Figure 3-11: The mean value of η of the posterior (ηpost) as a function of the mean values of the prior (E
prior
0 ,

E
prior
1 and ηprior). ηpost depends highly on the selected value of ηprior, compared to the values of E

prior
0 and

E
prior
1 .
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(a) Effect of xprior on (Γpost)11
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(b) Effect of xprior on (Γpost)22
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(c) Effect of xprior on (Γpost)33

Figure 3-12: The effect of the mean of the prior on the diagonal components of the posterior’s covariance matrix.
Only (Γpost)33 is systematically influenced by the mean of the prior.
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(a) Effect of xprior on (Γpost)12
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(b) Effect of xprior on (Γpost)13
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(c) Effect of xprior on (Γpost)23

Figure 3-13: The effect of the mean of the prior on the off-diagonal components of the posterior’s covariance
matrix. The prior’s mean does not seem to have a systematic influence.
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Now we will look at the effect of the prior’s covariance matrix on the posterior. We will keep
the mean of the prior constant in this exercise. To investigate the effect of the prior’s covariance
matrix, the modified normal distribution given in Eq. (3.15) is selected with following mean:

xprior =

 6
3

110 s

 MPa, (3.44)

We have chosen this prior’s mean, because it is located relatively far from xprior =
[
0 0 0

]T
so that we can investigate the influence of relative large components of the prior’s covariance
matrices.

Figs. 3-14 to 3-16 show the effect of the different diagonal components of the prior covariance
matrix ((Γprior)11, (Γprior)22 and (Γprior)33) on the mean of the posterior. The results show that

E
post
0 mostly depends on (Γprior)11 and for an increase of (Γprior)11, the influence on E

post
0

decreases. E
post
1 is hardly influenced by (Γprior)33. All components of the prior’s covariance

matrix are of influence on ηpost.

4.4

4.6

4.8
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5.4

5.6

5.8

Figure 3-14: The effect of Γprior on E
post
0 . Except for (Γprior)11, the diagonal components of the prior’s covariance

matrix hardly have an influence on E
post
0 .
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Figure 3-15: The effect of Γprior on E
post
1 . E

post
1 is influenced by (Γprior)11 and (Γprior)22, but not by (Γprior)33.
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Figure 3-16: The effect of Γprior on the estimated value for ηpost. All diagonal components of the prior’s covariance
matrix are of influence.

The effect of the prior’s covariance matrix on the components of the posterior’s covariance
matrix Γpost is shown in Figs. 3-17 and 3-18. The diagonal components of the posterior’s
covariance matrix clearly depend mostly on their equivalents in the prior’s covariance matrix.
For the off-diagonal components Fig. 3-18 shows that (Γpost)12 is mostly influenced by (Γprior)11
and (Γprior)22. (Γpost)13 depends on all diagonal components, and (Γpost)23 is influenced by
(Γprior)22 and (Γprior)33.
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(a) Effect of Γprior on (Γpost)11
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(c) Effect of Γprior on (Γpost)33

Figure 3-17: The effect of Γprior on the diagonal components of the posterior’s covariance matrix. Each diagonal
component is mostly dependent on its equivalent in the prior covariance matrix.
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(a) Effect of Γprior on (Γpost)12
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(c) Effect of Γprior on (Γpost)23

Figure 3-18: The effect of Γprior on the off-diagonal components of the posterior’s covariance matrix. (Γpost)12
is mostly influenced by (Γprior)11 and (Γprior)22. (Γpost)13 depends on all diagonal components and (Γpost)23 is
influenced by (Γprior)22 and (Γprior)33.

Least squares method

As the number of parameters to be identified is three and we only have two measurements,
the minimisation of the objective function in the LSM (J(x|y) in Eqs. (3.35) and (3.36)) is
ill-posed. This means that no unique solution to the minimisation problem of Eq. (3.32) exists.
Consequently, a wide range of parameter sets can be obtained. Fig. 3-19 shows some possi-
ble curves generated based on the results of running the GO routine described in Subsection
3.5.2 several times. Note that the various curves obtained for the LSM do not represent any
uncertainty as the curves created using the 95% credible region in the Bayesian approach. The
bounds between which any possible curve of the LSM is located are presented by the two blue
curves in Fig. 3-19.

Hence, for two measurements a large difference between the Bayesian approach and the LSM
occurs. After all, the LSM case is ill-posed, whereas the prior in BI regularises the Bayesian
framework.

3.6.3 Identification of the SLS parameters using the relaxation test and more
than two measurements

In the next example, we add another three measurements to the two measurements of the
previous subsection and investigate how this influences the results of the Bayesian framework
as well as those of the LSM. The modified normal distribution given in Eq. (3.15) with the
mean and covariance matrix given in Eq. (3.40) is selected as the prior distribution. Running
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Figure 3-19: Different curves (red) associated with the parameters identified by the LSM due to ill-posedness.
All the curves are made for the same measurements and each time that the LSM is applied as an identification
approach the identified values lead to a different curve. However, in the Bayesian approach the problem is
regularised by the prior and hence, it is not ill-posed. Note that the estimated responses by the LSM do not
represent any uncertainty.

the MCMC chain for 104 samples, whilst burning the first 3000 samples, yields:

xpost =

 4.8354
2.4069

109.7946 s

 MPa, Γpost =

 0.1453 −0.0328 −1.4935 s
−0.0328 0.3392 0.6262 s
−1.4935 s 0.6262 s 361.5418 s2

 MPa2, (3.45)

and

MAP =

 4.8463
2.4558

110.6589 s

 MPa. (3.46)

The values identified by the LSM are:

xLSM =

 4.1156
4.6433

199.5536 s

 MPa. (3.47)

Comparing Eqs. (3.45), (3.47) and the true values, one can see that the errors of ELSM
1

and ηLSM are larger than of E
post
1 and ηpost. This is thanks to the prior knowledge used in

the Bayesian framework. One should however note that if the number of measurements is
small, the selection of the prior’s mean far from the true values and small components for the
prior’s covariance matrix would lead to a larger error. After all, the Bayesian framework aims
to account for the fact that only a limited number of measurement points are available by
incorporating a prior distribution. It is therefore questionable if a direct comparison between
the LSM results and the posterior’s mean and MAP point is truly valid at all.

The stress-time curves associated with the 95% credible region are given in Fig. 3-20. In-
creasing the number of measurements clearly leads to a narrower credible region (i.e. a smaller
uncertainty, cf. Fig. 3-8(b)).

To study the effect of the prior’s mean on the posterior’s mean, we again show the posterior’s
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Figure 3-20: The stress-time curves for the relaxation test with five measurements. Increasing the number of
the measurements leads to a narrower region (cf. Fig. 3-8(b)). This means that the uncertainty decreases as the
number of measurements increases. Note that the responses associated with the mean and the MAP point are
almost on top of each other.

mean values as functions of the prior’s mean, see Fig. 3-21. Comparing Fig. 3-21 with 3-9 shows
that an increasing number of measurements results in a smaller dependency of E

post
0 on xprior.

This is also true for E
post
1 and ηpost, but this cannot well be observed by comparing Figs. 3-21

and 3-9.

In the next example the number of measurements is increased to ten. Assuming the same
prior distribution given in Eq. (3.15) with xprior and Γprior given in Eq. (3.40) the mean, covari-
ance matrix and MAP point read:

xpost =

 4.6381
2.4154

107.4595 s

 MPa, Γpost =

 0.0812 −0.0143 −1.4925 s
−0.0143 0.3043 0.8244 s
−1.4925 s 0.8244 s 359.5813 s2

 MPa2, (3.48)

and

MAP =

 4.6507
2.4299

106.5064 s

 MPa. (3.49)

The estimated values using the LSM are:

xLSM =

 4.4661
3.9303

121.0358 s

 MPa. (3.50)

Fig. 3-22 shows the associated stress-time curves. As the number of measurements is in-
creased compared to the previous examples, the responses associated with the 95% credible
region become more localised (i.e. the uncertainty decreases, cf. Figs. 3-8(b) and 3-21).
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Figure 3-21: The effect of xprior on xpost for five measurements. An increase of the number of measurements

results in a smaller dependency of E
post
0 on xprior. This is also the case for E

post
1 and ηpost, but this is more

difficult to observe by comparing this figure with Fig. 3-9.

Figure 3-22: The stress-time curves for the relaxation experiment with ten measurements. Increasing the number
of measurements leads to a narrower region (cf. Figs. 3-8(b) and 3-21). This means that the uncertainty decreases
as the number of measurements increases. Note that the responses associated with the mean and the MAP point
are practically on top of each other.

The effect of prior’s mean on xpost is shown in Fig. 3-23. Comparing Fig. 3-23 with Figs. 3-9,
3-10, 3-11 and 3-21, it is clear that the prior’s mean has again less influence on the posterior’s
mean. This is most obvious for E

post
0 .
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Figure 3-23: The effect of the prior’s mean (xprior) on E
post
0 , E

post
1 and ηpost for ten measurements. The effect

of the prior’s mean becomes less significant, especially for E
post
0 . For E

post
1 and ηpost one can observe that an

increase in the number of measurements decreases the prior’s effect.

3.6.4 Identification of the SLS parameters when the measurements are cre-
ated by the generalised Maxwell model using the relaxation test

In the final example for the relaxation test, we study the results of the Bayesian approach
and the LSM when the measurements are generated using the generalised Maxwell model with
three spring-dashpots in series (instead of only one as in the SLS model). The model is shown
schematically in Fig. 3-24. We take E0 = 4 MPa, E1 = 3 MPa, E2 = 2.5 MPa, E3 = 2 MPa,
η = 140 MPa.s, η2 = 110 MPa.s and η3 = 100 MPa.s. The same noise distribution is considered
as in the previous examples (Snoise = 0.5MPa). The modified normal distribution given in
Eq. (3.15) is selected as the prior distribution with xprior and Γprior given in Eq. (3.40). Running
the MCMC chain for 104 sample and burning the first 3000 samples yields:

E0

E1 η

E2

E3

η2

η3

Figure 3-24: Schematic representation of the generalised Maxwell model with three spring-dashpots in series.

90



xpost =

 4.5290
3.4806

122.3883 s

 MPa, Γpost =

 0.0810 −0.0175 −1.7183 s
−0.0175 0.2714 1.9272 s
−1.7183 s 1.9272 s 300.6031 s2

 MPa2, (3.51)

and

MAP =

 4.5352
3.4771

122.9158 s

 MPa. (3.52)

The identified values by the LSM are:

xLSM =

 3.3702
9.9743

306.8281 s

 MPa. (3.53)

In Fig. 3-25 all associated stress-time responses are presented. The LSM response is clearly
closer to the true response, than the responses associated with the mean and the MAP of the
Bayesian framework. The prior distribution clearly also has a substantial influence for this case.

Figure 3-25: The stress-time response for the SLS model when ten measurement points are created using the
generalised Maxwell model. The response identified by the LSM is significantly closer to the true response than
the responses associated with the mean and the MAP point of the Bayesian framework. Hence, also in this case
the prior has a significant influence in the Bayesian framework. Note that the responses associated with the mean
and the MAP point are on top of each other.

3.6.5 Comparison with the constant strain-rate test and the creep test

In this subsection we compare the results for the relaxation test to the results for the constant
strain-rate test and the creep test. To make our comparison is as ‘fair’ as possible, we try
to keep every condition as similar to the relaxation test with five measurements. This means
amongst others that we also consider five measurements in the constant strain-rate test and the
creep test and that we again try to find the same parameter values back (E0 = 3.9455 MPa,
E1 = 2.9636 MPa and η = 136.8035MPa.s). In the following two subsections we explain how
we try to keep the other conditions as similar as possible. The comparison of the results is
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presented in Subsection 3.6.5.

Set-up of the constant strain-rate test

In the constant strain-rate test, strain-rate ε̇0 is chosen such that the maximum stress that will
occur is the same as the maximum stress occurring in the relaxation test. Consequently, the
following expression to determine the applied strain-rate:

ε̇0 =
(E0 + E1)ε0

E0texp + η
(

1− exp
(
− E1texp

η

)) , (3.54)

where texp = 300 s and represents the duration of the relaxation test as well as that of the
constant strain-rate test. The strain applied in the relaxation test is represented by ε0.

Note that the reason to choose ε̇0 according to Eq. (3.54) is to have the same order of
magnitude for the stresses in both tests. In this way, the noise distribution (for which we again
use a normal distribution with zero mean and Snoise = 0.5 MPa) has approximately the same
influence in both tests. Furthermore, we assume that the noise realisation for each measurement
at time ti in the constant strain-rate test is the same as the noise realisation at the same time
in the relaxation test. In this way, the noise realisations have approximately the same influence
in both tests.

Set-up of the creep test

The noise distribution in the creep test is again chosen to be in the form of Eq. (3.13). As the
quantity measured in a creep test is the strain however, the standard deviation of the noise
distribution (i.e. Snoise in Eq. (3.13)) must be re-defined such that a ‘fair’ comparison can be
made between the results of the previous two tests and the creep test. For this reason, the
standard deviation of the noise distribution in the creep test, Screep

noise is chosen as follows:

Screep
noise =

Srelaxation
noise εcreepmax

σrelaxationmax

, (3.55)

where Srelaxation
noise is the standard deviation of the noise in the relaxation test, εcreepmax is the maxi-

mum strain occurring in the creep test and σrelaxationmax is the maximum stress that has occurred
in the relaxation test. Using Eqs. (3.2) and (3.4) εcreepmax and σrelaxationmax are calculated as follows:

εcreepmax =
σ0
E0

+ σ0

( 1

E0 + E1
− 1

E0

)
exp
(
− E0E1t

creep
exp

η(E0 + E1)

)
, (3.56)

and

σrelaxationmax = (E0 + E1)ε0, (3.57)

where tcreepexp represents the duration of the creep test.

Furthermore, a comparison between Eqs. (3.2), (3.3) and (3.4) shows that the coefficient in
the exponent of the strain-time expression for the creep test (i.e. E0E1

η(E0+E1)
) is smaller than the

one in the strain-time expressions for the other two tests (i.e. E1
η ). This entails that more time is

required in the creep test to achieve the same amount of relaxation as in the previous two tests.
Consequently, the experiment duration for the creep test is scaled as tcreepexp = (E0+E1)

E0
trelaxationexp .

trelaxationexp refers here to the duration of the relaxation test (here trelaxationexp = 300 s and tcreepexp =
525.3403 s).
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Table 3.1: The estimated values of the posterior’s mean, MAP and components of the covariance matrix for the
three experiments.

Estimated value Relaxation test Constant strain-rate test Creep test

E
post
0 (MPa) 4.8354 4.9115 3.9047

E
post
1 (MPa) 2.4069 2.0435 1.7861

ηpost (MPa.s) 109.7946 109.0151 105.7801

EMAP
0 (MPa) 4.8463 4.8448 3.8569

EMAP
1 (MPa) 2.4558 1.9383 1.7678

ηMAP (MPa.s) 110.6589 107.4682 106.1140

(Γpost)11 (MPa2) 0.1453 0.3548 0.0748
(Γpost)22 (MPa2) 0.3392 0.4562 0.4173

(Γpost)33 (MPa2.s2) 361.5418 398.6452 420.1033
(Γpost)12 (MPa2) −0.0328 −0.0302 −0.0121

(Γpost)13 (MPa2.s) −1.4935 −1.9472 −0.9538
(Γpost)23 (MPa2.s) 0.6262 0.2432 −0.8297

Because we scale the duration of the creep test, we also scale the time at which each measure-
ment is made as tcreepi = (E0+E1)

E0
trelaxationi . tcreepi refers here to the time at which measurement

i is made in the creep test and trelaxationi refers to the time at which the same measurement is
made in the relaxation test.

Using Eq. (3.55) the standard deviation of the noise distribution in the creep test is deter-
mined as Snoise = 0.0724. Note that σ0 in Eq. (3.4) is chosen such that the final strain in the
creep test is the same as the strain applied in the relaxation test (i.e. ε0 in Eq. (3.2)). Addi-
tionally, we assume that noise realisation i in the creep test (ωcreep

i ) has the same probability
to occur as noise realisation i in the relaxation test (ωrelaxation

i ). This entails that we scale each
noise realisation as follows:

ωcreep
i = ωrelaxation

i

Screep
noise

Srelaxation
noise

. (3.58)

Comparison of results

In this subsection we present the results of both the constant strain-rate test and the creep test
and compare them with each other and those of the relaxation test. The prior for the two new
tests is the same as we used for the relaxation test with five measurements (using Eq. (3.15)
with the mean and covariance matrix in Eq. (3.40)). The MCMC chain is again run for 104

sample and we have burnt the first 3000 samples. Table 3.1 shows the estimated values of each
parameter and each component of the posterior’s covariance matrix (Γpost) for the three tests.

Comparing the values given in Table 3.1 with each other and the real values (i.e. E0 =
3.9455 MPa, E1 = 2.9636 MPa and η = 136.8035 MPa.s), one can see that the identified
parameter values for the three tests are all approximately of the same accuracy. The relaxation
and constant strain-rate test overestimate the value of E0, whereas the creep test identifies this
value accurately. However, the creep test underestimates the value of E1 substantially more
than the other two tests. This is not very surprising since this results from the fact that the
stress is measured in the relaxation and constant strain-rate test and that the strain is measured
in the creep test. The posteriors’ means and MAPs for the different tests in Table 3.1 cannot
well be compared to begin with, since we only consider five measurements and one prior.

More interesting are the results for the uncertainty of E0. After all, the values of (Γpost)11
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vary with a factor of five for the three tests. The difference between the uncertainty of E0 of
the relaxation test and the constant strain-rate test can be explained based on comparing the
stress-time relations for both tests (see Eqs. (3.2) and (3.3)). If t approaches infinity in the
relaxation test (t → +∞), an horizontal asymptote occurs (σ = E0ε0) which depends only on
E0. In the constant strain-rate test however, an oblique asymptote occurs (i.e. E0ε̇0t+ηε̇0) which
depends on two parameters (E0 and η). This means if t→∞, a measurement in the relaxation
test only provides information about E0, but in the constant strain-rate test this measurement
gives information about E0 and η. Consequently, E0 is determined with more certainty in
the relaxation test than in the constant strain-rate test. Furthermore, at the beginning of the
relaxation test information is directly obtained for E0 and E1, whereas the constant strain-rate
does not provide any information at time t = 0 s. The same reasoning can be used for the
creep test as well. Unlike the stress-time relation for the relaxation test however, the one for
the creep test is a combination of homographic and exponential functions. For this reason we
obtain a different value for (Γpost)11 in the creep test.

Figs. 3-26 and 3-27 present the stress-time responses and the strain-time responses of the
constant strain-rate test and the creep test, respectively. The curves associated with 95%
credible region are generated using the points from region which contain 95% of the posterior
(approximated by an ellipsoid).

Figure 3-26: The stress-time curves for the constant strain-rate test with five measurements. The measurements
are made using the same noise distribution as in Subsection 3.6.2. Furthermore, it is assumed that the noise
realisation for each measurement at time ti in the constant strain-rate test is the same as the noise realisation
at the same time in the relaxation test. Note that the associated curves with the mean and MAP point are
practically on top of each other.

In the remainder of this subsection we investigate the effect of prior’s mean xprior on the
results. For this exercise, the prior’s covariance matrix is kept constant (i.e. the covariance
matrix given in Eq. (3.40)).

Fig. 3-28 shows the effect of xprior on E
post
0 for the relaxation, constant strain-rate and creep

test. It can be observed that E
post
0 depends least on xprior for the relaxation test. It can also be

observed that E
post
0 depends only on E

prior
0 for the creep test, whereas it depends on E

prior
0 and

E
prior
1 in the other two tests. Note that a possible reason for the different influence of the prior

in the creep test is the type of function for its stress-time relation (Eq. (3.4) is a combination
of homographic and exponential function of parameters).

Now we investigate the effect of the prior’s mean on the estimated values. The prior’s
covariance matrix is again kept constant for this. The influence of the prior’s mean on the
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Figure 3-27: The strain-time curves for the creep test with five measurements. The measurements are generated
using a normal distribution with zero mean and a standard deviation given by Eq. (3.55). To ensure that the
same amount of relaxation occurs as in the other two tests, the time at which each measurement is made is scaled
according to tcreepi = (E0+E1)

E0
trelaxationi .

estimated values is very similar to that for the relaxation test, except for (Γpost)11, (Γpost)33,
(Γpost)13 and (Γpost)23. In Fig. 3-29 the effect of xprior on (Γpost)11 is presented. Only for the
creep test an actual trend can be observed.

Fig. 3-30 indicates that the effect of xprior on the estimated value of (Γpost)33 for the relax-
ation test, whereas it is the smallest for the constant strain-rate test.

Figs. 3-31 and 3-32 show the effect of xprior on (Γpost)13 and (Γpost)23 for the three tests
employed in this chapter. The estimated value of (Γpost)13 does not depends on xprior for
the constant strain-rate test, whereas a dependency can be observed for the other two tests.
Furthermore, for (Γpost)23 we can only see a dependency for the relaxation test. The values
estimated for (Γpost)12 using the three tests are independent of the mean of the prior, although
the value change for each test.

Investigating the effect of the mean of the prior on the estimated values for the parameters
and components of the posterior’s covariance matrix shows that the constant strain-rate test
is less sensitive to the prior’s mean compared to the two other tests. This can be due to the
existence of the term ηε̇0 that does not vanish for t → ∞ (see Eq. (3.3)), whereas a constant
remains for the other two tests. The nature of the different tests therefore seems to have a
considerable influence on the results.
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Figure 3-28: The effect of xprior on E
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0 for the three tests. E
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Figure 3-29: The effect of xprior on (Γpost)11. Only for the creep test a trend can be distinguished.
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Figure 3-30: The effect of xprior on (Γpost)33. The influence for the relaxation test is most significant, whereas
almost no influence can be observed for the constant strain-rate test.
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Figure 3-31: The effect of xprior on (Γpost)13 for the three employed tests. Unlike the constant strain-rate test,
the estimated value for (Γpost)13 is function of the mean of the prior for the two other tests.
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Figure 3-32: The effect of xprior on (Γpost)23 for the three employed tests. Except for the relaxation test, the
other tests are independent of the prior’s mean.
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3.7 Conclusions

In this chapter Bayesian inference is used to identify parameters in viscoelasticity. The model
focused on was the standard linear solid model and the experiments of interest were a relax-
ation test, a constant strain-rate test and a creep test in tension. We have investigated four
issues. First, the influence of the number of measurements on the parameter values and their
uncertainty was investigated. Second, the identified parameter values were compared to those
identified by the least squares method (LSM) for the relaxation test. Thirdly, three different
types of experiments were considered in order to study how they affect the results. Finally, the
sensitivity on the prior distribution was investigated for all the aforementioned cases.

The obtained results allow us to draw four conclusions:

1. The prior has a substantially larger effect on the identified values (i.e. the mean and the
MAP) in viscoelasticity than in elastoplasticity. The influence on the damping parameter
is especially large. The reason for the prior’s substantial influence in viscoelasticity com-
pared to elastoplasticity is that no clear domains can be distinguished in viscoelasticity,
whereas two domains are present in elastoplasticity (in which an elastic and elastoplastic
domain can be distinguished).

2. An increase of the number of measurement points reduces the influence of the prior,
but the influence on the damping parameter is still substantially present. If only two
measurement points are present furthermore, the LSM has no unique solution but the
prior in the Bayesian framework regularises this case such that it becomes unique.

3. For the relaxation test with more than two measurements, the stress-time responses asso-
ciated with the LSM results are practically always closer to the true responses than the
responses associated with the mean and MAP values identified by the Bayesian frame-
work. It is however questionable if this means that the LSM is ‘better’ than the Bayesian
framework. After all, the Bayesian framework incorporates the assumption that other
measurements could have been made as well (incorporated in the prior). Furthermore,
the Bayesian framework treats the parameters as random variables and consequently, the
parameter values come with a credible region. This is not the case for the LSM. In
other words, if one desires to propagate the uncertainty of the parameters in a predictive
model, the standard LSM gives no estimate for the interval of a particular parameter. The
Bayesian framework is however able to do this, including the dependency on the other
parameters.

4. The use of BI has enabled us to distinguish that the uncertainty of the identified param-
eter values resulting from the constant strain-rate test is substantially larger than those
resulting from the relaxation test and the creep test. This can be explained by the fact
that asymptotic behaviour occurs in the relaxation and creep test, for which only one
parameter is responsible. Consequently, the uncertainty of this parameter is relatively
small and because of that, the uncertainties of the other parameters are also relatively
small compared to those resulting from the constant strain-rate experiment. The results
however show that this does not mean that the influence of the prior is larger.

The Bayesian identification approach and the LSM both have their advantages and disad-
vantages to identify material parameters. BI incorporates a regularisation that makes cases
with few measurements solvable, which cannot be solved using the standard formulation of the
LSM. An result of BI, which cannot be obtained using the standard LSM, is that the parameters
come with uncertainties. This is essential for the propagation of uncertainties in mechanical

100



predictions. On the other hand, the prior information in BI can also significantly influence the
results negatively. Probably, it will always remain a matter of taste to prefer one method above
the other. In case of a small number of measurements and obtaining an uncertainty however,
BI seems to be unavoidable.
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Chapter 4

Identifying elastoplastic parameters
with Bayes’ theorem considering
double error sources and model
uncertainty1

abstract

We discuss Bayesian inference for the identification of elastoplastic material parameters. In
addition to errors in the stress measurements, which are commonly considered, we also consider
errors in the strain measurements. Since a difference between the model and the experimental
data may still be present if the data is not contaminated by noise, we also incorporate the
possible error of the model itself. The three formulations to describe model uncertainty in this
chapter are: (1) a random variable which is taken from a normal distribution with constant
parameters, (2) a random variable which is taken from a normal distribution with an input-de-
pendent mean, and (3) a Gaussian random process with a stationary covariance function. Our
results show that incorporating model uncertainty often, but not always, improves the results.
If the error in the strain is considered as well, the results improve even more.

4.1 Introduction

A frequent approach for the identification of material parameters in solid mechanics is the least
squares method (LSM; see [8]), in which the squared difference between the experimental output
and the model response is minimised with respect to the material parameters. The result of such
an approach is a deterministic estimate of the parameter values. A true insight in the certainty
of each identified parameter value lacks however, as only a single residual forms the measure
for the quality of the ensemble of identified values. Although some advanced formulations of
LSM incorporate statistical information [79, 80], they assume that the measurement error is
symmetrically distributed. For nonlinear models furthermore, linearised approximations are
required to estimate the parameter distributions [81].

An alternative approach is the Bayesian approach which allows accounting for modelling
uncertainty and the statistical noises of the experimental devices [16]. The result of Bayesian

1Reproduced from: H. Rappel, L.A.A. Beex, L. Noels and S.P.A. Bordas, Identifying elastoplastic parameters
with Bayes theorem considering double error sources and model uncertainty, Probabilistic Engineering Mechanics
(2018). https://doi.org/10.1016/j.probengmech.2018.08.004
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inference (BI) is a probability density function (PDF) as a function of the parameters of interest.
This PDF is called the posterior distribution in Bayesian terminology. Once the posterior
distribution is obtained, statistical summaries of the posterior such as mean, the value at which
the posterior PDF is maximal (i.e. the ‘maximum-a-posteriori-probability’ or ‘MAP’ point) and
the covariance matrix need to be evaluated. With the exception of a few cases, numerical
frameworks need to be employed for this. Markov chain Monte Carlo (MCMC) techniques
[25, 26, 28, 29] are probably the most frequently employed approaches for sampling PDFs.

Bayesian inference (BI) was used in various previous studies to identify material parameters.
The earliest work known to the authors is that of Isenberg [41], in which it was used to identify
elastic parameters in 1979. In other works, this framework was employed to identify elastic
material parameters based on dynamic responses [42–44]. BI was also used to identify the
elastic constants of composite laminates in [49, 50, 52, 59]. Spatially varying elastic parameters
were furthermore identified using BI by Koutsourelakis [51]. An introduction to identify Young’s
moduli employing Bayesian inference can be found in [45].

Elastoplastic parameters were also identified using BI. Parameters in linear elasticity-perfect
plasticity were identified by Most [56], while Bayesian updating via a polynomial chaos expan-
sion for an elastoplastic system was considered by Rosić et al. [57]. In addition to elastoplastic
material models, Bayesian updating procedures were employed to identify material parameters
of hysteretic models [53, 54] and other nonlinear material models such as viscoelasticity and
creep [30, 55, 58].

In none of the aforementioned studies, the fact that the model itself may not be perfectly
equipped to capture the experimental measurements was considered. A framework that can
deal with this was nevertheless introduced by Kennedy and O’Hagan [47] in 2001, which is
currently known as the ‘KOH’ framework and was employed in [51, 76, 77, 93–95]. Another
issue that has received little attention in previous studies is that not only the output (e.g. the
stress measurements) can be polluted by statistical noise, but the input as well (e.g. the strain
measurements).

The aim of this chapter is to present a Bayesian identification framework for elastoplasticity
that can treat uncertainties in both the output and the input, whilst also accounting for model
uncertainty. The framework is constructed to deal with experimental data coming from mono-
tonically increasing, uniaxial tensile tests. Output errors (the noise in the stress measurements)
are commonly considered in identification approaches using BI, but input errors (i.e. the errors
in the strains) seem to remain untreated in Bayesian identification approaches. They may be
worthwhile to include, because of the use of clamp displacement as a measure to derive strains
often overestimates the measured strains due to slip in the clamps. Even if digital image corre-
lation (DIC) is employed to determine strains, errors may be included due to the finite accuracy
of (1) the applied pixel patterns, (2) the finite resolution of the images, and (3) the algorithms
of the DIC software, which come with different user-selected parameters (such as the size of
facets) and finite minimisation residuals.

Bayesian updating including uncertainties in both output and input was yet employed in
[96] for linear dynamic systems and was aimed at identifying modal parameters. The framework
uses the assumption that the posterior can be approximated as a Gaussian distribution at the
MAP point, which may be considered as a limitation. Studies in other fields can also be found
that treat two error sources [97–102], but those studies effectively employ linear regression.

The KOH framework to address model uncertainty was furthermore not employed in any of
the aforementioned studies. Model uncertainty can be incorporated in several ways in the KOH
framework. The simplest way is to describe it with a constant variable, which is to be identified
[76]. One can also use a random variable and treat the parameters of the random variable’s
distribution as unknown parameters that need to be identified as well (and hence, they appear
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in the posterior) [75, 76]. Instead of incorporating a deterministic variable, one can include a
function of which the parameters are deterministic [15]. One can also include a random variable
and assume its distribution’s parameters to be dependent on the input [75]. Model uncertainty
can also be represented by a Gaussian process [47, 77, 78]. More information on different ways
to incorporate model uncertainty can be found in [75].

In this chapter, we investigate the effect of three model uncertainty formulations (i.e. a
correction of the uniaxial material response in terms of the strain from ideal elasticity or elasto-
plasticity equations) on the parameter identification in elasticity and elastoplasticity: (1) a
random variable which is assumed to come from a normal distribution with constant parame-
ters, (2) a random variable which is assumed to come from a normal distribution with a mean
that depends on the input (i.e. the strain) and (3) a Gaussian process with a zero mean and
a stationary covariance function. On top of that, we also investigate how the incorporation of
the input error influences the results.

The structure of the chapter is as follows. Section 4.2 briefly discusses the expressions of the
considered material models for uniaxial, monotonic tension. In Section 4.3, the main concepts
of Bayesian frameworks for parameter identification are presented. In Section 4.4, the employed
model uncertainty functions are elaborated, including the corresponding likelihood functions.
Section 4.5 presents the Bayesian approaches that incorporate both the measurements errors
in the stresses and in the strains, as well as the model uncertainty. Examples are presented
in Section 4.6. The measurement data in this section are artificially generated, so that we can
compare the parameter distributions with the true values. Finally, this chapter is closed with
conclusions (Section 4.7).

Remark 5. Throughout this chapter bold capital letters and symbols denote matrices and bold
normal letters and symbols are vectors or columns.

4.2 Material model

In this section we present the stress-strain relations of the considered material models for mono-
tonic uniaxial tensile tests. The material models presented in this section are: linear elasticity,
linear elasticity with perfect plasticity and linear elasticity with linear hardening.

4.2.1 Linear elasticity

In linear elasticity, the stress-strain relation is described fully linearly. This relation can be
written as follows for uniaxial tension:

σ(ε,x) = Eε, (4.1)

where σ is the stress, ε is the strain and x is the vector containing the material parameters,
which here only consists of Young’s modulus E.

4.2.2 Linear elasticity-perfect plasticity

In a linear elastic-perfectly plastic material model, the elastic response is again described linearly
in terms of the elastic strain. Plastic deformation occurs without hardening when the stress
reaches yield stress σy0. The stress-strain relationship for monotonic, uniaxial tension can be
written as follows:

σ(ε,x) =

{
Eε if ε ≤ σy0

E

σy0 if ε >
σy0
E

, (4.2)
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where x =
[
E σy0

]T
.

4.2.3 Linear elasticity-linear hardening

Unlike the linear elastic-perfectly plastic model, work hardening is included in the linear elastic-
linear hardening model. In other words, the stress continues to increase (linearly) when plastic
deformation takes place. The stress-strain relation for this model during monotonic, uniaxial
tensions reads as:

σ(ε,x) =

{
Eε if ε ≤ σy0

E

σy0 + HE
H+E

(
ε− σy0

E

)
if ε >

σy0
E

, (4.3)

where H is the hardening modulus and hence, x =
[
E σy0 H

]T
.

4.3 Bayesian parameter identification

In this section some concepts of Bayesian inference are explained. First, a rather standard
Bayesian framework for parameter identification is presented. Subsequently, we present a
Bayesian approach that incorporates a generalised model error term in the KOH framework.
The parametrised formulations for the employed model errors and their corresponding likelihood
functions are presented in Section 4.4 in more detail.

4.3.1 Bayesian inference fundamentals

Let y =
[
y1 · · · ynm

]T
be a vector of nm measurements and let x be a vector of np parameters

which are to be identified. Using the Bayes’ theorem, one can write:

π(x|y) =
π(x)π(y|x)

π(y)
, (4.4)

where π(x) is the prior distribution (i.e. the PDF that represents one’s assumed prior knowledge
about the parameters, e.g. the fact that the Young’s modulus cannot be smaller than zero),
π(y|x) is the likelihood function (i.e. the PDF that measures the likelihood that measurements
y are observed, given a set of parameter values x), π(x|y) is the posterior distribution (i.e. the
PDF that describes the chance to obtain parameters x, given the measurements y) and π(y)
is called evidence. As the measured data (y) are already known and hence, y are not variables
in the posterior (π(x|y)), the evidence is a constant number (π(y) = C ∈ R+) that does not
depend on the parameters. Consequently, Eq. (4.4) behaves as follows:

π(x|y) ∝ π(x)π(y|x). (4.5)

Since the statistical quantities of interest, such as the mean, covariance and MAP point,
are the same for Eq. (4.4) as for Eq. (4.5), it is sufficient to deal with Eq. (4.5). Next, we will
discuss likelihood function π(y|x) in the presence of a general model error term.

4.3.2 Likelihood function

We denote the stress-strain response to be modelled by σ(ε,x). In the KOH framework, the
relation between a stress measurement and the model response is written as [75]:

y = σtrue + ωy, (4.6)
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with

σtrue = σ(ε,x) + d(ε), (4.7)

where ωy denotes the error in the stress measurement (output error), which is considered to
be a realisation from the PDF that we call here the stress noise distribution. Furthermore, d
represents the model uncertainty which can be assumed to be dependent on the input (i.e. strain
ε here). Assuming that we know the form of the noise distribution, the likelihood function for
a deterministic model uncertainty reads:

π(y|x,xd,xωy) = πωy(y − σ(ε,x)− d(ε)), (4.8)

where xd is the parameter vector of the model uncertainty and xωy is the vector of parameters
of the stress noise distribution. Often, the stress noise distribution is assumed to be a Gaussian
distribution with s2ωy variance and zero mean. Frequently, the parameters for both the model
uncertainty (d) and the stress noise distribution (i.e. sωy for the Gaussian distribution with
zero mean) are unknown and consequently, they must also be identified, i.e. they appear as
variables in the posterior. As uniaxial tensile tests are generally performed in well-controlled
tensile testers of which the noise of the load cell can be rather straightforwardly calibrated,
we assume that the stress noise distribution and its parameters can be defined through a noise
calibration process.

Using Eqs. (4.5) and (4.8), the posterior distribution for a single measurement can be written
as:

π(x,xd|y) ∝ π(x)π(xd)πωy(y − σ(ε,x)− d(ε)), (4.9)

where π(x) and π(xd) are the prior PDFs for the model parameters and the model uncertainty
parameters, respectively. Clearly, we have assumed here that the probabilities of the model
parameters and of the model uncertainty are independent (π(x,xd) = π(x)π(xd)). Furthermore,
π(x,xd|y) is the joint PDF for x and xd. For the case of nm independent measurements, the
final likelihood function is a product of the likelihood functions for each output yi (coming with
input εi):

π(y|x,xd) =

nm∏
i=1

πωy(yi − σ(εi,x)− d(εi)). (4.10)

Once the posterior is established, one can employ numerical sampling techniques to approx-
imate the posterior’s statistical summaries (e.g. mean value, MAP point or covariance matrix).
In this chapter the adaptive Metropolis algorithm [73] is employed to sample the posterior.

4.4 Model uncertainty

In Section 4.3, Bayesian inference for a general model uncertainty was discussed. In this section,
we present the likelihood functions for the three formulations of model uncertainty (d(ε)), see
Eq. (4.7). As mentioned before, these three formulations are: (1) a random variable coming
from a normal distribution with a constant mean and variance, (2) a random variable which
comes from a normal distribution with a constant variance and a mean which is a polynomial
function in terms of the input (the strain), and (3) a Gaussian random process with a stationary
covariance function.

Important to realise again is that the stress noise distribution is described by a normal
distribution with zero mean and s2ωy variance, i.e. ωy ∼ N(0, s2ωy). As mentioned before, we

107



assume that sωy is known (see Subsection 4.6.1).

4.4.1 Random variable coming from a normal distribution with constant
parameters

In the first case, we describe the difference between the material model and the true response as
realisations from a normal distribution with mean d and variance s2d, i.e. N(d, s2d). d and s2d are
unknown and must be identified by the Bayesian updating process. Prior knowledge about them
can be incorporated in the prior distribution. The likelihood function for nm measurements,
previously expressed in Eq. (4.10), can now be written as:

π(y|x,xd) = N(σ(ε,x) + d1nm , (s
2
ωy + s2d)Inm), (4.11)

where σ(ε,x) is the vector of model responses for each input
[
σ(ε1,x) · · · σ(εnm ,x)

]T
, 1nm is

the unit vector of size nm×1, Inm is the identity matrix of size nm×nm and xd is the parameter

vector for the model uncertainty i.e. xd =
[
d sd

]T
. Eq. (4.11) clearly shows that this model

uncertainty adds a correction to the mean and increases the likelihood’s variance by s2d.

4.4.2 Random variable coming from a normal distribution with an input
dependent mean

In the second case, we describe the difference between the model response and the true re-
sponse as a random variable, that originates from a normal distribution of which the mean
is a function of the input. We use polynomial functions to describe the relation between
the mean and the input, d(ε) =

∑L
l=0 alε

l, resulting in L + 2 model uncertainty parameters:

xd =
[
a0 a1 · · · aL sd

]T
. Consequently, the likelihood function reads as:

π(y|x,xd) = N(σ(ε,x) + d(ε), (s2ωy + s2d)Inm), (4.12)

where d(ε) =
[
d(ε1) · · · d(εnm)

]T
. Note that increasing the polynomial order can lead to

model nonidentifiability [75].

4.4.3 Gaussian process with a stationary covariance function

In the work by Kennedy and O’Hagan [47], model uncertainty was described by a Gaussian
process [103], entailing that the error between the model and the true response is nonlocal in
terms of the strain (i.e. the input). Following [47] and [78] describing a Gaussian process (GP)
with a zero mean, we write:

d ∼ GP(0, λ2c(·, ·|ψ)), (4.13)

where c is the squared exponential correlation function:

c(εi, εj |ψ) = exp
(
− (εi − εj)2

2ψ2

)
, (4.14)

where λ2 denotes the variance and ψ the length scale, yielding xd =
[
λ ψ

]T
. εi and εj are

furthermore two input values which may be the same (i, j ∈ {1, · · · , nm}). Note that the zero
mean in the Gaussian process implies that no bias is included that increases the chance for d(ε)
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to be positive or negative. The likelihood function now reads:

π(y|x,xd) = N(σ(ε,x),ΓGP + s2ωyInm), (4.15)

where

ΓGP =

 λ2c(ε1, ε1|ψ) · · · λ2c(ε1, εnm |ψ)
...

. . .
...

λ2c(εnm , ε1|ψ) · · · λ2c(εnm , εnm |ψ)

 . (4.16)

Eq. (4.16) clearly shows that the errors in the stress measurements are correlated in a
GP. This implies that the updating procedure is not done by a multiplication operator as in
Eq. (4.10). Instead, we consider y to be a realisation from a multivariant Gaussian distribution
with non-zero off-diagonal components (unlike the cases in Subsections 4.4.1 and 4.4.2, in which
the covariance matrix of the likelihood function only has non-zero components on its diagonal).

4.5 Model uncertainty and noise in the strain

In the previous sections, we have assumed that the strain measurements are perfect (i.e. they are
not polluted by noise). In this section, we reformulate the framework such that it can also treat
errors in the strain. The errors in the stress and in the strain are assumed to be independent
of each other, as the devices to measure the forces and strains or clamp displacements are
independent of each other (e.g. if a load cell and digital image correlation are used). We first
give the general likelihood function in case model uncertainty and the noise in the strain is
incorporated. Then, we specify the likelihood functions for the three material descriptions
for monotonically increasing uniaxial tension, if only the error in the noise is incorporated.
Subsequently, we include model uncertainty for the three material descriptions.

4.5.1 General likelihood function

In this subsection, a general likelihood function is presented that incorporates model uncertainty
as well as the input error (and the output error obviously). As mentioned in Subsection 4.3.2,
the experimental output in the KOH framework [47] can be written as follows:

y = σ(ε,x) + d(ε) + ωy. (4.17)

We now assume that each strain measurement, ε∗, is also polluted by some statistical error, ωε∗ ,
in an additive manner:

ε∗ = ε+ ωε∗ , (4.18)

where ε is the true strain. Similar to the error in the stress measurements, we assume that the
strain errors are realisations from a Gaussian distribution with a zero mean and variance s2ωε∗ .
Using Bayes’ theorem, we can now write:

π(x,xd, ε|y, ε∗) =
π(y|x,xd, ε)π(ε|ε∗)π(x)π(xd)π(ε∗)

π(y|ε∗)π(ε∗)
, (4.19)

or

π(x,xd, ε|y, ε∗) ∝ π(y|x,xd, ε)π(ε|ε∗)π(x)π(xd). (4.20)
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The joint distribution of the material parameter vector x and model uncertainty parameter
vector xd reads:

π(x,xd|y, ε∗) ∝
∫ b

0
π(y|x,xd, ε)π(ε|ε∗)dε π(x)π(xd), (4.21)

where b denotes the physical upper bound of the tensile tester (i.e. the ratio of the original length
of the specimen and the maximum distance that the clamps can displace). Assuming again that
the noise distributions for both the stress and strain measurements are known Eq. (4.21) for a
deterministic model uncertainty reads:

π(x,xd|y, ε∗) ∝
∫ b

0
πωy(y − σ(ε,x)− d(ε))πωε∗ (ε∗ − ε)dε π(x)π(xd), (4.22)

where πωy denotes the noise distribution for a stress measurement and πωε∗ denotes the noise
distribution for a strain measurement. Note again that one may assume a form for both noise
distributions and then treat the parameters of both distributions as unknowns, which are to
be identified together with the material parameters and the model uncertainty parameters in
the Bayesian updating procedure. However, we assume that these parameters can be identified
using a calibration procedure (see Subsection 4.6.1).

For nm measurements, the posterior reads:

π(x,xd|y, ε∗) ∝
∫ b

0
· · ·
∫ b

0︸ ︷︷ ︸
nm

π(y|x,xd, ε)π(ε|ε∗)dεπ(x)π(xd), (4.23)

where y =
[
y1 · · · ynm

]T
, ε∗ =

[
ε∗1 · · · ε∗nm

]T
. We furthermore use now π(ε|ε∗) = N(0, s2ωε∗ Inm).

Inm is the identity matrix of size nm × nm. In case of nm independent measurements, the pos-
terior reads:

π(x,xd|y, ε∗) ∝
nm∏
i=1

∫ b

0
πωy(yi − σ(ε,x)− d(ε))πωε∗ (ε∗i − ε)dε π(x)π(xd). (4.24)

The integrals in Eqs. (4.21)-(4.24) are either numerically approximated (e.g. using Monte Carlo
integration [23]) or analytically determined (see next subsection).

4.5.2 The likelihood function considering input error

Linear elasticity

In case of linear elasticity during monotonically increasing, uniaxial tension, Eq. (4.1) provides
the model response, whilst the model uncertainty in Eq. (4.22) is ignored for now. Considering
that ωy ∼ N(0, s2ωy) and ωε∗ ∼ N(0, s2ωy), the likelihood function for a single measurement
reads:

π(y|x, ε∗) =
1

2πsωysωε∗

∫ b

0
exp

(
−
[(y − Eε)2

2s2ωy
+

(ε∗ − ε)2

2s2ωε∗

])
dε. (4.25)

By computing the integral in Eq. (4.25) analytically, it can be rewritten as follows:

π(y|x, ε∗) =

√
p3

2
√

2πsωysωε∗
exp
(
− p2 − p21

2p3

)[
erf
(b− p1√

2p3

)
− erf

( −p1√
2p3

)]
, (4.26)
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where erf(·) is the error function [104] and p1, p2 and p3 are formulated as follows:

p1 =
E ys2ωε∗ + s2ωyε

∗

E2s2ωε∗ + s2ωy
, p2 =

s2ωy(ε
∗)2 + s2ωε∗y

2

E2 s2ωε∗ + s2ωy
, p3 =

(sωysωε∗ )2

E2 s2ωε∗ + s2ωy
. (4.27)

In case of nm measurements, π(y|x, ε∗) is obtained using the product in Eq. (4.24).

Linear elasticity-perfect plasticity

The only change for linear elasticity-perfect plasticity compared to linear elasticity is the ma-
terial model. Substituting Eq. (4.2) in Eq. (4.22) yields:

π(y|x, ε∗) =
1

2
√

2πsωysωε∗

(
√
p3 exp

(
− p2 − p21

2p3

)[
erf
( σy0

E − p1√
2p3

)
− erf

( −p1√
2p3

)]
+

sωε∗ exp
(
− (y − σy0)2

2s2ωy

)[
erf
(ε∗ − σy0

E√
2sωε∗

)
− erf

( ε∗ − b√
2sωy

)]
, (4.28)

where p1, p2 and p3 are again given by Eq. (4.27).

Linear elasticity-linear hardening

For linear elasticity-linear hardening, the unknown parameters are x =
[
E σy0 H

]T
. Again

substituting Eq. (4.3) in Eq. (4.22) results in the following likelihood function for a single
measurement:

π(y|x, ε∗) =
1

2
√

2πsωysωε∗

(
√
p3 exp

(
− p2 − p21

2p3

)[
erf
( σy0

E − p1√
2p3

)
− erf

( −p1√
2p3

)]
+

1√
p∗1

exp
(
− p∗1p

∗
3 − p∗22
2p∗1

)[
erf
(√p∗1a− p∗2√

p∗1√
2

)
− erf

( σy0√p∗1E − p∗2√
p∗1√

2

)]
, (4.29)

where p1, p2 and p3 are again given by Eq. (4.27) and p∗1, p
∗
2 and p∗3 are expressed as follows:

p∗1 =

(
HE
H+E

)2
s2ωy

+
1

s2ωε∗
, p∗2 =

(y − σy0) HE
H+E +

(
HE
H+E

)2 σy0
E

s2σ
+

ε∗

s2ωε∗
,

p∗3 =
(y − σy0)2 + 2(y − σy0) HE

H+E
σy0
E +

(
HE
H+E

)2(σy0
E

)2
s2ωy

+
(ε∗)2

s2ωε∗
.

(4.30)

In the following subsection we present the formulations of the likelihood functions if model
uncertainty is incorporated as well.

4.5.3 The likelihood function considering input error and model uncertainty

Adding input-dependent model uncertainty renders even the likelihood function of the linear
elastic material model impossible to analyse analytically. Consequently, we employ Monte
Carlo integration to numerically approximate the integral of Eq. (4.21). π(y|x,xd, ε) for all
formulations of model uncertainty are given in Eqs. (4.11), (4.12) and (4.15).
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Note that in the case of the GP, the components of the measurement vector y are corre-
lated. This means that updating, according to the multiplication operation in Eq. (4.24), is not
possible. Instead, we consider that measurement vector y is a realisation from a multivariant
Gaussian distribution with non-zero off-diagonal components. In this case, Eq. (4.23) is used
to construct the posterior.

4.6 Examples

This section presents some examples of the Bayesian framework for the elastic and elastoplastic
material models and uniaxial tensile data. The main points we aim to investigate are: (1) the
influence of incorporating the input error, (2) the influence of incorporating the three types
of model uncertainty and (3) the influence of incorporating both the input error and model
uncertainty.

For this purpose the measurements are generated numerically using responses which deviate
from the constitutive responses. Next, Bayesian inference is used to identify the parameters of
the material models given in Section 4.2. To investigate the effect of incorporating the input
error and model uncertainty on the identification results, posteriors and posterior predictions
are furthermore presented for various cases and compared with the true parameter values and
measurements. However, we first start with the calibration of the two measurement noises for
uniaxial tensile tests. Note that all results are obtained using the adaptive Metropolis method
for 5× 104 samples, whilst burning the first 1.5× 104 samples.

4.6.1 Noise calibration

We start the noise calibration procedure by acquiring measurement data without the use of
actual specimens. Stress-strain measurements as schematically presented in Fig. 4-1 are typical
results. They show that both noises can be represented as individual normal distributions with
zero means and their own variance. In this chapter we have assumed sωy = 0.01 GPa and
sωε∗ = 5× 10−5.

ε

σ

πnoise(ω)

Figure 4-1: Schematic of the stress-strain measurements (red circles) of the ‘noise calibration experiments’,
including an isoline if both noise distributions would be represented by a bivariate normal distribution (dashed).
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4.6.2 Linear elasticity

Input error

In the first example, the added value of including the strain error is investigated for linear
elasticity. The measurement data are originating from the following non-linear expression:

σ(ε, a, E) =
Eε

1 + ε
a

, (4.31)

where E = 210 GPa and a = 0.015. 20 measurements are generated using the same noise
distributions as identified in the previous subsection. Parameter a in Eq. (4.31) is chosen such
that the difference between the non-linear expression used to generate the measurements and
its linear approximation in the neighbourhood of ε = 0 (i.e. σ = 210ε) is not too large (see
Fig. 4-2(a)). We consider the following prior for the Young’s modulus:

π(E) ∝

exp
(
− (E−Eprior)

2

2s2
Eprior

)
if E ≥ 0

0 otherwise
, (4.32)

with Eprior = 150 GPa and sEprior
= 50 GPa.

Fig. 4-2(b) presents the marginal posterior PDF of the Young’s modulus for the case in
which the output error alone is included (red curve) and for the case in which both the output
and input errors are included (blue curve). Incorporating both error sources clearly results in
a wider posterior. However, none of the resulting posteriors contains true value E = 210 GPa.
The posterior mean and variance are given in Table 4.1.

(a) (b)

Figure 4-2: Linear elasticity: (a) The experimental data generated for the first example, including the curve from
which the data points are generated and its approximation in the neighbourhood of ε = 0. One can see that
parameter a is chosen such that the difference between line 210ε and the true model is not large for small strains.
(b) The marginal posterior PDF of the Young’s modulus if the stress error alone is incorporated (red curve) and if
the stress and strain errors are incorporated (blue curve). Considering both errors results in a wider distribution
of the Young’s modulus, but none of the distributions contain the true value.

The posterior predictions are shown in Fig. 4-3. One can observe that incorporating both
error sources results in a wider envelope. This wider envelope includes more measurements,
meaning that incorporating both error sources results in a more likely result.
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(a) Error in the stress measurements only (b) Error in both the stress and strain measure-
ments

Figure 4-3: Linear elasticity: The measurements, the posterior mean response and the posterior predictions. One
can observe that the incorporation of both error sources results in a wider envelope, thereby including more
measurements.

Input error and model uncertainty

The effect of model uncertainty on the resulting posterior is studied now. First, we only include
the case with output error but without input error. The prior used for the Young’s modulus
is the same mentioned previously. For the case in which model uncertainty is considered as
a random variable coming from a Gaussian distribution with an input-dependent mean, we
consider the following expression for its mean:

d(ε) = a0 + a1ε+ a2ε
2. (4.33)

In case model uncertainty is modelled as a random variable, either coming from a Gaus-
sian distribution with constant parameters or coming from a Gaussian distribution with an
input-dependent mean, infinitely wide uniform distributions are used as prior distributions for
the model uncertainty parameters (xd). However, for the case in which model uncertainty is
described as a Gaussian process with a stationary covariance function, we have considered the

following prior distributions for the model uncertainty parameters (xd =
[
λ ψ

]T
):

π(λ) ∝

exp
(
− (λ−λprior)2

2s2
λprior

)
if λ ≥ 0

0 otherwise
, (4.34)

and,

π(ψ) ∝

exp
(
− (ψ−ψprior)

2

2s2
ψprior

)
if ψ ≥ 1.578× 10−5

0 otherwise
, (4.35)

where λprior = 0.025 GPa, sλprior = 0.0083 GPa, ψprior = 0.0006 and sψprior
= 0.0003.

It must be noted that if infinitely wide uniform distributions are used for the model un-
certainty parameters of the Gaussian process, the MCMC algorithm fails to converge. Using
the fact that the model uncertainty function (d(ε)) is a smooth function, we have chosen the
mean of the prior for the length scale parameter (ψprior) to be half of the maximum occurring
strain. The standard deviation is chosen to be relatively large. To prevent negative length
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scale parameters and length scale parameters smaller than the minimum distance between two
consecutive strains to be realised from the prior distribution, we have set a lower bound on
the prior distribution. We have chosen the value of the mean of the variance of the GP (λprior
in Eq. (4.34)) as 10% of the maximum occurring stress and the standard deviation such that
99.7% of the realisations coming from the prior distribution remain below 20% of the maximum
occurring stress. A lower bound is also included (Eq. (4.34)).

(a) (b)

Figure 4-4: Linear elasticity: Marginal posteriors for the Young’s modulus for different types of model uncertainty.
(a) The mean for model uncertainty as a random variable coming from a Gaussian distribution with input-
dependent mean, is given by Eq. (4.33). One can observe that incorporating any of the model uncertainties
results in wider posterior distributions. Although the MAP point moves further away from the true value for all
model uncertainty cases, all their posteriors include the true value, whereas the posterior for the case without
model uncertainty does not include the true value. It must furthermore be noted that the posterior for the
case in which model uncertainty is treated as a random variable coming from a Gaussian distribution with an
input-dependent mean, is practically the same as the prior of the Young’s modulus. (b) The same marginal
posteriors as in (a), except that the case in which model uncertainty is modelled as a random variable coming
from a normal distribution with an input-dependent mean, Eq. (4.36) is used for the mean instead of Eq. (4.33).
One can see that the MAP point has moved considerably closer to the true value. This can be caused by the
fact that the true stress-strain behaviour given in Eq. (4.31) is not highly nonlinear and the difference between
σ(ε, a, E) in Eq. (4.31) and linear elasticity (Eε) can rather accurately be represented by the remaining terms of
a Taylor expansion for σ(ε, a, E).

Fig. 4-4(a) shows that the incorporation of model uncertainty increases the widths of the
posteriors, such that the true value is possible to be generated from it. On the other hand, the
MAP point (point estimator) when model uncertainty is not incorporated is closer to the true
value than all the other posteriors’ MAP points.

An important point to mention here is that in case model uncertainty is incorporated as a
random variable coming from a normal distribution with an input-dependent mean, the marginal
posterior PDF is approximately the same as the prior of the Young’s. The reason for this is
the linear term that is present in the input-dependent mean (a1ε in Eq. (4.33)), which is also
present in the model (Eε). If we ignore the linear term and instead use the following expression
for the input-dependent mean:

d(ε) = a0 + a2ε
2, (4.36)

we obtain the PDF presented in Fig. 4-4(b). The figure shows that the marginal posterior
includes the true value of the Young’s modulus. The MAP point has furthermore moved sub-
stantially closer to the true value. This can be caused by the fact that the true response
(Eq. (4.31)) is not highly nonlinear and hence, its difference with the linear approximation
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(here Eε) can be rather accurately described by a remaining terms of the Taylor expansion of
the true model.

The posterior predictions for the three kinds of model uncertainty are presented in Figs. 4-
5(a), 4-5(c) and 4-5(e). The diagrams show that if model uncertainty is considered as a ran-
dom variable coming from a normal distribution, either with constant parameters or an input-
dependent mean, more measurements are included in the envelope than if model uncertainty is
represented by a Gaussian process. By comparing Figs. 4-3 and 4-5(e) furthermore, it becomes
clear that more measurement data is present in the posterior prediction’s envelope if both errors
in the stress and strain are considered than if model uncertainty is considered as a Gaussian
process without input error. This can be caused by the fact that, although the posterior is wider,
the mean and MAP point are further from the true value if model uncertainty is described by
a Gaussian process (see Fig. 4-4(a) and Table 4.1).

The effect of treating the input error as well as incorporating model uncertainty is presented
in Fig. 4-6 for the marginal posteriors. Note that we have used the same priors as before.
One can see that the posteriors become wider if the input error is incorporated, except for the
Gaussian process. That posterior has however changed such that the true value is less in its
tail, than if the input error is not incorporated.

The posterior predictions for all three model uncertainties if the input error is also considered
are shown in Figs. 4-5(b), 4-5(d) and 4-5(f). One can see that for both cases in which model
uncertainty is a random variable, the posterior mean responses move closer to the measurement
data. In case model uncertainty is considered as a Gaussian process, including the input error
results in a wider envelope that includes more data (cf. Figs. 4-5(e) and 4-5(f)). Also the
only data point not present in the envelope is still closer to the envelope if the input error is
considered. The numerical values for the marginal posteriors mean, MAP point and standard
deviation are given in Table 4.1.

4.6.3 Linear elasticity-perfect plasticity

For linear elasticity, we have shown that considering the error in the strain and model uncertainty
leads to wider marginal posteriors of the Young’s modulus (except if model uncertainty is treated
as a Gaussian process). This can generally be considered as an improvement, because either
the true value was present inside the wider distributions or the MAP point has moved towards
the true value. In this subsection, we will consider linear elasticity-perfect plasticity.

In the next example, we generate the measurements using the following expression:

σ(ε,xtrue) =


Eε
1+ ε

a
if ε ≤ 0.0012

σy0 +H
(
ε− σ(ε,x)

E

)m
if ε > 0.0012

, (4.37)

where xtrue =
[
E a σy0 H m

]T
. Thirty measurements are generating with E = 210 GPa,

a = 0.015, σy0 = 0.2333 GPa, H = 2 GPa, m = 0.57, sωy = 0.01 GPa and sωε∗ = 5×10−5, which
are shown in Fig. 4-8. The parameters to be identified in linear elasticity-perfect plasticity are
obviously Young’s modulus E and yield stress σy0. The same prior as in Eq. (4.32) is used for
Young’s modulus and the yield stress’s prior reads similarly:

π(σy0) ∝

exp
(
− (σy0−σy0prior)

2

2s2σy0prior

)
if σy0 ≥ 0

0 otherwise
, (4.38)

where σy0prior = 0.25 GPa and sσy0prior = 0.025 GPa.
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(a) (b)
Normal distribution with constant parameters

(c) (d)
Normal distribution with an input-dependent mean

(e) (f)
Gaussian process

Figure 4-5: Linear elasticity: The measurements, the posterior mean responses and the posterior predictions.
Left: without input error and right: including input error. One can see that if model uncertainty is described
by a random variable coming from a normal distribution either with constant parameters or an input-dependent
mean, more measurements are present inside the posterior’s predictions interval than if a Gaussian process is
considered. In case model uncertainty is a Gaussian process furthermore, one can see that including the input
error results in more measurements to be present inside the posterior prediction bounds (cf. Figs. 4-5(e) and
4-5(f)).
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(a) Normal distribution with constant parame-
ters

(b) Normal distribution with an input-
dependent mean

(c) Gaussian process

Figure 4-6: Linear elasticity: Marginal posteriors of the Young’s modulus for three kinds of model uncertainty
including input error. One can see that if model uncertainty is described by a random variable coming from
a normal distribution (either with constant parameters or an input-dependent mean) the marginal posterior
becomes wider if the input error is incorporated. In case model uncertainty is represented by a Gaussian process,
the marginal posterior gets slightly narrower.
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Table 4.1: Linear elasticity: The numerical values of the mean, the MAP point and the standard deviation of the
marginal posterior PDFs of the Young’s modulus for all considered cases.

Model uncertainty Mean (GPa) MAP (GPa) Standard deviation (GPa)

Error in the stress only

None 193.5201 193.5201 3.0861

Random variable from
a normal distribution

with constant parameters
184.7892 185.6223 10.7162

Random variable from
a normal distribution

with an input-dependent mean
198.3326 209.6297 33.5192

Gaussian process with a stationary
covariance function

173.8981 191.6519 21.5282

Error in the stress and strain

None 193.7848 193.6629 4.3032

Random variable from
a normal distribution

with constant parameters
209.7249 208.3623 15.9041

Random variable from
a normal distribution

with an input-dependent mean
180.6751 187.1383 42.6510

Gaussian process with a stationary
covariance function

179.6355 184.3772 19.4364

We separately consider the error in the stress, the errors in both the stress and the strain,
and the errors in both the stress and the strain as well as model uncertainty. For the case in
which model uncertainty is treated as a random variable coming from a normal distribution
with an input-dependent mean, we use the relation of Eq. (4.33). Furthermore, the prior

distributions of the covariance function’s parameters for the Gaussian process (xd =
[
λ ψ

]T
)

are given by Eqs. (4.38) and (4.39) with λprior = 0.03 GPa, sλprior = 0.01 GPa, ψprior = 0.0028

and sψprior
= 9.3333×10−4. The lower bound for length scale parameter ψ is set to 2.89×10−6.

Figs. 4-7(a) and 4-7(b) show that all marginal posterior PDFs of the Young’s modulus
contain the true value, but adding model uncertainty results in a higher probability at the true
value. This is especially true if a Gaussian process is used to describe model uncertainty. One
can furthermore see in Fig. 4-7(b) that only adding the error in the strain has a negligible effect
on the marginal posterior PDF of the yield stress. This is due to the fact that the plastic
domain in linear elasticity-perfect plasticity is not dependent on the strain at all. Furthermore,
one can see that if model uncertainty is described by a random variable coming from a normal
distribution with constant parameters, the marginal posterior of the yield stress does not include
the true value. The marginal posteriors with model uncertainty and the error in the stress only
are presented in Figs. 4-7(c) and 4-7(d) for comparison.

The posterior predictions are shown in Fig. 4-8. This figure shows that adding model uncer-
tainty results in posterior predictions that encompass all measurement data. Note that if model
uncertainty is a random variable coming from a normal distribution with constant parameters
(Fig. 4-8(c)), no hardening can be observed and hence, adding model uncertainty increases the
width of the prediction interval. It can furthermore be observed that the measurements are
closer to the posterior mean responses if model uncertainty is input-dependent (see Figs. 4-8(d)
and 4-8(e)).
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(a) Young’s modulus (b) Yield stress

(c) Young’s modulus (d) Yield stress

Figure 4-7: Linear elasticity-perfect plasticity: The Young’s modulus (left) and the yield stress (right) in case the
input error is incorporated (top) and ignored (bottom). One can see that the posterior of the Young’s modulus
improves substantially by incorporating the input error and even more by incorporating any of the three model
uncertainties. The posteriors of the yield stress are not improved by considering the input error and only improve
substantially if a type of model-uncertainty is incorporated that is input-dependent. The reason is that the yield
stress does not depend on the strain.
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(a) Error in the stress only (b) Error in both the stress and the strain

(c) Normal distribution with constant pa-
rameters

(d) Normal distribution with an input-
dependent mean

(e) Gaussian process

Figure 4-8: Linear elasticity-perfect plasticity: The measurements, the posterior mean responses and the poste-
rior predictions. One can see that considering any type of model uncertainty results in all measurement data
to be present in the posterior prediction bounds. For the case in which model uncertainty is a random variable
coming from a normal distribution with constant parameters, no hardening effect can be observed and hence,
adding model uncertainty increases the width of the prediction interval. In the other two cases of model uncer-
tainty, hardening can be observed. In case model uncertainty is input-dependent furthermore((d) and (e)), the
measurement data is closer to the posterior mean responses.

In this subsection, we have presented some typical examples for linear elasticity-perfect
plasticity, whereby we have generated the measurement data using relations that are not too
different from the model response of interest. This has allowed us to compare the identified
distributions with the true values. However, the measurement data may deviate considerably
more from the model response. In the next subsection, we present examples for linear elasticity-
linear hardening. Because the deviation between the curves used to generate the data and the
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model response is so significant, we will not be able to compare the distributions with true
values. Instead, we will only investigate the posterior predictions.

4.6.4 Linear elasticity-linear hardening

In this subsection, we have initially generated 30 measurements using the following curve:

σ(ε, a, εmax) = a
√
ε2max − (εmax − ε)2, (4.39)

where a = 50 GPa, 0 ≤ ε ≤ εmax and εmax = 0.0056. Similar as in the previous subsection,
output and input noise was generated using sωy = 0.01 GPa and sωε∗ = 5 × 10−5 (see Fig. 4-
9 for the measurements). The linear elastic-linear hardening model is used as the material
description. This entails that we want to identify Young’s modulus E, yield stress σy0 and
hardening modulus H. The same prior distributions as in Eqs. (4.32) and (4.38) are used for
the Young’s modulus and yield stress with Eprior = 100 GPa, sEprior

= 50 GPa, σy0 = 0.25 GPa
and sσy0 = 0.05 GPa. The prior for the hardening modulus reads:

π(H) ∝

exp
(
− (H−Hprior)

2

2s2
Hprior

)
if H ≥ 0

0 otherwise
, (4.40)

where Hprior = 30 GPa and sHprior
= 15 GPa. In case model uncertainty is described by a

random variable coming from a normal distribution with an input-dependent mean, the relation
of Eq. (4.33) is used for the mean. Furthermore, the prior distributions of the covariance
function’s parameters for the Gaussian process are given in Eqs. (4.34) and (4.35) with λprior =
0.03 GPa, sλprior = 0.01 GPa, ψprior = 0.0028 and sψprior

= 9.3333 × 10−4. The lower limit for

length scale parameter ψ is set to 2.5× 10−5.

The posterior predictions are presented in Fig. 4-9. Two main issues can be observed.
(1) By comparing Figs. 4-9(a) and 4-9(b), it can be noticed that including the error in the
strain results in a wider prediction interval. This is especially true for the initial part of the
response in which the model response is only governed by elasticity. This is due to the fact that
the Young’s modulus is larger than the stiffness during elastoplastic deformation (i.e. HE

H+E in
Eq.(4.3)). (2) Considering model uncertainties furthermore results in wide posterior prediction
envelopes, which consequently include almost all measurement and verification points. Only for
the case in which model uncertainty is represented by a random variable coming from a normal
distribution with constant parameters, two verification points are not present within the bounds.
One should note however, that in the cases in which model uncertainty is input-dependent, the
model uncertainty is so dominant that the two linear regimes in the model response (the elastic
regime and the elastoplastic regime) cannot be recognised anymore.

It is also worth to mention that in case the difference between the constitutive model (here
linear elasticity-linear hardening) and the true response used to generate the measurements
(here Eq. (4.39)) is large, the influence of incorporating model uncertainty is larger than that of
incorporating the error in the strain. Incorporating the error in the strain, if model uncertainty
is to be incorporated, can still have a positive influence however, as we have presented for linear
elasticity.

In the examples in which linear elasticity and linear elasticity-perfect plasticity were consid-
ered, we were able to compare not just the posterior predictions with the measurement data, but
also the marginal posteriors with the true values. In case of linear elasticity-linear hardening,
it is not possible to compare the marginal posteriors with the true values, because the material
model and the true response do not share any parameters. In the case of linear elasticity-linear
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hardening therefore, we have introduced and will introduce verification points in order to com-
pare the posterior predictions in more detail. In Fig. 4-9, we have shown verification points
inside the domain of the measured strains. Now, we will add verification data outside the strain
domain and investigate the posterior predictions for the verification points outside the initial
strain domain.

Instead of 30 measurements, we now consider 20 measurements, polluted by noise coming
from the aforementioned noise distributions. All priors and their parameters remain the same,
except that the covariance function’s parameters for the Gaussian process are set to λprior =
0.026 GPa, sλprior = 0.0087 GPa, ψprior = 0.0018 and sψprior

= 0.0006. The lower limit for length

scale parameter ψ is set to 2.5× 10−5.
The posterior predictions are shown in Fig. 4-10, together with the measurement and veri-

fication data. It can be observed that all verification data are inside the posterior predictions’
bounds if model uncertainty is described by a random variable coming from a normal distribu-
tion with constant parameters or by a Gaussian process. In case model uncertainty is described
by a Gaussian process furthermore, the uncertainty is substantially larger than if a random
variable coming from a normal distribution with constant parameters is used. This can be due
to the fact that the Gaussian process assumes the measurements to be correlated, and hence,
the larger the distance from the measured data, less information is available and a larger spread
is observed. It can furthermore be observed that the smallest number of verification data is
present inside the posterior prediction’s bounds if model uncertainty is represented by a normal
distribution with an input-dependent mean. It must be noted though, that if another relation
for the mean would be selected, the posterior predictions would differ.
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(a) Error in the stress only (b) Error in both the stress and the strain

(c) Normal distribution with constant pa-
rameters

(d) Normal distribution with an input-
dependent mean

(e) Gaussian process

Figure 4-9: Linear elasticity-linear hardening: The measurements, the verification points, the posterior mean
responses and the posterior predictions. Note that for all cases in which model uncertainty is incorporated, the
error in the strain is also incorporated. One can see that considering model uncertainty results in more measure-
ments to be present inside the bounds of the posterior predictions. For the cases in which model uncertainty is
input-dependent the model uncertainty is so dominant that the two linear regimes in the model response (the
elastic regime and the elastoplastic regime) cannot be recognised anymore.
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(a) Error in the stress only (b) Error in both the stress and the strain

(c) Normal distribution with constant pa-
rameters

(d) Normal distribution with an input-
dependent mean

(e) Gaussian process

Figure 4-10: Linear elasticity-linear hardening: The measurements, the verification points, the posterior mean
responses and the posterior predictions. Note that for all cases in which model uncertainty is incorporated,
the error in the strain is also incorporated. One can see that considering model uncertainty results in more
measurements to be located inside the bounds of the posterior predictions. It can be observed that all verification
data are inside the posterior predictions’ bounds if model uncertainty is described by a random variable coming
from a normal distribution with constant parameters or by a Gaussian process. In case model uncertainty is
described by a Gaussian process furthermore, the uncertainty is substantially larger than if a random variable
coming from a normal distribution with constant parameters is used. This can be due to the fact that the Gaussian
process assumes the measurements to be correlated, and hence, the larger the distance from the measured data,
less information is available and a larger spread is observed. It can furthermore be observed that the smallest
number of verification data is present inside the posterior prediction’s bounds if model uncertainty is represented
by a normal distribution with an input-dependent mean. It must be noted though, that if another relation for
the mean would be selected, the posterior predictions would differ.
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4.7 Conclusions

In this chapter, we have formulated a Bayesian approach that considers the output error (the
error in the stress), the input error (the error in the strain) and the uncertainty of the model
in order to identify parameters in elasticity and elastoplasticity from monotonically increasing
uniaxial tensile tests. We have treated three types of model uncertainty: (1) a random variable
coming from a normal distribution with constant parameters, (2) a random variable coming
from a normal distribution with an input-dependent mean and (3) a Gaussian process with a
stationary covariance function.

We have applied the identification approach to linear elasticity, linear elasticity-perfect plas-
ticity and linear elasticity-linear hardening. The measurement data were artificially generated,
allowing us to compare the parameter distributions with the true values for linear elasticity and
linear elasticity-perfect plasticity, because the material models and the true responses, used to
generate the measurement data, shared parameters. For linear elasticity-linear hardening the
difference between the true response, used to generate the measurement data, and the material
model response was so significant that no parameters were shared by the two. Consequently,
we have only used posterior predictions to assess the quality of the results.

The results for linear elasticity show that incorporating any of the three model uncertainty
formulations results in wider marginal posterior distributions of the Young’s modulus. Con-
sequently, the chance that the posterior distributions include the true value increases. Incor-
porating model uncertainty also results in wider posterior prediction intervals, which therefore
contain more measurements.

If, in addition to model uncertainty, the error in the strain is also incorporated the marginal
posterior (distribution) of the Young’s modulus becomes even wider. The exception is the case
in which model uncertainty is described by a Gaussian process (with a stationary covariance
function). The posterior becomes narrower in this case, but the evaluation of the posterior at
the true value is nevertheless larger. In other words, the true value has a higher chance to be
realised from the posterior.

Incorporating the error in the strain (input error), as well as model uncertainty, also results in
wider posterior prediction intervals, which are therefore more likely to contain the measurement
data. If model uncertainty is described by a Gaussian process however, the posterior prediction
interval does not become wider, but still contains more measurements than if the input error is
not included.

Our results generally show that incorporating both model uncertainty and the input error
has a favourable influence on the identified parameters and the posterior predictions, compared
to only incorporating model uncertainty or only incorporating the input error. If the difference
between the true response (used to generate the measurements) and the response of the material
model increases however, the added value of incorporating the input error as well reduces
substantially.
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Chapter 5

Estimating fibres’ material
parameter distributions from limited
data with the help of Bayesian
inference1

abstract

Numerous materials are essentially structures of discrete fibres, yarns or struts. Considering
these materials at their discrete scale, one may distinguish two types of intrinsic randomness
that affect the structural behaviours of these discrete structures: geometrical randomness and
material randomness. Identifying the material randomness is an experimentally demanding task,
because many small fibres, yarns or struts need to be tested, which are not easy to handle. To
avoid the testing of hundreds of constituents, this chapter proposes an identification approach
that only requires a few dozen of constituents to be tested (we use twenty to be exact). The
identification approach is applied to artificially generated measurements, so that the identified
values can be compared to the true values. Another question this chapter aims to answer is
how precise the material randomness needs to be identified, if the geometrical randomness will
also influence the macroscale behaviour of these discrete networks. We therefore also study the
effect of the identified material randomness to that of the actual material randomness for three
types of structures; each with an increasing level of geometrical randomness.

5.1 Introduction

Of all materials important for industry and society, some important ones are essentially discrete
mesostructures and microstructures. Some examples are paper materials, open-cell metal foams,
dry-woven fabrics and electrospun scaffolds. The mechanical behaviours of such materials are
often described using computational models in which each fibre, yarn or strut is represented by
a series of springs or beams. Examples are the works of Kulachenko and Uesaka [105], Persson
and Isaksson [106], Wilbrink et al. [107], Beex et al. [108], and Bosco et al. [109] for paper
materials, the works Badiche et al. [110] and Jung et al. [111] for open-cell metal foams, the
works of Gao et al. [112] and Beex et al. [113] for dry-woven fabrics and the work of Argento et
al. [114] for elecrospun scaffolds.

1Reproduced from: H. Rappel and L.A.A. Beex, Estimating fibres’ material parameter distributions from
limited data with the help of Bayesian inference, submitted to European Journal of Mechanics-A/Solids.
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A substantial amount of these discrete structures are intrinsically stochastic, which may be
important to incorporate in their associated discrete models (see e.g. Sastry et al. [115], Wang
et al. [116], Bronkhorst [117], Hatami-Marbini and Picu [118], Picu [119], Shahsavari and Picu
[120] and Ban et al. [121]). Two types of stochastic aspects may be distinguished: stochastic
geometries and stochastic mechanical behaviours of the base materials. Identifying both types
of randomness is experimentally demanding because the structures and constituents are small.

Identifying stochastical geometries often involves the scanning of the structures with micro-
CT scanners. An image analysis algorithm is then commonly applied, aiming to distinguish
the individual fibres, yarns or struts in order to provide information such as their lengths,
cross-sectional areas and orientations (e.g. Le et al. [122], Latil et al. [123], Sencu et al. [124]).
Especially in order to distinguish the constituents in densely packed, small-scale structures,
these algorithms need to be rather complex.

Some works that experimentally show and discuss stochastic aspects of the base materials
of discrete constituents are the work of Seth and Page [125] for paper materials and the work
of Jung et al. [126] for open-cell metal foams. These studies show that a substantial difference
in the mechanical behaviour can be observed between one constituent and another, but they do
not present the actual distributions from which these behaviours are realisations. A possible
reason for the fact that material parameter distributions are commonly not presented is that
it requires the testing of a substantial number of fibres, yarns or struts, which are not easy to
handle due to their small size.

The first aim of this chapter is therefore to propose a scheme that enables one to identify
material parameter distributions using only a limited number of fibres, yarns or struts. We
demonstrate the scheme for 20 constituents to be precise. The scheme assumes that all con-
stituents can be described by the same material model and that the set of material parameters
of each constituent is a realisation from some probability density function (PDF). For now, the
scheme thus assumes that the material parameters are constant inside each constituent and
the aim is to identify the parameters of the material parameter PDF. We apply the scheme to
synthetically created measurements so that we can compare the identified values with the true
ones.

The identification scheme requires four steps to be performed. First, fibres, yarns of struts
need to be harvested and experimentally tested.

Second, the material parameters need to be identified separately for each constituent. We
assume that the experimental tests are conducted in a well-controlled environment and hence,
plenty of measurements are available for each tested constituent. Thanks to the abundance of
available stress-strain data, the identification of the material parameters of each constituent is
performed using the least squares method (LSM), in which an objective function in terms of
the material parameters is minimised in order to determine their most appropriate values.

Third, univariate PDFs (i.e. single variable PDFs) are selected for each type of material
parameter. The parameters of each univariate PDF are then identified based on the mate-
rial parameter values identified in the previous step. The parameters of each univariate PDF
are identified using Bayesian inference (BI), because not enough observations are available to
allow a deterministic identification approach (we only have 20 observations). BI includes a
regularisation that makes this separate identification problem well-posed.

Fourthly, the univariate PDFs together with their identified parameters are collected in
one joint PDF, in which possible correlations between the univariate PDFs are incorporated.
Mathematically combining the univariate PDFs is based on copulas, which come with their own
parameter(s). Since again only 20 observations are available, the use of a deterministic approach
for the identification of the copula parameters can be challenging and hence, we resort again to
BI.
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Bayesian frameworks treat observations as realisations from a probability model and their
output are probability distributions in terms of the model parameters. Initially, assumed pa-
rameter distributions need to be specified, which are then updated by inferring the observations.
The result of this is again a probability distribution, which represents the user’s uncertainty
about the model parameters. This final PDF is called the posterior (distribution), whereas the
initially assumed PDF is called the prior (distribution). In order to obtain statistical summaries
of the posterior (e.g. at which parameter values the PDF is maximum) numerical frameworks
are commonly employed.

Various studies can be found in which BI is used to identify material parameters. Examples
that have focused on the identification of elastic material parameters are the works of Isenberg
[41], Alvin [42], Beck and Katafygiotis [43], Marwala and Sibusiso [44], Gogu et al. [45], Kout-
sourelakis [51], Lai and Ip [49], Daghia et al. [50], Nichols et al. [59] and Gogu et al. [52]. Studies
that have focused on the identification of elastoplastic parameters include the works of Most
[56] and Rappel et al. [32]. BI is also used to identify material parameters of hysteretic models
[53, 54] and other nonlinear material models such as viscoelasticity and creep [30, 31, 55, 58].

As mentioned before, the univariate PDFs of each material parameter are coupled in one
joint PDF by the use of copulas in this chapter. Copulas are defined as functions that link the
joint cumulative distribution function (CDF) and the univariate CDFs. They allow us to include
the dependencies of several random variables on each other, resulting in a single multivariate
distribution for all the material parameters.

Most often the parameters of the joint distribution (i.e. the parameters of univariate PDFs,
as well as those of the copula) are identified by a two step identification scheme. Genest et
al. [127] approximated the parameters of univariate distributions by empirical distribution (i.e. a
nonparametric estimator of the CDF for a random variable) and used a maximum likelihood
approach [22] to identify the parameters of the copula. Hürlimann [128] and Roch and Alegre
[129] also employed a two step scheme, but with a maximum likelihood approach in both steps.
Silva and Lopes [130] employed a full Bayesian approach for the identification of all unknown
parameters in one step. However, the number of observations in their work is large compared
to that in this chapter. Silva and Lopes also presented a comparison between one and two
step methods, which showed a negligible difference between the point estimators of the one step
scheme and the two step scheme.

Besides proposing the aforementioned identification scheme, this chapter also aims to answer
the question of how accurate the material parameter PDF needs to be identified, if some level
of geometrical randomness is present. To this purpose, we consider three types of virtual
structures, each with an increasing level of geometrical randomness, and assess their macroscopic
behaviour if the actual PDF is used and if the identified PDF is used. We investigate this for
two responses of the base material: a damage model and an elastoplastic model. Geometrically
linear Euler-Bernoulli beams are used to discretise the constituents in the virtual structures in
a 2D setting.

The outline of this chapter is as follows. Section 5.2 briefly discusses the material models.
In Section 5.3, we discuss the identification scheme. In Section 5.4 we detail the generation and
treatment of the virtual structures. In Section 5.5 we present some results, which are subdivided
in those of the identification scheme itself and in how the distributions influence the macroscale
behaviour of random network models. Finally, we present our conclusions (Section 5.6).

5.2 Material models

In this section, we briefly introduce the two material models that are used throughout this chap-
ter. It is sufficient to express them in one dimension and without the use of the Poisson’s ratio,
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because the identification scheme is applied to uniaxial (monotonically increasing) tensile tests
and the virtual experiments use two-dimensional beam descriptions without shear deformation.

5.2.1 Damage

The first material model describes a linear elastic response until a failure strain is reached.
When this failure strain is reached anywhere in the constituent (in the tensile tests considered
in the identification scheme) or in a beam that represents a part of the constituent (in the
virtual experiments), it fails entirely. No load will thus be transferred from that point onwards.

The Cauchy stress, σ, is expressed as follows in this material model:

σ =
(
1−D(κ)

)
Eε, (5.1)

where D denotes the damage variable, which is a function of history variable κ. E denotes the
Young’s modulus and ε the linear strain.

We express the damage variable in terms of history variable κ as follows:

D(κ) =

{
0 if κ < εf

1 if κ ≥ εf
, (5.2)

where εf denotes the failure strain. The following loading function and the Karush-Kuhn-Tucker
(KKT) conditions [66] ensure that κ takes the largest strain value in a constituent or beam and
that damage is irreversible:

g = ε̃− κ, (5.3)

with

ε̃ = max
~x

∣∣ε(~x)
∣∣, (5.4)

where ~x denotes the location vector to any material point in a constituent or beam. The KKT
conditions read:

κ̇ ≥ 0, g ≤ 0, κ̇g = 0. (5.5)

It may be clear that in a monotonically increasing, uniaxial tensile test performed on a
constituent, the strain is constant. Consequently, Eq. (5.4) can be simplified to:

ε̃ = ε. (5.6)

The stress-strain response during a monotonically increasing, uniaxial tensile test can then
be written as:

σ =

{
Eε if ε < εf

0 if ε ≥ εf
. (5.7)

5.2.2 Elastoplasticity

Second, we consider an elastoplastic material model with isotropic, linear hardening. In this
material description, the linear strain, ε, is additively split in an elastic strain, εe, and a plastic
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strain, εp:

ε = εe + εp. (5.8)

The Cauchy stress, σ, is expressed as follows:

σ = Eεe. (5.9)

The yield function reads:

f =
√
σ2 − σy0 −Hε̃p, (5.10)

where ε̃p denotes the cumulative plastic strain, σy0 the initial yield stress and H the plastic
modulus. The relation between a change of the plastic strain and that of the cumulative plastic
strain furthermore reads:

ε̇p = ˙̃εp
∂f

∂σ
= ˙̃εp sgn(σ), (5.11)

where sgn(·) denotes the sign function. The following KKT conditions finalise the material
model:

˙̃εp ≥ 0, f ≤ 0, f ˙̃εp = 0. (5.12)

It may be clear that the stress-strain relation during monotonically increasing, uniaxial
tension for this material model reads:

σ =

{
Eε if ε <

σy0
E

σy0 + EH
E+H (ε− σy0

E ) if ε ≥ σy0
E

. (5.13)

5.3 Identification scheme

In this section we detail the scheme to identify the parameters of the probability density func-
tion (PDF) from which it is assumed the material parameters of each specimen (i.e. tested
constituent) are coming. First, the concept of the framework is discussed. Subsequently, the
basics of Bayesian inference are discussed. Then, copulas are discussed as the mathematical
tool to combine two or more univariate PDFs in one joint PDF. Finally, the two steps of the
scheme in which BI and copulas are used are discussed in more detail.

5.3.1 Concept

The aim of the identification scheme is to experimentally test a relatively small number of
fibres, yarns or struts and from those test results (i.e. stress-strain data), obtain the parameters
of the material parameter PDF. We will achieve this by subdividing the identification problem
in four steps, which are to be performed consecutively. These steps are discussed below and
schematically illustrated in Fig. 5-1.

Step 1: Experimentally test individual constituents

First, some fibres, yarns or struts must be harvested and tested experimentally. We assume
that 20 fibres are harvested and that these are separately tested in tension in a well-controlled
environment. We thus obtain 20 stress-strain curves, which are necessary for the next step.
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Step 1
Experimentally test individual constituents

Step 2
Identify the material parameters of each constituent

Step 3
Identify the parameters of each univariate PDF

Step 4
Identify the parameters of the joint material parameter PDF

Figure 5-1: The steps of the identification scheme.

Step 2: Identify the material parameters of each constituent

Based on the stress-strain data obtained in the previous step, a material model must be selected
in the current step and its parameters are separately identified for each constituent. We assume
that a large number of stress-strain data is gathered during each test such that a deterministic
identification approach based on the minimisation of an objective function is possible, i.e. the
least squares method (LSM). The final result of the current step is thus a set of material
parameters for each constituent. If we for instance assume the damage model of the previous
section, we obtain 20 Young’s moduli and 20 failure strains: two material parameters for each
constituent. The material parameters of each constituent are necessary for the next step.

Step 3: Identify the parameters of each univariate PDF

In the third step, we select a univariate PDF for each type of material parameter (e.g. nor-
mal or beta distributions [22]) and identify the parameters of each univariate PDF separately.
If we again assume the damage model of the previous section, we thus obtain two univari-
ate PDFs: one for the Young’s modulus and one for the failure strain. As 20 observations
(e.g. 20 Young’s moduli) are not sufficient to identify the parameters of a univariate distribu-
tion deterministically, we employ Bayes’ theorem to enable the use of assumed knowledge, which
regularises the identification problem of the current step. The use of Bayes’ theorem effectively
means that a distribution of the univariate PDF’s parameters is assumed and this distribution
is updated by inferring each observation. We thus start the identification problem of the current
step with the assumption of a distribution of the PDFs’ parameters and the final result of BI
is also a distribution in terms of the PDF’s parameters (albeit corrected for the observations).
We then use a numerical framework (Markov chain Monte Carlo, MCMC techniques) to explore
the distribution of the univariate PDF’s parameters to find their point estimates [48] (e.g. the
mean vectors or MAP vectors). These point estimates are then considered as the identified
parameter set of each univariate PDF, which are necessary for the fourth step.

Step 4: Identify the parameters of the joint material parameter PDF

In the last step, we take the univariate PDFs (including their identified parameters) and couple
them together to form a single, joint PDF. The coupling of the univariate PDFs allows the
incorporation of correlations and is mathematically performed here using a so-called copula.
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Different copula formulations can be distinguished and hence, the user has to select one. Since
each copula comes with its own parameters, the identification problem in this fourth step thus
aims to identify the copula parameters. Important to realise is that we again do not have
enough information to employ a deterministic identification approach to identify the copula’s
parameters. Once more, we employ Bayes’ theorem, requiring us to define an assumed PDF in
terms of the copula parameters and inferring this PDF with the 20 observations. The result-
ing posterior needs to be numerically explored in order to determine the point estimates that
represent the identified copula parameters.

It is worth mentioning that in principle the entire identification procedure can be performed
in a single identification framework that is entirely based on Bayes’ theorem. As the number
of observations is small however, the MCMC algorithm (to numerically explore the final PDF
in order to determine the point estimates) will not converge. Since we choose to obtain a
joint PDF, we subdivide the identification approach into several identification problems. It
is furthermore not very useful to consider the identification problem of Step 2 in a stochastic
manner, because if we assume that a large number of stress-strain data for each constituent
is available and the number of constituents is small, the uncertainty stemming from Step 2 is
substantially small compared to the uncertainty stemming from Steps 3 and 4.

It is also worth noting that some clear assumptions are made in Steps 3 and 4: (i) the type
of univariate PDFs (Step 3), (ii) the initially assumed distributions of the parameters of the
univariate PDFs (Step 3), (iii) the type of copula (Step 4) and (iv) the initially assumed PDFs
of the copula parameters (Step 4). The error induced by these assumptions cannot be evaluated
to the best of the authors’ knowledge, because few observations are available. If the number
of tested constituents tends to infinity however, the error in the identified parameter values
approximates zero (if the same PDFs and copula is selected as used to generate the material
parameters).

5.3.2 Bayesian inference

Bayesian inference (BI) is a procedure in which one fits a probability model to a set of data.

The result of BI is a PDF (the so-called posterior). Assuming that z =
[
z1 · · · zno

]T
denotes

a vector of no observations and p a vector of np parameters which are to be identified, Bayes’
formula reads:

π(p|z) =
π(p)π(z|p)

π(z)
=

1

k
π(p)π(z|p), (5.14)

where π(p) denotes the prior PDF (i.e. the PDF that represents one’s assumed prior knowledge
about the parameters, e.g. the fact that the Young’s modulus cannot be smaller than zero),
π(z|p) denotes the likelihood function (i.e. the PDF that measures the likelihood that mea-
surements z are observed, for a given set of parameter values p), π(p|z) denotes the posterior
PDF (i.e. the PDF that describes the probability to obtain parameters p, for the given set of
observations z) and π(z) is called the evidence. Since z is known, the evidence is a constant
number (π(z) = k ∈ R+), which is thus independent of the parameters (i.e. the variables of
interest). Since π(z) = k, it suffices to write Eq. (5.14) as follows:

π(p|z) ∝ π(p)π(z|p), (5.15)

because the statistical summaries of the posterior, such as the mean, the MAP (i.e. the ‘maximum-
a-posteriori-probability’ or the parameter values at which the posterior is maximal) and the
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covariance matrix (i.e. the matrix that measures the correlation between the parameters), are
independent of scaling factor 1

k .

Once the posterior is established, the statistical summaries of the posterior need to be
determined. With the exception of a few cases, numerical frameworks need to be employed
for this. Markov chain Monte Carlo (MCMC) techniques [24] are frequently employed to draw
samples from the posterior PDF. The drawn samples can be used to approximate statistical
summaries and predict new observations. Readers are referred to [16, 31] for more details.

5.3.3 Copulas

Nelsen [131] defines copulas as functions that join one dimensional marginal distributions to
their joint, multivariate distribution. These functions are tools to model the dependencies of
several random variables. We will discuss them in some more detail in this subsection.

Let P =
[
P1 · · · Pn

]T
be a random vector with joint cumulative distribution function

(CDF) Π, and Πi be the marginal univariate CDF of Pi. According to Sklar’s theorem [132],
an n-dimensional copula C exists such that:

Π(p1, · · · , pn) = C(Π1(p1), · · · ,Πn(pn)). (5.16)

The joint PDF can then be obtained by differentiating Eq. (5.16) with respect to the random
variables as follows:

π(p1, · · · , pn) = c(Π1(p1), · · · ,Πn(pn))
n∏
i=1

πi(pi), (5.17)

where c(u1, · · · , un) = ∂C(u1,··· ,un)
∂u1···∂un with ui = Πi(pi) and πi(pi) denotes the ith marginal PDF.

Various types of copulas can be used to describe the dependencies of random variables [130],
but we restrict ourselves to the Gaussian one. This entails that we write:

C(u|ΓC) = Φn(Φ−1(u1), · · · ,Φ−1(un)|ΓC), (5.18)

where again ui = Πi(pi), and ΓC ∈ [−1, 1]n×n denotes the covariance matrix containing correla-
tion parameters. These correlation parameters are called Pearson’s ρ and each one is a measure
for the linear relationship between two random variables [133]. Furthermore, Φ(p̃) denotes the

standard Gaussian CDF (i.e. p̃ ∼ N(0, 1) = 1√
2π

exp(− p̃2

2 )) and Φn(p̃|ΓC) denotes the joint

CDF of a multivariate Gaussian distribution with a zero mean vector and covariance matrix ΓC
(i.e. p̃ ∼ Nn(0,ΓC) with p̃ =

[
p̃1 · · · p̃n

]T
). [134] writes the density of the Gaussian copula

as follows:

c(u|ΓC) =
1√
|ΓC |

exp
(
− 1

2

[
Φ−1(u1) · · · Φ−1(un)

]
×(Γ−1C −I)×

[
Φ−1(u1) · · · Φ−1(un)

]T )
,

(5.19)

where | · | denotes the determinant and I the n× n identity matrix.

5.3.4 Details of Step 3

In this subsection and the next, we return to Steps 3 and 4 of the identification scheme and
present them in more detail in the light of the previous discussions on BI and the Gaussian
copula. In the current subsection, we focus on Step 3, meaning that we focus on how we use BI
to identify the parameters of a univariate PDF based on 20 observations.
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Let us assume that we have tested 20 constituents and identified the np types of material
parameters for each constituent. We store the identified values of the first type of material
parameters in a vector of length 20, p1, the identified values of the second type of material
parameters in a vector of the same length, p2, and repeat this until we obtain np vectors of
length 20.

In the current step, we separately focus on each type of material parameter, assume that
they are realisations from some univariate PDF and identify the parameters of that univariate
PDF. This means that we can now express Bayes’ theorem for the material parameter of type
i as follows:

πpost(piPDF|pi) ∝ πprior(piPDF)πlike(pi|piPDF), (5.20)

where piPDF denote the parameters of the univariate PDF associated with the ith type of
material parameter and pi denote the observations for the current identification problem (e.g. if
the ith type of material parameter is the Young’s modulus, pi contains the 20 Young’s moduli
identified in Step 2). The prior PDF is thus denoted by πprior(piPDF) and must be defined by
the user. The posterior is denoted by πpost(piPDF|pi). Likelihood function πlike(pi|piPDF) can
straightforwardly be formulated using the product of the univariate PDF that is selected by the
user:

πpost(piPDF|pi) ∝ πprior(piPDF)

20∏
j=1

πuni

(
(pi)j |piPDF

)
, (5.21)

where (pi)j denotes the jth component of vector pi (e.g. the jth Young’s modulus) and πuni
denotes the univariate PDF that must be selected by the user. The point estimates of all
np posteriors are numerically estimated using MCMC techniques and are stored in np vectors
p1PDF, · · · , pnpPDF

.

Note that in principle the lengths of different vectors piPDF may vary, since a different
univariate PDF can be selected for each type of material parameter and each univariate PDF
can come with its own number of parameters.

5.3.5 Details of Step 4

In the fourth step of the identification scheme, we take all the material parameters identi-
fied in Step 2 (stored in vectors p1, · · · ,pnp , and for the ease of notation collect them in p)
and the univariate PDFs including their parameters identified in Step 3 (stored in vectors
p1PDF, · · · ,pnpPDF

and for the ease of the notation collect them in pPDF) and couple them
with an assumed copula C, which comes with copula parameters ρ. Hence, the aim of the cur-

rent step is to identify the parameters in ρ, which is of length
np(np−1)

2 because the covariance
matrix in a Gaussian copula is written as:

ΓC =


1 ρ12 · · · · · · ρ1np

1 · · · · · · ρ2np

sym
. . .

. . .
...

1 ρ(np−1)np
1

 , (5.22)

where all values ρij are stored in ρ.

We can now express Bayes’ theorem for the identification problem of the current step as

135



follows:

πpost(ρ|p,pPDF) ∝ πprior(ρ)πlike(p|pPDF,ρ), (5.23)

where we can decompose the likelihood function multiplicatively in terms of the joint PDF as
follows:

πlike(p|pPDF,ρ) =

20∏
i=1

πjoint

(
(p1)i, · · · , (pnp)i|pPDF,ρ

)
, (5.24)

where the material parameters of the ith tested specimen are denoted by (p1)i, · · · , (pnp)i
(e.g. the ith Young’s modulus and failure strain) and the joint PDF for this specimen can
be expressed as follows:

πjoint

(
(p1)i, · · · , (pnp)i|pPDF,ρ

)
=

c
(

Πuni1

(
(p1)i|p1PDF

)
, · · · ,Πuninp

(
(pnp)i|pnpPDF

)
|(ΓC |ρ)

) np∏
j=1

πunij
(
(pj)i|pjPDF

)
. (5.25)

The only remaining issues are to select a prior and subsequently, to determine the point estimates
of the posterior using an MCMC algorithm [24].

5.4 Structural network models

As mentioned before, the accuracy of the identification scheme may not have a substantial
effect on macroscopic network responses, if some form of geometrical randomness is also of
influence. To investigate this, we use three types of two-dimensional network models; each
with an increasing level of geometrical randomness. In this section, we detail the geometrical
generation of the structural models, their discretisations, and the solution schemes associated
with the two employed material models.

5.4.1 Geometries

The numerical network experiments in the results section are all performed on specimens re-
sembling a dog-bone (see Fig. 5-2). The only boundary conditions prescribed are displacements
in vertical direction, except for the first node on the bottom-left corner for which the dis-
placement in horizontal direction restrained as well. The cross-sectional shape of all discrete
constituents is square, with the orientation of one edge of the square in out-of-plane direction.
The cross-sectional dimensions are 1× 1 mm2.

In the first type of geometry, the discrete constituents are infinitely long (whilst still re-
specting the dog-bone shape), they are equally spaced (by parameter h in horizontal direction)
and they are oriented with an angle of θ = 45◦ or θ = 135◦. A typical geometry is schematically
presented in Fig. 5-3(a). Each ‘lane’ in the structure is entirely taken by a single constituent.
We will refer to this type of network as type A.

In the second type of geometry, the discrete constituents are all of a finite length. The
length of each constituent is sampled from a uniform distribution with bounds lmin and lmax.
If a constituent crosses the specimen’s borders, it is cut. If a constituent is entirely located
outside the specimen, it is ignored. Instead of an exact orientation of θ = 45◦ or θ = 135◦,
their orientation is sampled from a uniform distribution with bounds 45◦ − 1

2wθ and 45◦ + 1
2wθ
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Figure 5-2: The shape, dimensions and boundary conditions of the specimens in the virtual experiments.

or 135◦ − 1
2wθ and 135◦ + 1

2wθ. The average distance between two constituents in horizontal
direction is again set by parameter h. The horizontal location of the centre of gravity of the
first constituents of each ‘lane’ is randomly taken from a uniform distribution with bounds
3 mm − lmax and 3 mm + lmax and their vertical location is then fully determined by the fact
that its ‘lane’ is set. The centres of gravities of the subsequent constituents in the same ‘lane’ are
then located such that they exactly touch the beginning or the ends of the other constituents in
that ‘lane’. Subsequently, the centre of gravity of each constituent is relocated to a position that
is sampled from a bivariate, uncorrelated uniform distribution with bounds xc − 1

2hc, xc + 1
2hc,

yc − 1
2hc, and yc + 1

2hc, where xc and yc denote the horizontal and vertical locations of the
original centre of gravity, respectively. A typical geometry resulting from this generation is
presented in Fig. 5-3(b). We will refer to this type of network as type B.

In the third and last type of geometry (in Fig. 5-3(c)), the length of the discrete constituents
is again sampled from a uniform distribution with bounds lmin and lmax. Their centres of gravity
are randomly located in a rectangle of (3 mm + 2lmax) × (6 mm + 2lmax), with the specimen
centred in it. Their orientation is completely random (i.e. their orientation is sampled from a
uniform distribution with bounds 0◦ and 180◦). If constituents cross the specimen’s border,
they are cut, and they are ignored if they are located entirely outside the specimen. We will
refer to this type of network as type C.

5.4.2 Discretisations

After the geometries are created, each constituent is discretised by a series of two dimensional,
geometrically linear, Euler-Bernoulli beams. If a constituent is not connected to any of the other
constituent or if it is not connected to any of the specimen’s edges to which boundary conditions
are applied via other constituents, it is not discretised and hence, ignored. One beam is used
for each constituent segment that is connected to two consecutive constituents. The beams are
completely unified at their nodes, entailing perfect connections between the constituents.

If the length of the smallest beam in the network is substantially small compared to the
longest beam in the network, the stiffness matrix may become ill-posed. To avoid this problem,
the length of the largest beam is measured and all beams that are smaller than 1% of the
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(a) (b) (c)

Figure 5-3: Schematic illustrations of the three types of networks. A few constituents are highlighted. The
horizontal distance between the constituents in the type A and type B networks is h = 0.1 mm. The type B
network is furthermore characterised by lmin = 0.3 mm, lmax = 0.9 mm, wθ = 15◦ and hc = 0.04 mm. The
type C network geometry is characterised by lmin = 0.3 mm, lmax = 0.9 mm and by the fact that 2000 fibres are
generated in domain (3 mm + 2lmax)× (6 mm + 2lmax) with the specimen centred in it.

longest beam are removed and their nodes are unified. This process may involve more than two
nodes at the same location. Finally, all beams that are only connected to one other beam are
removed because they will not contribute to the structural response. A typical result of this
discretisation strategy is shown in Fig. 5-4(b), together with the geometry in Fig. 5-4(a).

(a) (b)

Figure 5-4: A type C network geometry (a) and its beam discretisation (b). Note that we have used a significantly
coarse network so that the effect of the discretisation can easily be observed.
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5.4.3 Solution schemes

In this subsection, we briefly discuss the solution schemes for the EB beam network models
associated with the two material models.

Damage

Solving the network model with the linear elastic-brittle fracture description starts with the
application of an arbitrary value for uBC in Fig. 5-2. After solving the linear system that
results from this, we calculate in which of the beams the ratio between the occurring strain and
the failure strain is the largest. This largest ratio will not equal one, but it should be at the
moment that the beam fails. Since the material model is linear, we can scale this ratio directly
to determine at which value of uBC the beam fails. Similarly, we can also scale the reaction
forces. After we have determined this, we remove the contributions of the failed beam to the
stiffness matrix and again prescribe a value of uBC and determine which of the beams is next
to fail and at which value of uBC and the reaction forces this would occur. We repeat this
procedure until the sum of the reaction forces equals zero. This simple solution procedure is
possible (instead of a true arc-length approach) due to the linearity of the model.

Eq. (5.4) states that the largest absolute strain occurring in a beam determines the value
of κ and hence, the damage value for the entire beam. The maximisation problem of Eq. (5.4)
is solved in a straightforward manner, because the largest absolute strain in a 2D EB beam
occurs at the periphery of the beam, at its beginning or at its end. Consequently, we only need
to determine the strain at four locations per beam; two at the beginning and two at the end of
each beam (left in Fig. 5-5).

Elastoplasticity

The network models using the elastoplastic material model are solved in a manner that is
standard for elastoplasticity (e.g. using return mapping and the consistent tangent stiffness).
We therefore do not detail them. The only issue worth mentioning is that we only use four
integration points per beam in order to save computational efforts. These integration points
are located at the centres of four equally sized, rectangular subdomains as shown on the right
in Fig. 5-5.

One may argue that these network models are far from perfect. We could for instance have
used more integration points per beam for the elastoplastic material model. We also do not
account for the fact that plasticity will lead to some form of localisation. We furthermore use
cross-sectional dimensions that are too large to allow the use of geometrically linear EB beams.
As the purpose of the virtual experiments in the next section is to compare the influence of
the identified parameter distributions relative to the true parameter distributions if geometrical
randomness is also present however, this comparison remains valid.

5.5 Results

This section presents the results for the identification scheme proposed in Section 5.3 as well as
the results that show the effect of the different material parameter PDFs on the macroscale be-
haviour of the random network models. We start with the results of the parameter identification
scheme.
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Figure 5-5: Left: the four locations at which the maximum strain in a 2D EB beam may occur (black squares).
Right: the locations of the four integration points in a beam for the elastoplastic model (black squares).

5.5.1 Identification of the material parameter PDFs

In all results presented, we omit Steps 1 and 2 of the identification procedure and only consider
Steps 3 and 4. This can be justified by assuming that an abundance of stress-strain mea-
surements is obtained in Step 1, which makes the deterministic identification of the material
parameters in Step 2 highly accurate.

We produce synthetic material parameters from two multivariate PDFs that are to be identi-
fied: one bivariate PDF for the damage model (in which Young’s modulus E and failure strain εf
are the material parameters) and a trivariate PDF for the elastoplastic model (in which Young’s
modulus E, initial yield stress σ0 and hardening modulus H are the material parameters). We
will refer to these PDFs as the ‘true’ PDFs. We draw 20 sets of material parameters from each
true PDF. These sets of material parameters are considered to be the output of Step 2 and the
observations in Step 3 (i.e. pi).

Damage

In case of damage, we assume that the true bivariate PDF uses two univariate marginal PDFs
which are four-parameter beta distributions of the following form:

πunii(pi|piPDF) =
(pi − a1i)αi−1(a2i − pi)βi−1

(a2i − a1i)αi+βi−1B(αi, βi)
, i = E and εf (5.26)

where pi denotes the material parameter (either E or εf ), αi and βi denote the shape parameters
of the univariate PDF and a1i and a2i the lower and upper bounds, respectively. Furthermore,
B(·, ·) denotes the beta function. The two univariate PDFs are joined together with a Gaussian
copula. The values that we have chosen for the true PDF are presented in Table 5.2, whilst the
true PDF is graphically presented in Fig. 5-6(a).

Now we continue with the actual identification. We first need to assume the type of uni-
variate marginal PDFs and copula. We choose to work with the same types as for the true
PDF (i.e. both univariate marginal PDFs are four-parameter beta distributions and the copula
is Gaussian), so that we can compare the identified values with true ones.

In addition to selecting the univariate PDFs and copula to be identified, we also need to
select the priors for their parameters. It is important to realise that we only have a small
number of observations (20), which easily makes the MCMC algorithm, used to explore the
posterior PDF, fail to converge if non-informative priors are selected. We therefore need to
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select rather informative priors. This can easily be justified for the lower and upper bounds (a1
and a2) by the fact that one generally knows the type of base material. We have furthermore
used the mean value and the standard deviation of the observations to construct the prior for
the shape parameters (α and β). (Note that both the mean value and the standard deviation
of the four-parameter beta distribution are functions of α, β, a1 and a2.)

The priors assigned to the parameters of the univariate marginal PDFs are in the following
form:

π((piPDF)j) ∝

exp
(
−

(piPDF)j−(piPDF)
prior

j
)2

2s2
(piPDF)j

)
if (piPDF)j ≥ 0

0 otherwise

, (5.27)

where (piPDF)j denotes the jth parameter of the univariate marginal PDF for the ith type of
material parameter. In other words, j refers to α, β, a1 or a2 and i to E or εf . Furthermore,

(piPDF)
prior

j and s(piPDF)j
are the prior’s mean value and standard deviation, respectively. We

assume the prior for the copula parameter (i.e. ρEεf ) to be in the same form:

π(ρEεf ) ∝

exp
(
−

(ρEεf−ρ
prior
Eεf

)2

2s2ρEεf

)
if − 1 < ρEεf < 1

0 otherwise

. (5.28)

The chosen values for the means and standard deviations are presented in Table 5.1.

Table 5.1: Damage: the chosen values for the parameters that define the assigned priors.

αprior
E 2 αprior

εf 3 ρpriorEεf
0.9

sαE 1 sαεf 1 sρEεf 0.3

β
prior
E 15 β

prior
εf

7

sβE 5 sβεf 2.3333

a1
prior
E (GPa) 170 a1

prior
εf 0.0008

sa1E (GPa) 56.67 sa1εf 2.6667× 10−4

a2
prior
E (GPa) 270 a2

prior
εf .0021

sa2E (GPa) 90 sa2εf 7× 10−4

By substituting the priors in Eqs. (5.21) and (5.23), the posterior is obtained. We use the
adaptive Metropolis method [73] to draw samples from the posterior and hence, to obtain the
statistical summaries such as the MAP. For each identification process 500 × 103 samples are
drawn from the posterior whilst burning the first 30% of the samples. We have also imposed
the constraint a1 < a2 in the sampling procedure. This entails that the samples that do not
abide this constraint are rejected in the MCMC process.

The MAP estimates of the joint PDF are given in Table 5.2. Fig. 5-6 furthermore shows the
true joint PDF and the identified joint PDF with and without correlation (i.e. with and without
the copula) that correspond with these MAP estimates. One can observe that the identified
joint PDF is somewhat wider than the true PDF, but substantially more accurate and less wide
than the identified joint PDF without correlation.

141



Table 5.2: Damage: the true values and the identified MAP estimates.

αE βE a1E (GPa) a2E (GPa) αεf βεf a1εf a2εf ρEεf

True values

4 10 150 300 2 6 0.001 0.0019 0.7071

MAP estimates

2.5786 8.3413 154.3811 365.6955 2.8056 7.3160 0.001 0.0021 0.6120

(a) True joint PDF (b) Identified joint PDF (c) Identified joint PDF without
correlation

Figure 5-6: Damage: the scatter plots of the true joint PDF and the identified joint PDF with and without
correlation. One can observe an increased scattering if the correlation is omitted, cf. (b) and (c).

Elastoplasticity

The same as for damage, we also assume for elastoplasticity that the true joint PDF consists of
four-parameter beta distributions that are correlated via a Gaussian copula. For elastoplasticity,
three univariate PDFs are required (for E, σ0 and H) and a corresponding copula (consisting
of a 3 × 3 covariance matrix with three independent parameters). The values selected for the
true PDF are presented in Table 5.3.

Table 5.3: Elastoplasticity: the true values and the identified MAP estimates.

True values MAP estimates True values MAP estimates
αE 4 2.1196 ασy0 2 2.7966
βE 10 11.7261 βσy0 6 5.5449

a1E (GPa) 150 166.7861 a1σy0 (GPa) 0.15 0.1420

a2E (GPa) 300 344.4280 a2σy0 (GPa) 0.5 0.4255

αH 3 1.6400 ρEσy0 0.7071 0.6151
βH 9 11.4085 ρEH 0.5 0.6063

a1H (GPa) 30 32.8234 ρσy0H 0 0.0893
a2H (GPa) 70 90.9644

Also the same as for damage, we choose the same type of joint PDF to be identified. The
priors are again chosen according to Eqs. (5.27) and (5.28), with their values shown in Table
5.4. We again obtain the MAP estimates by drawing 500 × 103 samples from the posterior,
whilst burning the first 30% of them. Note that we again incorporate the constraint a1 < a2,
but also that ΓC must be positive semidefinite.

The true joint PDF is numerically presented in Table 5.3 and graphically in Fig. 5-7 together
with the identified joint PDFs with and without correlation. Similar to the results for damage
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Table 5.4: Elastoplasticity: the chosen values for the parameters that define the assigned priors.

αprior
E 2 αprior

σy0 3
sαE 1 sασy0 1

β
prior
E 15 β

prior
σy0 7

sβE 5 sβσy0 2.3333

a1
prior
E (GPa) 170 a1

prior
σy0 (GPa) 0.2

sa1E (GPa) 56.67 sa1σy0 (GPa) 0.0667

a2
prior
E (GPa) 270 a2

prior
σy0 (GPa) .0.35

sa2E (GPa) 90 sa2σy0 (GPa) 0.1167

αprior
H 2 ρpriorEσy0

0.9

sαH 1 sρEσy0 0.3

β
prior
H 12 ρpriorEH 0.4
sβH 4 sρEH 0.1

a1
prior
H (GPa) 40 ρpriorσy0H

0.1

sa1H (GPa) 13.3333 sρσy0H 0.0333

a2
prior
H (GPa) 80
sa2H (GPa) 26.6667

case, the identified joint PDF with correlation is more accurate and less wide than the identified
joint PDF without correlation.

5.5.2 Propagating the material parameter PDFs in network models

In the previous subsection, we have clearly seen that the identified joint PDFs are relatively
accurate representations of the true joint PDFs, regarding the limited number of data. We have
also seen that the correlation is important to incorporate in order to achieve this accuracy. In
the current subsection, we investigate how the differences between the true joint PDF and the
identified joint PDF with and without correlation influences the macroscale responses of virtual
fibre structures.

For the networks of type A (see Fig. 5-8), we investigate two configurations: one with h =
0.1 mm and one with h = 0.025 mm (where h denotes the horizontal distance between two
adjacent constituents as mentioned in the previous section). Type A network with h = 0.025 mm
thus contains 4 times more constituents than that with h = 0.1 mm and approximately 16 times
more inter-constituent connections.

One may recall from the previous section that the networks of type B are the same as those
of type A, except that the constituent length is finite and that their orientation is not the same.
We investigate two different constituent lengths: one given by randomly sampling them from a
uniform distribution with bounds 0.3 mm and 0.6 mm and one with bounds 1 mm and 1.5 mm.
For both lengths, we also investigate different constituent densities: one given by h = 0.1 mm
and one given by h = 0.025 mm. The remaining geometrical parameters for type B networks
are wθ = 15◦ and hc = 0.2h. Some typical realisations can be seen in Figs. 5-9 and 5-10.

For the geometrically completely random networks (type C), we investigate two cases. In
the first case we use 2000 constituents (Fig. 5-11) and in the second we use 5000 constituents. In
both cases the constituent lengths are randomly taken from a uniform distribution with bounds
0.5 mm and 1 mm.

For each type of network, we simulate the mechanical responses of 1000 realisations. In
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(a) (b) (c)
True joint PDF

(d) (e) (f)
Identified joint PDF

(g) (h) (i)
Identified joint PDF without correlation

Figure 5-7: Elastoplasticity: three views of the scatter plots of the true joint PDF (top row) and the identified
joint PDF with correlation (centre row) and without correlation (bottom row). One can observe an increased
scattering if the correlation is omitted, cf. (d,e,f) and (g,h,i).

case of damage, the stiffness matrix may become singular during a simulation, e.g. because the
crack propagates through one of the domain edges to which boundary conditions are applied.
In those cases, the predicted results are ignored for the analyses below.

Damage

Some typical damage patterns and force-displacements curves are presented in Figs. 5-8 to 5-11.
For each response, we determine the maximum force (Fmax) and the dissipated energy (η) as
measures for the macroscale response of the networks.

Fig. 5-12 shows the scatter plot of the maximum force and dissipated energy for the type
A network with h = 0.1 mm. The first issue to observe, which can also be observed for the
type A network with h = 0.025 mm, is that two domains seem to be present. We characterise
the first domain in the results of the true PDF roughly by 0.08 < η < 0.13 mJ, whereas the
second domain roughly by 0.13 < η < 0.25 mJ. The difference between these domains is caused
by the damage pattern. We have observed that cracked beams remain present in the narrow
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(a) (b) (c) (d)

Figure 5-8: Damage: some typical damage patterns for the type A networks with h = 0.1 mm (red: failed
constituents) and some force-displacement curves.

(a) (b) (c) (d)

Figure 5-9: Damage: some typical damage patterns for the type B networks with h = 0.1 mm and constituent
lengths ranging between 0.3 mm and 0.6 mm (red: failed constituents), as well as some force-displacement curves.

(a) (b) (c) (d)

Figure 5-10: Damage: some typical damage patterns for the type B networks with h = 0.1 mm and constituent
lengths ranging between 1 mm and 1.5 mm (red: failed constituents), as well as some force-displacement curves.
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(a) (b) (c) (d)

Figure 5-11: Damage: some typical damage patterns for the type C networks with 2000 constituents (red: failed
constituents) and some force-displacement curves.

part of the dog-bone shaped specimens for the points in the first domain, whilst cracked beams
also appear in the wider parts at the top and bottom of the dog-bone shaped specimens for
points in the second domain. For the latter, longer crack lengths therefore occurr, explaining
the increase in dissipation.

Comparing Figs. 5-12(a), 5-12(b) and 5-12(c), one can see that the marginal univariate PDFs
for all three cases are similar, although the ones predicted using identified univariate marginal
PDFs are clearly wider. The mean values of the maximum force and dissipated energy and the
Pearson correlation coefficients are presented in Table 5.5. It can be observed that the mean
values for both the maximum force and the dissipated energy are higher for the cases with the
identified joint PDFs than for the cases with the true PDF. The difference in the results between
whether or not incorporating the correlation is negligible.

Fig. 5-13 shows the same scatter plot, but with h = 0.025 mm, i.e. for an increased fibre
density. The trends are similar as for the case of h = 0.025 mm. Even the relative difference
between the means is very similar (Table 5.5).

(a) True joint PDF (b) Identified joint PDF (c) Identified joint PDF without
correlation

Figure 5-12: Damage: the scatter plots of the maximum force (Fmax) and dissipated energy (η) for the type A
networks with h = 0.1 mm. One can see that the marginal univariate PDFs are similar in all the cases. One can
also observe that the univariate marginal PDF for the dissipation consists of two domains. The first (η < 0.13 mJ)
contains predictions with shorter crack paths than the second (η > 0.13 mJ), caused by crack path being present
in the wide top and bottom regions of the dog-bone shaped specimens.

Next, we consider type B networks with constituent lengths randomly sampled from a uni-
form distribution with bounds 0.3 mm and 0.6 mm. Fig. 5-14 presents the scattered plot of
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(a) True joint PDF (b) Identified joint PDF (c) Identified joint PDF without
correlation

Figure 5-13: Damage: the scatter plots of the maximum force (Fmax) and dissipated energy (η) for the type A
networks with h = 0.025 mm. One can see that the marginal univariate PDFs are similar in all the cases. Like
the case with h = 0.1 mm and regardless of the used material parameter PDF, one can see that the univariate
marginal PDF for the dissipation consists of two domains. This is caused by long fracture paths that propagate
through the wide top and bottom regions of the dog-bone shaped specimens (see Fig. 5-8(a)), resulting in an
increase of the dissipation.

Table 5.5: Damage: the mean values and Pearson correlation coefficient for the type A networks.

h (mm) Fmean
max (kN) ηmean (J) ρFmaxη

True joint PDF

0.1 2.0584 1.3703× 10−4 0.1067

0.025 7.8706 2.0107× 10−4 -0.0053

Identified joint PDF

0.1 2.27014 1.647× 10−4 0.0734

0.025 8.8204 2.4216× 10−4 0.02069

Identified joint PDF without correlation

0.1 2.3142 1.6342× 10−4 0.0402

0.025 8.8744 2.3866× 10−4 −5.5635× 10−4

the maximum force and dissipated energy for h = 0.1 mm and the mean values and correlation
coefficient are given in Table 5.6. One can see that the mean values of the maximum force and
dissipated energy are higher for both cases with the identified joint PDF than for the cases
with the true joint PDF. However, this is not the case for correlation coefficient. The difference
between the cases with the identified joint PDF with and without correlation is negligible.

If we now increase the fibre density (by setting h = 0.025 mm), we can see the same trend as
for the type A networks (Fig. 5-15 and Table 5.6): although the mean of the maximum force and
dissipated energy increase, the relative differences between the mean values of the cases with
the true joint PDF and the identified joint PDFs remain similar. Increasing the constituent
length (lmin = 1 mm and lmax = 1.5 mm) has practically no influence on the relative differences
between the cases with the true PDF and the identified PDFs (Figs. 5-16 and 5-17).

Finally, we consider the results for the type C networks. Again, the same trends can be
observed: increasing the fibre density causes a shift of the PDFs, the PDFs of the cases with
the identified PDFs have larger means than those of the cases with the true PDF, but the
relative differences between the means is again roughly 10%. Incorporating the correlation has
a negligible effect on the results.
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(a) True joint PDF (b) Identified joint PDF (c) Identified joint PDF without
correlation

Figure 5-14: Damage: the scatter plots of the maximum force (Fmax) and dissipated energy (η) for the type
B networks with constituent lengths randomly sampled from a uniform distribution with bounds 0.3 mm and
0.6 mm and h = 0.1 mm. One can observe similar trends for all cases. The means are larger for the cases with
the identified PDFs than for the cases with the true PDF (also see Table 5.6).

(a) True joint PDF (b) Identified joint PDF (c) Identified joint PDF without
correlation

Figure 5-15: Damage: the scatter plots of the maximum force (Fmax) and dissipated energy (η) for the type B
networks with constituent lengths randomly sampled from uniform distribution with bounds 0.3 mm and 0.6 mm
and h = 0.025 mm. One can observe similar trends for all cases. The means are larger for the cases with the
identified PDFs than for the cases with the true PDF (Table 5.6).

Table 5.6: Damage: the mean values and Pearson correlation coefficient for the type B networks with constituent
lengths randomly sampled from a uniform distribution with bounds 0.3 mm and 0.6 mm.

h (mm) Fmean
max (kN) ηmean (J) ρFmaxη

True joint PDF

0.1 0.8103 6.6701× 10−5 0.4855

0.025 6.4519 1.4362× 10−4 0.0931

Identified joint PDF

0.1 0.8900 7.7875× 10−5 0.4582

0.025 7.2117 1.7117× 10−4 0.0686

Identified joint PDF without correlation

0.1 0.9184 8.0536× 10−5 0.4655

0.025 7.2788 1.7187× 10−4 0.1187
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(a) True joint PDF (b) Identified joint PDF (c) Identified joint PDF without
correlation

Figure 5-16: Damage: the scatter plots of the maximum force (Fmax) and dissipated energy (η) for the type B
networks with constituent lengths randomly sampled from a uniform distribution with bounds 1 mm and 1.5 mm
and h = 0.1 mm. One can observe similar trends for all cases. The means are larger for the cases with the
identified PDFs than for the cases with the true PDF (Table 5.7).

(a) True joint PDF (b) Identified joint PDF (c) Identified joint PDF without
correlation

Figure 5-17: Damage: the scatter plots of the maximum force (Fmax) and dissipated energy (η) for the type B
networks with constituent lengths randomly sampled from a uniform distribution with bounds 1 mm and 1.5 mm
and h = 0.025 mm. One can observe similar trends for all cases. The means are larger for the cases with the
identified PDFs than for the cases with the true PDF (Table 5.7).

Table 5.7: Damage: the mean values and Pearson correlation coefficient for the type B networks with constituent
lengths randomly sampled from uniform distribution with bounds 1 mm and 1.5 mm.

h (mm) Fmean
max (kN) ηmean (J) ρFmaxη

True joint PDF

0.1 1.3353 8.9301× 10−5 0.2929

0.025 6.6424 1.6227× 10−4 0.1080

Identified joint PDF

0.1 1.4664 1.0496× 10−4 0.3600

0.025 7.4416 1.9584× 10−4 0.0737

Identified joint PDF without correlation

0.1 1.5131 1.0977× 10−4 0.2430

0.025 7.4673 1.9346× 10−4 0.0192
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(a) True joint PDF (b) Identified joint PDF (c) Identified joint PDF without
correlation

Figure 5-18: Damage: the scatter plots of the maximum force (Fmax) and dissipated energy (η) for the type
C networks with 2000 constituents. The mean values of the maximum force, dissipated energy, as well as the
correlation coefficient are shown in Table 5.8.

(a) True joint PDF (b) Identified joint PDF (c) Identified joint PDF without
correlation

Figure 5-19: Damage: the scatter plots of the maximum force (Fmax) and dissipated energy (η) for the type
C networks with 5000 constituents. The mean values of the maximum force, dissipated energy, as well as the
correlation coefficient are shown in Table 5.8.

Table 5.8: Damage: the mean values and Pearson correlation coefficient for the type C networks.

.

Number of constituents Fmean
max (kN) ηmean (J) ρFmaxη

True joint PDF

2000 3.2110 1.1724× 10−4 0.2274

5000 11.2996 1.6765× 10−4 0.0775

Identified joint PDF

2000 3.6055 1.4084× 10−4 0.2416

5000 12.7403 2.0117× 10−4 0.0498

Identified joint PDF without correlation

2000 3.6680 1.3764× 10−4 0.2374

5000 12.7334 1.9868× 10−4 0.0215
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Elastoplasticity

Some typical results of individual simulations for elastoplasticity are shown in Figs. 5-20 to 5-23.
For the statistical analyses below, we describe the predicted force-displacement responses using
the typical 1D expression of isotropic elastoplasticity with linear hardening for monotonically
increasing, uniaxial tension, in which reaction force F is a function of prescribed displacement
uBC (see Fig. 5-2) as follows:

F =

{
kEuBC if uBC <

Fy0
kE

Fy0 + kEkP
kE+kP

(uBC − Fy0
kE

) if uBC ≥ Fy0
kE

, (5.29)

where kE , Fy0 and kP denote the system’s equivalent elastic stiffness, initial yield force and
hardening stiffness, respectively.

(a) (b) (c) (d)

Figure 5-20: Elastoplasticity: some typical patterns of the maximum cumulative plastic strain per beam element
for the type A networks with h = 0.1 mm (blue: no cumulative plastic strain, red: maximum cumulative plastic
strain), as well as some force-displacement curves.

(a) (b) (c) (d)

Figure 5-21: Elastoplasticity: some typical patterns of the maximum cumulative plastic strain per beam element
for the type B networks with h = 0.1 mm and constituent lengths ranging between 0.3 mm and 0.6 mm (blue: no
cumulative plastic strain, red: maximum cumulative plastic strain), as well as some force-displacement curves.
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(a) (b) (c) (d)

Figure 5-22: Elastoplasticity: some typical patterns of the maximum cumulative plastic strain per beam element
for the type B networks with h = 0.1 mm and constituent lengths ranging between 1 mm and 1.5 mm (blue: no
cumulative plastic strain, red: maximum cumulative plastic strain), as well as some force-displacement curves.

(a) (b) (c) (d)

Figure 5-23: Elastoplasticity: some typical patterns of the maximum cumulative plastic strain per beam element
for the type C networks with 2000 constituents (blue: no cumulative plastic strain, red: maximum cumulative
plastic strain), as well as some force-displacement curves.

We start again by discussing the scatter plots for the networks of type A with h = 0.1 mm,
which are presented on three different planes in Fig. 5-24. The mean values of kE and kP
are again somewhat larger for the cases with the identified PDFs than for the cases with the
true PDF (Table 5.9), but a substantial difference can now be observed for the cases with the
identified PDF with and without correlation: the PDF predicted with correlation is substantially
closer to the PDF predicted with the true material parameter PDF than the PDF predicted
without correlation.

If we increase the constituent density by reducing h = 0.1 mm to h = 0.025 mm, we see
similar trends (Fig. 5-25 and Table 5.9). The mean values of kE and kP are again approximately
0.5% larger for the cases with the identified PDFs than for the cases with the true PDF and the
correlation is significantly better predicted by the cases with the identified PDF with correlation
than by the cases with the identified PDF without correlation.
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(a) (b) (c)
True joint PDF

(d) (e) (f)
Identified joint PDF

(g) (h) (i)
Identified joint PDF without correlation

Figure 5-24: Elastoplasticity: the scatter plots of the systems’ equivalent elastic stiffness (kE), initial yield force
(Fy0) and plastic stiffness (kP ) for the type A networks with h = 0.1 mm. Comparing (a), (d) and (g) and (b),
(e) and (h) shows that the correlation between system parameters is substantially better predicted by the cases
with the identified PDF with correlation than by the cases with the identified PDF without correlation.
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(a) (b) (c)
True joint PDF

(d) (e) (f)
Identified joint PDF

(g) (h) (i)
Identified joint PDF without correlation

Figure 5-25: Elastoplasticity: the scatter plots of the systems’ equivalent elastic stiffness (kE), initial yield force
(Fy0) and plastic stiffness (kP ) for the type A networks with h = 0.025 mm. Similar as for the case with h = 0.1,
the correlation between the system parameters is substantially better predicted by the cases with the identified
PDF with correlation than by the cases with the identified PDF without correlation.

Table 5.9: Elastoplasticity: the mean values and Pearson correlation coefficients for the type A networks.

h (mm) kmean
E ( kN

mm) Fmean
y0 (kN) kmean

P ( kN
mm) ρkEFy0 ρkEkP ρFy0kP

True joint PDF

0.1 991.1905 7.2735 205.7121 0.6790 0.4605 -0.0257

0.025 3987.025 29.2798 827.4717 0.7057 0.5077 0.0502

Identified joint PDF

0.1 997.0578 7.2563 206.3549 0.5805 0.5535 0.0605

0.025 4009.4294 29.1966 830.0712 0.5793 0.6074 0.1056

Identified joint PDF without correlation

0.1 997.0578 7.2463 206.0329 -0.0228 -0.0249 0.0471

0.025 4008.8975 29.1396 828.4127 0.0439 0.0046 0.0948
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If we now increase the geometrical randomness by considering the networks of type B charac-
terised by lmin = 0.3 mm, lmax = 0.3 mm and h = 0.1 mm, we see that the correlation increases
substantially (Fig. 5-26 and Table 5.10). Consequently, incorporating the correlation in the
identified PDF seems of less influence than if type A networks are considered. We nevertheless
still observe that the PDF predicted with the identified PDF with correlation is closer to the
PDF predicted with the true PDF than the PDF predicted with the identified PDF without
correlation. Increasing the fibre density (by setting h = 0.025 mm, instead of h = 0.1 mm)
makes this difference grow (see Fig. 5-27 and Table 5.10).

(a) (b) (c)
True joint PDF

(d) (e) (f)
Identified joint PDF

(g) (h) (i)
Identified joint PDF without correlation

Figure 5-26: Elastoplasticity: the scatter plots of the systems’ equivalent elastic stiffness (kE), initial yield force
(Fy0) and plastic stiffness (kP ) for the type B networks with constituent lengths randomly sampled from a
uniform distribution with bounds 0.3 mm and 0.6 mm and h = 0.1 mm. The results show that the effect of the
correlation between the material parameters is smaller than for the type A networks, but remains to be present.
The numerical values are presented in Table 5.10.
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(a) (b) (c)
True joint PDF

(d) (e) (f)
Identified joint PDF

(g) (h) (i)
Identified joint PDF without correlation

Figure 5-27: Elastoplasticity: the scatter plots of the systems’ equivalent elastic stiffness (kE), initial yield force
(Fy0) and plastic stiffness (kP ) for the type B networks with constituent lengths randomly sampled from a
uniform distribution with bounds 0.3 mm and 0.6 mm and h = 0.025 mm. The influence of the correlation has
increased due to the increased constituent density (cf. Fig. 5-26). The corresponding numerical values are given
in Table 5.10.

Table 5.10: Elastoplasticity: the mean values and Pearson correlation coefficients for the type B networks with
constituent lengths randomly sampled from a uniform distribution with bounds 0.3 mm and 0.6 mm.

h (mm) kmean
E ( kN

mm) Fmean
y0 (kN) kmean

P ( kN
mm) ρkEFy0 ρkEkP ρFy0kP

True joint PDF

0.1 602.0250 4.4260 125.3475 0.9522 0.9773 0.9008

0.025 3688.1158 27.0729 765.4818 0.6984 0.6128 0.1191

Identified joint PDF

0.1 605.7327 4.4164 125.7086 0.9593 0.9593 0.9251

0.025 3708.7848 26.9940 768.1752 0.6410 0.7212 0.2746

Identified joint PDF without correlation

0.1 605.7224 4.4094 125.5335 0.9337 0.9572 0.9278

0.025 3709.4773 26.9600 766.6929 0.1778 0.3156 0.0694
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If we now increase the length of the constituents by setting lmin = 1 mm and lmax =
1.5 mm, we also see that the correlation between the systems parameters is better captured if
the correlation is incorporated in the identified PDF (see Fig. 5-28 and Table 5.11). We also
see that if we increase the constituent density (by reducing h = 0.1 mm to h = 0.025 mm),
the importance of incorporating the correlation increases (see Fig. 5-29 and Table 5.11). We
can also conclude by comparing these results with the ones in which the constituent lengths is
bound by lmin = 0.3 mm and lmax = 0.6 mm, that a reduction of the constituent length leads to
an increase of the intrinsic correlation between system parameters (regardless of the material
parameter PDF used).

(a) (b) (c)
True joint PDF

(d) (e) (f)
Identified joint PDF

(g) (h) (i)
Identified joint PDF without correlation

Figure 5-28: Elastoplasticity: the scatter plots of the systems’ equivalent elastic stiffness (kE), initial yield force
(Fy0) and plastic stiffness (kP ) for the type B networks with constituent lengths randomly sampled from uniform
distribution with bounds 1 mm and 1.5 mm and h = 0.1 mm. The results show that the influence of the
correlation is important to incorporate. The numerical values are presented in Table 5.11.
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(a) (b) (c)
True joint PDF

(d) (e) (f)
Identified joint PDF

(g) (h) (i)
Identified joint PDF without correlation

Figure 5-29: Elastoplasticity: the scatter plots of the systems’ equivalent elastic stiffness (kE), initial yield force
(Fy0) and plastic stiffness (kP ) for the type B networks with constituent lengths randomly drawn from a uniform
distribution with bounds 1 mm and 1.5 mm and h = 0.025 mm. The results show that the influence of the
correlation is more important to incorporate due to the increased fibre density (cf. Fig. 5-28). The numerical
values are presented in Table 5.11.

Table 5.11: Elastoplasticity: the mean values and Pearson correlation coefficients for the type B networks with
constituent lengths randomly sampled from a uniform distribution with bounds 1 mm and 1.5 mm.

h (mm) kmean
E ( kN

mm) Fmean
y0 (kN) kmean

P ( kN
mm) ρkEFy0 ρkEkP ρFy0kP

True joint PDF

0.1 812.2191 5.9523 168.6532 0.8241 0.8488 0.5362

0.025 3828.9229 28.1010 794.4644 0.7389 0.6384 0.1997

Identified joint PDF

0.1 817.0609 5.9371 169.2043 0.8165 0.8696 0.6005

0.025 3851.4226 28.0314 797.1486 0.6566 0.6957 0.2260

Identified joint PDF without correlation

0.1 816.9840 5.9275 168.9104 0.6189 0.7018 0.5796

0.025 3851.4167 27.9573 795.3540 0.2157 0.2694 0.1635
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Finally, we show the results for the type C networks (Figs. 5-30 and 5-31 and Table 5.12).
We see that the intrinsic correlation between the system’s parameters (regardless of the material
parameter PDF used) becomes even more pronounced than was the case for the type B networks.
Apparently, this is caused by the increased geometrical randomness. Consequently, the influence
of incorporating the correlation in the identified PDF becomes less important, but the cases
with the identified PDF with correlation still outperform those with the identified PDF without
correlation.

(a) (b) (c)
True joint PDF

(d) (e) (f)
Identified joint PDF

(g) (h) (i)
Identified joint PDF without correlation

Figure 5-30: Elastoplasticity: the scatter plots of the systems’ equivalent elastic stiffness (kE), initial yield force
(Fy0) and plastic stiffness (kP ) for the type C networks with 2000 constituents. Due to the increased geometrical
randomness relative to the type B networks, the correlation is also captured by the cases with the identified PDF
without correlation, although they are still outperformed by the cases with the identified PDF with correlation.
The corresponding numerical values are given in Table 5.12.
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(a) (b) (c)
True joint PDF

(d) (e) (f)
Identified joint PDF

(g) (h) (i)
Identified joint PDF without correlation

Figure 5-31: Elastoplasticity: the scatter plots of the systems’ equivalent elastic stiffness (kE), initial yield force
(Fy0) and plastic stiffness (kP ) for the type C networks with 5000 constituents. Due to the increased geometrical
randomness relative to the type B networks, the correlation is also captured by the cases with the identified PDF
without correlation, although they are still outperformed by the cases with the identified PDF with correlation.
The corresponding numerical values are given in Table 5.12.

Table 5.12: Elastoplasticity: the mean values and Pearson correlation coefficients for the type C networks.

Number of constituents kmean
E ( kN

mm) Fmean
y0 (kN) kmean

P ( kN
mm) ρkEFy0 ρkEkP ρFy0kP

True joint PDF

2000 2531.535 18.5793 525.0600 0.9879 0.9936 0.9726

5000 7077.5611 51.9244 1468.4445 0.9824 0.9908 0.9587

Identified joint PDF

2000 2546.6575 18.5359 526.9446 0.9897 0.9943 0.9783

5000 7118.7663 51.7978 1473.4988 0.9857 0.9926 0.9700

Identified joint PDF without correlation

2000 2546.6575 18.4928 525.7414 0.9806 0.9882 0.9763

5000 7118.3975 51.6759 1470.2447 0.9730 0.9834 0.9683
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5.6 Conclusion

This chapter deals with the issue that different fibres, struts or yarns in fibrous and other discrete
materials often have different material properties. We assume that the material properties of
each fibre, strut or yarn are a realisation from some PDF. The question we try to answer is how
the parameters of this PDF can be identified with limited experimental means; by testing only
20 constituents instead of hundreds.

We have proposed a four step identification scheme to determine the PDF’s parameters.
Bayesian inference plays an important role in the identification scheme as it regularises the
individual identification problems. When the material parameters of each of the 20 constituents
are identified, we first select a univariate PDF for each type of material parameter and identify
the parameters of each univariate PDF using the regularisation offered by Bayesian inference.
When the parameters of the univariate PDFs are identified, we join them in a single, joint PDF
by the use of a copula function. The parameters of the copula need to be identified in turn, for
which we again use Bayesian inference.

The presented identification results show that the identified PDFs are accurate representa-
tions of the true PDFs. The results also show that incorporating the correlation between the
different types of material parameters (via copulas) improves the quality of the identified PDF.

Not only the material randomness is of influence on the macroscale responses of fibrous and
other discrete materials however, but also the geometrical randomness. We have therefore also
conducted a forward study using random network models in which the different PDFs are used
to sample the material parameters of the constituents. These results have indicated that if a
perfectly brittle damage model is used, the incorporation of the correlation between the Young’s
modulus and the failure strain has practically no influence on the accuracy of the predicted
PDFs. We have also shown that the amount of geometrical randomness is of no influence. This
story changes for elastoplasticity however. The correlation between the material parameters
is important to incorporate and becomes more important if the fibre density increases or if
the fibre length increases. We have also shown that the correlation’s influence reduces for an
increase of the geometrical randomness.
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Chapter 6

Conclusions and outlook

6.1 Conclusions

In this thesis, Bayesian inference was developed to identify material parameters in solid me-
chanics. From a Bayesian perspective, uncertainties about values such as material parameters
(e.g. uncertainties caused by measurement errors or model errors) are modelled as probability
distributions. In Bayesian frameworks the prior choices for the probability distributions (i.e. the
user’s initial knowledge, represented by probability distributions) is updated by measurements
through Bayes’ theorem. The identification frameworks given here were mainly presented for
uniaxial tests on elastoplastic and viscoelastic material models.

In Chapter 2, a gentle tutorial on Bayesian inference for the identification of parameters in
elastoplasticity is presented. The results of this chapter have shown that the influence of prior
knowledge on the posterior decreases as the number of measurements increases and that the
posterior becomes narrower for an increase of the number of measurements (i.e. the uncertainty
decreases). The results have also shown that as the number of measurements increases the point
estimators of Bayesian inference (e.g. mean and MAP point, the point in which the posterior
is maximum) tend to the values identified by the least squares method. It must be noted that
the least squares method yielded a single set of identified values for the cases considered in this
chapter.

In Chapter 3 a framework to identify viscoelastic materials was presented. The model of
interest was the standard linear solid model and the experiments of interest were a relaxation
test, a constant strain-rate test and a creep test in tension. One of the chapter’s two objectives
was to investigate the influence of the number of measurements and the influence of the prior on
the identification results. The second aim was to investigate how the three different experiments
affect the point estimators and their uncertainties. The results have shown that the prior in
viscoelasticity has a larger effect on the point estimators (i.e. mean and MAP point), than
the prior in elastoplasticity. Moreover, the results have shown that the uncertainty in the
identified parameters resulting from the constant strain-rate test is substantially larger than
those resulting from the relaxation test and the creep test. This can be due to the asymptotic
behaviour in the relaxation and creep test, for which only one parameter is responsible. This
entails that the uncertainty of this parameter is relatively small and, because of that, the
uncertainties of the other parameters are also relatively small compared to those resulting from
the constant strain-rate experiment.

In Chapter 4 a Bayesian framework to identify parameters in elasticity and elastoplasticity
was formulated which not only considered the error in the output (error in the stress), but
also the input error (the error in the strain), as well as the uncertainty in the model. Three
different formulations are employed to describe the model uncertainty: (1) a random variable
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coming from a normal distribution with constant parameters, (2) a random variable coming
from a normal distribution with an input-dependent mean and (3) a Gaussian process with a
stationary covariance function.

The results have shown that incorporating any of the three model uncertainty formulations
results in wider marginal posterior distributions of the Young’s modulus. Consequently, the
chance that the posterior distributions include the true value increases. Incorporating model
uncertainty also results in wider posterior prediction intervals, which therefore contain more
measurements.

If the error in the input (strain) was also considered, the resulting marginal posterior of
the Young’s modulus became even wider (with the exception of the Gaussian process as the
model uncertainty). The posterior became narrower in this case, albeit the posterior at the true
value was larger. This means that the true value has a higher chance to be realised from the
posterior. Including the error in the input (strain) as well as model uncertainty also resulted in
wider posterior prediction intervals. This increases the chance that these intervals contain the
measurement data. If the model uncertainty is presented by a Gaussian process however, the
prediction intervals did not become wider but did contain more measurements than if the input
error was not included.

The results of this chapter have generally shown that incorporating both model uncertainty
and the input error (besides the commonly incorporated output error) favourably influence
the identified parameters and the posterior predictions, compared to only incorporating model
uncertainty or only incorporating the input error (besides the commonly incorporated output
error). As the difference between the true response and the response of the material model
increases however, the added value of incorporating the input error as well reduces substantially.

Finally in Chapter 5, random fibre networks were considered for which it was assumed that
the material parameter set of each fibre is a realisation of a probability density function (PDF).
The aim was to identify the parameters of this PDF by testing a limited number of fibres
(i.e. 20), instead of testing hundreds. Bayesian inference regularises this identification problem,
because 20 parameter sets do not allow a deterministic identification of the PDF’s parameters.
The results have shown that the identified PDFs are sufficiently accurate approximations of the
true PDFs.

The macroscale responses of random fibre networks are however also influenced by geomet-
rical randomness. Chapter 5 therefore also aims to answer the question ‘how precisely should
the material randomness be identified, if geometrical randomness also exists?’ The results of
propagating the identified and true PDFs in random network models have shown that if a per-
fectly brittle damage model was considered, the incorporation of the correlation between the
Young’s modulus and the failure strain had practically no influence on the predicted PDFs. The
opposite was observed for elastoplasticity however. The results for elastoplasticity have further-
more indicated that the correlation becomes less important to incorporate for an increase of the
geometrical randomness and more important for an increase of the fibre density, as well as for
an increase of the fibre length.

6.2 Future work

The following list details some possible future research directions based on the work and results
of the presented thesis:

(1) Develop nonparametric formulations (e.g. Gaussian processes) for model uncertainty that
incorporate the physical constraints of the identification problem at hand. Physical con-
straints have so far only been considered parametric formulations for model uncertainty
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[135]. For example, incompressibility constraints for rubber-like and biological materials
may be an interesting research direction [136].

(2) Model uncertainty may also be represented by random walks, which to the best of the
author’s knowledge were subject to very limited amounts of research [76]. Random walks
may be convenient to describe model uncertainty thanks to their natural stochastic nature
and the ease of implementation.

(3) In the case of random fibre networks, the material parameter set of each fibre was assumed
to be a realisation from some probability density function. The material parameters may
however spatially differ for each fibre, which may result in more accurate frameworks
(provided that the spatial distributions can be identified). Spatial distributions may also
be, and are currently, considered for continuous materials and the spatial characteristics
of the distributions may be related to small-scale phenomena such as the underlying
crystallographic structures of metals.

(4) Systematic studying the effect of boundary conditions on the uncertainty of the identi-
fied parameter values may also be considered an additional research direction. Results
in Chapter 3 have shown that the type of experiment influences the uncertainty of the
identified parameter values. This may also be true for boundary conditions.

(5) Develop an efficient Bayesian framework for parameter estimation in systems with large
number of parameters [137], although this was performed in the study by Bui-Thanh et
al. [137] for a linearised Bayesian formulation.

(6) Markov chain Monte Carlo methods may not be computationally efficient if data is gath-
ered in real-time and online parameter identification is needed (e.g. for real-time identi-
fication of dynamic models[138]). The development of an efficient framework based on
Bayesian inference can be a research direction [139].

6.3 Recommendations for new comers in Bayesian inference

Despite the fact that numerous research papers and text books exist for Bayesian inference and
Bayesian theory, finding a proper starting point can be a challenge for new comers in the field.
The book ‘Bayesian Data Analysis’ by Gelman et al. [17] may be perceived as useful because it
covers the most essential topics in a simple way. The study ‘Bayesian system identification based
on probability logic’ by Beck [16] furthermore provides a nice and relatively short illustration on
system identification using Bayesian inference, as well as some useful concepts on probabilistic
identification. More information about Markov chain Monte Carlo sampling techniques can
be found in the books ‘Markov chain Monte Carlo in practice’ [23] and ‘Handbook of Markov
chain Monte Carlo’ [24], whilst a gentle introduction on sampling and the Metropolis-Hastings
algorithm is provided in [2]. Both JAGS [140] and Stan [141] furthermore are programmes that
can be used for sampling.
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[57] B.V. Rosić, A. Kčerová, J. Sýkora, O. Pajonk, A. Litvinenko, H.G. Matthies, Param-
eter identification in a probabilistic setting, Engineering Structures 50 (2013) 179–196,
Engineering Structures: Modelling and Computations (special issue IASS-IACM 2012).

[58] W.P. Hernandez, F.C.L. Borges, D.A. Castello, N. Roitman, C. Magluta, Bayesian infer-
ence applied on model calibration of fractional derivative viscoelastic model, in: V. Steffen
Jr, D.A. Rade, W.M. Bessa (Eds.), DINAME 2015-Proceedings of the XVII International
symposium on dynamic problems of mechanics, Natal, 2015.

[59] J.M. Nichols, W.A. Link, K.D. Murphy, C.C. Olson, A Bayesian approach to identify-
ing structural nonlinearity using free-decay response: Application to damage detection in
composites, Journal of Sound and Vibration 329 (15) (2010) 2995–3007.

[60] S. Abhinav, C.S. Manohar, Bayesian parameter identification in dynamic state space mod-
els using modified measurement equations, International Journal of Non-Linear Mechanics
71 (2015) 89–103.

[61] S. Madireddy, B. Sista, K. Vemaganti, A Bayesian approach to selecting hyperelastic con-
stitutive models of soft tissue, Computer Methods in Applied Mechanics and Engineering
291 (2015) 102–122.

170



[62] J.T. Oden, E.E. Prudencio, A. Hawkins-Daarud, Selection and assesment of phenomeno-
logical models of tumor growth, Mathematical Models and Methods in Applied Sciences
23 (7) (2013) 1309–1338.

[63] J. Chiach́ıo, M. Chiach́ıo, A. Saxena, S. Sankararaman, G. Rus, K. Goebel, Bayesian
model selection and parameter estimation for fatigue damage progression models in com-
posites, International Journal of Fatigue 70 (2015) 361–373.
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