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Nucleon-nucleon interaction in the chromodielectric soliton model: Dynamics
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The present work is an extension of a previous study of the nucleon-nucleon interaction based on the
chromodielectric soliton model. The former approach was static, leading to an adiabatic potential. Here we
perform a dynamical study in the framework of the generator coordinate method. In practice we derive an
approximate Hill-Wheeler differential equation and obtain a local nucleon-nucleon potential as a function of a
mean generator coordinate. This coordinate is related to an effective separation distance between the two
nucleons by a Fujiwara transformation. This latter relationship is especially useful in studying the quark
substructure of light nuclei. We investigate the explicit contribution of the one-gluon exchange part of the
six-quark Hamiltonian to the nucleon-nucleon potential, and we find that the dynamics are responsible for a
significant part of the short-randé-N repulsion.

PACS numbds): 24.85+p, 21.30.Fe, 13.75.Cs, 12.39.Ba

I. INTRODUCTION D,=d,—igsT?A%, andeLV: 9, AS—9,A% + gsfabCAzAj is
the SU3)-color gauge field tensor, whefé° are the S(3)
In a previous investigatiofil], we studied theN-N inter-  structure constants afid the SU3) generators. The quantity
action in the framework of the chromodielectric soliton U(o) is the self-interaction of the scalar field, taken to be
model from a static point of view: we used the Born- of the form
Oppenheimer approximation to derive an adiabhibl po-

tential, which showed a soft core repulsion due essentially to U(o)= %UZJF £|‘73+ %U4+ B, (5)
the color-electrostatic part of the one-gluon exchange. Previ- 2! 3! 4!

ous studies of th&l-N interaction in terms of quark degrges and the dielectric function(o) is

of freedom[ 2] have pointed out the importance of dynamical

methods(such as generator coordinate or resonating group a\¥ o

in the calculation of a realistibl-N potential. For example, x(0)=1+6(0) 7, 2_U_3 ! (6)

in a preceding application of the nontopological soliton _ _ _

model to theN-N problem, Schutet al. [3] showed that a Whereo, is the scalar field’s vacuum expectation value and

significant part of the repulsion was due to dynamics; thef the usual step function. _ . . .

absence of a repulsive core in some previous works was also The quark self-energy, due to interactions with confined

interpreted as an artifact of the adiabatic approximal@n gl_uons in the dielectric medium, generates an effective cou-
The Lagrangian of the chromodielectric model is definedP!iNg between the quarks and the scalar field:

as in Ref[1]:

f%qa: _geff(o') ‘Z@b’ (7)
L= Lqt Lot Lo, (1) we choosayq(o) to be of the form:
with 1
~ e 0) =G0, m—l)- ®)

L= (i y*D ,—my) i, 2
o= YYD, My @ The expression in E(@8) is an approximation to what has

1 been calculated in Ref4], and it is constructed to simulate
L y=50,00 c—U(0), (3) spatial confinement already at the mean field level. Note that

2 the coupling in Eq.8) breaks the chiral invariance of the
Lagrangian of Eq(1). This is an example of dynamical sym-
metry breaking from which a massless Goldstone boson
emerges naturally.

The parameters involved in our calculation are
wherey is the quark operator and, the current quark mass a,b,c,go, andas= g§/47-r, as discussed in detail in R¢fL].
matrix, set here ton,=0. The quark Lagrangiary, is ex- By fitting the nucleon and tha masses and the proton’s rms
pressed in terms of the covariant derivative charge radius one remains with two free parameters, for

1
Fo=— ZK(O’)FZVng, (4)
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which it is convenient to use the dimensionless quantities @his is a homogeneous Fredholm-type equation of the first
and f=b?/ac. In this paper, we have chosen the $etox kind, notoriously unstable numerically. Although some meth-
and ¢=10 000 taken from Table | of Refl]. Contrary to ods exist to make it stablésuch as regularizatiof9], re-
Ref.[3], the quarks here are not only coupled to théield  moval of the zero normalization eigenmodé€)], Gaussian
but also interact among themselves through one-gluon exransform[11], etc), we prefer to solve a differential equa-
change(OGE). The OGE is treated in Abelian approxima- tion approximately equivalent to the Hill-Wheeler equation,
tion, and it can be separated into two terms: a self-interactioboth for numerical stability and to facilitate comparison with
term[in addition tog.s(o) of Eq. (8)], which is required for analyses based on the Scllimger equation. In genera, is
color confinement and which contributes to the one-bodya multidimensional parameter. It is at least three-dimensional
part of the Hamiltonian, and a term of mutual interactions,when correspondence is madertoWe here restrict the cal-
which gives rise to the two-body part of the Hamiltonian. As culations to the zero-impact parameter case, which reduces
mentioned earlier, in the adiabatic approximation of REf,  the problem to a one-dimensional one, and leave consider-
it was the color-electrostatic part of the OGE, which arisesation of the angles to a later study.
from the time component of the gluonic quadrivectbj,
and especially the corresponding self-energy diagrams, Iil. THE HILL-WHEELER DIFFERENTIAL EQUATION
which were responsible for the soft core repulsion. ) ) i i o

In this work, we incorporate the dynamics of theN _ To derive suc_h a differential equation, it is more conve-
interaction by employing the generator coordinate methodt€nt to work with mean and relative deformation param-
(GCM); we derive an approximate differential equation for e€rs,8 and s, defined as
the N-N wave function describing the relative motion of the

two nucleons. This equation contains a lob&N potential B = ata ,
and an effective, coordinate dependent mass. By means of a 2
Fujiwara transformation, we then defineNaN separation S = a—a'. (12)

length,x, from the deformation parameter used previously in

the adiabatic approximation. This allows us to introduce a&Expanding the weight function in a Taylor series around
constant mass and to rewrite the effective potential in term$=0, one has

of this coordinatex. One of our objectives is to study the

explicit role of the one-gluon exchange effects on the local _

N-N potential, included for the first time in such type of <\P|H_E|\P>_J d’BJ’ dé
calculations. Another aim is to establish a connection be- )
tween our effective deformation parameter and the true in- n iq)*"([?’)Jr
ternucleon separation. The latter will enable us to apply our o
six-quark wave functions to studies of the quark substructure 5 2
_of light nuclei, as has been camed out already, for instance, X|D(B)— =D (B)+ =—D"(B)+ .. }

in Ref.[5]. The present numerical results correspond to the 2 8

(TS =(10) sector, although the formalism at hand can easily 13)
be extended to other isospin-spin channels.

o
O*(B)+ 5% (B)

6 é
p+HH-ElB—5

It is convenient to introduce the moments:
Il. THE GENERATOR COORDINATE METHOD

S )

The GCM was introduced in the 1950s by Hill and Hn:f d5</5’+ E‘H‘B— §> ", (14
Wheeler{6] to describe collective motion in nuclear systems,
such as rotation, vibration or center of mass moti@(8]. S S
Starting from a many-body wave functioa) depending on anf d5<lg+ _’ﬁ_ _> SN (15)
a collective coordinater (the deformation parameter of the 2 2
six-quark system in our cagea trial wave function is con-
structed by taking a linear combination of the stateswith
some weight functiorb(«),

Because( 8+ 8/2|H—E|B— 5/2) is an even function o,

the odd moments are zero. Supposing, moreover, that

(B+ 6I12lH—E|B—6/2) is a sharply peaked function df,

one can stop the expansion at second orde#.irPartial

|\If)=j d(a)|a)da, (9)  integration and variation by®* leads then to the Hill-
Wheeler differential equation:

where®(«) is determined through the variational principle d dd 1 d?H,
= 55| (H,—ENy)——= | +|Ho+ 5 =57 |®
o8 (e o 2dﬂ<( 2~ EN2Jgg | | Mot g dﬁz}
80T (w|w)y 2N,
=E NO+§d_,32 o, (16)

which leads to the Hill-Wheeler integral equation:
The introduction of a new function

j<a|H—E|a’><I>(a’)da’=O. (1) B(B)=\No(B)D(B), (7
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where
N 1 d°N p— color.-m
No=No+ 5 —= (18 o0 i :
8 dg .
© 600
allows us to transform Eq16) into Hermitian form =
~ 400
d_1 9 v b -ed 19 =
whereV(B) is given by o B
. -4 4
Ho 1 d d| 1 g [fm]
V(B)==—+—=— 5| (H,—ENy)==| —=—| |,
(20 FIG. 1. The effective mas8(B) of Eq. (22), as a function of

the deformation parametes; the solid, dashed, and dotted lines
correspond, respectively, to the ca¢as (b), and(c) introduced in
. 1 d2H2 Eq. (26). The asymptotic values of Eq&73 and (27b) are indi-
Ho=Ho+ 8 dg (21)  cated by the arrows.

with

and the full one-gluon exchange contribution; they are given
explicitly in Ref. [1]. In case(c), the one-gluon exchange
was left out altogether. This is in the spirit of an earlier
(22 investigation where the Friedberg-Lee soliton model was ap-
plied to N-N scattering without considering gluonic degrees
The total energjE enters the definition oB; its asymptotic ~ ©f freédom[3]. In case(b), the color-magnetic hyperfine in-
form at threshold is teraction was accounted for, and in cdagthe full color-
magnetic and color-electrostatic OGE was included. The rea-
E=2m, (23 son to distinguish between cas@s and (b) is that in the
literature it was claimed that the color-magnetic part of the
wheremy is the nucleon mass. Note that because we did NoOGE itself is responsible for the repulsive core of tieN
incorporate center of mass corrections the asymptotic valugiteraction[13]. We shall return to this point at the end of
of the potential in Eq(20) is not equal to the experimental Sec. V.
value of 2my. We have indeed/(») = 2468 MeV when The plot of B as a function of3 is given in Fig. 1 for the
gluons are not included and(«) = 2240 MeV when they three case$a), (b), and(c). B converges towards a constant
are. In practice, we could obtain a value closer to the experivalue .., which can be calculated from considering two well-
mental value by subtracting recoil corrections from the asseparated noninteracting three-quark bags:
ymptotic energy:

The termB(B) is the effective mass

T HEN

Vi 2 ©n=763.6 MeV in case&) and(b), (273
mﬁF(T) —(P?), (24) ©~=502.3 MeV in cas€c). (27b

but we prefer to avoid this step. This simplification does notWe would expeciu to be equal to the reduced massy/2.
affect our conclusions. Following Brink and Banerjg®],  The discrepancy between the valuessodndmy/2, which is

we replaceE in the mass term by especially drastic if the OGE is included, i.e., in cag@sand
(b), is related to the well-known Peierls-Yoccoz disease
Ho(B) [8,10], i.e., the fact that the simplest version of the GCM
E— No(B) (29 theory does, in general, not yield the proper mass. In the

framework of the GCM, this shortcoming can be cured by

This approximation is consistent with neglecting higher or-either including the momentum conjugate to the collective
der derivatives of the moments in the Hamiltonian. coordinate and carrying out double project[d4] or by pro-
The momentH, (n=0, 2) and the corresponding quan- viding the state vectors with a collective bop$5]. Alterna-

tities B(B) andV(B) have been calculated for three distinct tively, one could evoke a time-dependent Hartree-Fock cal-

cases: culation or employ the variation-after-projection method.
) However, all of this is far beyond the scope of this investi-
(8 H=H}"*Hoge, gation.
(b) H=HY@4+HZ,

ba IV. THE FUJIWARA TRANSFORMATION
(©) H=H", (26)
The dependence of the effective mass@mprevents us
whereH%9, HD39 - andH ¢ are, respectively, the nonglu- from directly interpreting the potential in E€R0) as an or-

onic one-body term of the Hamiltonian, the color-magneticdinary N-N potential. Moreover8 does not correspond to
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FIG. 2. The Fujiwara coordinat&(g) of Eq. (28), as a function color.—mag.
of the deformation parametgd. The long-dashed line shows the - no 0GE
asymptotic solutionx(8)= 8, and the remaining labeling is the © 500"
same as in Fig. 1. E,
the trueN-N separation distancéexcept for large positive 3,3_, 250
B when the two nucleons are well separatécherefore, we =
wish to transform Eq(19) into a Schrdinger-like equation
with a constant, coordinate independent mass term. For this 0 " 2'

purpose, one can use a Fujiwara transformafib6,17],
which relates the generator coordingé¢o an effectiveN-N

separation length:
o B 4
x(ﬁ)=—f \/—('B )—1}d,8'+,8.
B M

If one now redefines the weight function in E4.9) as

g [fm]

FIG. 3. The two contributions to the local potentigly(B) of
Eq. (34) andV4(B8) of Eq. (35), as functions of the mean generator
coordinateB. The solid, dashed, and dotted lines correspond to
casegqa), (b), and(c) introduced in Eq(26).

(28)

whereV(B) andVg(B) are given in Eqs(20) and(31). The

. 4 [B(B) value of V(=) corresponds to the asymptotic value of
(B)= Tw(x)’ (29 Ho/Ng calculated from two well-separated noninteracting
three-quark bags, and it is given in Sec. lll. This asymptotic
Eq. (19 transforms into the familiar form value is the same in caséa) and (b) because the color-
electrostatic mutual and self-energy terms cancel exactly due
d? to color neutrality when the two nucleons are well separated.
"o 32 TV Ve[ Y(X)=E¥(x), (30 It is convenient to rewritd/,,(3) in the following form:
with V given by Eq.(20) and Viee(B)=Vo(B) +V1(B), (33
7 (dB\*> 1 d°B with
Ve(B)= 3283(d[3) 8B% dg2" (31)
Figure 2 displays the explicit relationship betweeand Vo(B) = E—V(oo), (34
B, as obtained from E(28). As expected, the deformation No
parameter3 converges asymptotically towards the effective
internucleon separation For finite deformationsg differs 1 [d3nN, 1/dInNo\? dInN, dinB
from x due to dynamical effects. The correspondepee x V.i(B)= 1B a3 + 5( B ) — 43 dB
should be very useful in discussions of the quark substruc-
ture of nuclei or nuclear matter using Sctirger-based 173/dinB\?2 d2InB
many-nucleon calculations and employing our six-quark + @[Z(W) - d—ﬂz (35

wave functions.

In order to calculate these derivativesBland I\, were
fitted to polynomials. The two contributiong(g) (i =0, 1)

to Vi,(B) are plotted in Fig. 3 as functions of the deforma-
tion parametep for the three cases outlined previously. Fig-
ure 4 showsV,. as a function ofg and of the Fujiwara

V. RESULTS FOR THE EFFECTIVE N-N POTENTIAL

We now wish to present detailed results for

Viee(B)=V(B) +Ve(B) = V(»), (32
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800 We recall that one of the main objectives of this and our

______ o g, previous study[1] was to incorporate explicitly one-gluon
= 400 - exchange effects, in contrast to R§8| where they were
§ 200 ‘_\\ neglected. Comparing, for instance, casasand (c), one
— can see that the OGE reinforces the repulsive core consider-
- 0 - ably. The existence of a repulsive core in all three cases
g makes us attribute it to dynamics rather than to the color-
= —200 F magnetic interactioficase(b)], as was inferred in Ref13].

—400 L — e ,
- -2 0 2
8 [fm] VI. CONCLUSIONS
In this investigation, we found that the dynamics are
600 manifestly responsible for the hard core repulsion of the
full OGE . .

------ color.—mag. short-range part of thH-N interaction, and we observed that
= 400 1 we could obtain both short-range repulsion and some inter-
§ 200 _‘\\ mediate range attraction if the entire one-gluon exchange or
— at least its electrostatic part were neglected.

E 0 == In the results containing the full OGE effects the lack of
8 ; attraction is due to the omission of explicit meson ex-
> —~200 changes. Then, to reproduce the experimental phase shifts or
400 g T , other two-body data one necessitates to attach a local OBE
-1 0 1 2 3 potential beyond a certain internuclear distafit®. To ob-

x [fm] tain this potential in the framework of our model we could

consider extending our calculations by either including quan-
tum surface fluctuations and/or introducing configurations of
FIG. 4. The nonadiabatic, local potentia, of Eq. (33, asa  the form q’q in addition to theqelst.ates. This would be a
function of the deformation parametgrand the Fujiwara coordi- 'ather cumbersome procedure within the present model. The
natex, respectively. The labeling is the same as in Fig. 3. most convenient would be to either allow mesonic degrees of
freedom and to consider, e.g., an explicit pion exchange be-
coordinatex, respectively. Note that Eq35) was obtained ;v;;egnté}ﬁézl(glv&izlng:ﬁrkﬁg] or to simply choose a phe
from Eq. (20) by replacingH,—EN, with —N,/B, as indi- Another important result of this work is the evaluation of
cated in Eq(22). S o the relationship between the deformation paramgteand
The shape o¥/q(p8) is quite similar to the adiabatic po- the effectiveN-N separation lengtix through the Fujiwara
tentials displayed in Fig. 10 of Ref1], both for the “full  ransformation. This correspondence is very useful for appli-
OGE" and “no-OGE" cases. This tends to confirm our as- cations of our model to the description of phenomena involv-
sumption that the matrix elemen{@+ 8/2|H—E[B—5/2)  ing the quark substructure of light nuclei. It furthermore al-
are rather sharply peaked aroufi¢t 0. The termV,(B) cor-  |ows us to relate many-body correlation functions NN
responds to the contribution of nonadiabaticity. It grows im-yave functions given in the literature to the GCM formalism
portant only forg=—2 fm, and yields in all cases a repul- presented here.
sion due to the dynamics. This is according to our Aap attractive way to confirm our results would be to solve
expectation and in agreement with R€8]. Note that in  girectly the Hill-Wheeler integral equation in order to obtain

cases(b) and especiallyc), we also obtain an intermediate phase shifts. Projection on good angular momentum states
range attraction iV |,.. The fact that ouN-N potential ex-  should also improve our calculations.

tends to negative should not be taken too literally. It simply

reflects inadequacies in the relationship between the defor-

mation parameteg and th_eN—N separatipn length, w_hich ACKNOWLEDGMENTS
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