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Nucleon-nucleon interaction in the chromodielectric soliton model: Dynamics
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The present work is an extension of a previous study of the nucleon-nucleon interaction based on the
chromodielectric soliton model. The former approach was static, leading to an adiabatic potential. Here we
perform a dynamical study in the framework of the generator coordinate method. In practice we derive an
approximate Hill-Wheeler differential equation and obtain a local nucleon-nucleon potential as a function of a
mean generator coordinate. This coordinate is related to an effective separation distance between the two
nucleons by a Fujiwara transformation. This latter relationship is especially useful in studying the quark
substructure of light nuclei. We investigate the explicit contribution of the one-gluon exchange part of the
six-quark Hamiltonian to the nucleon-nucleon potential, and we find that the dynamics are responsible for a
significant part of the short-rangeN-N repulsion.

PACS number~s!: 24.85.1p, 21.30.Fe, 13.75.Cs, 12.39.Ba
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I. INTRODUCTION

In a previous investigation@1#, we studied theN-N inter-
action in the framework of the chromodielectric solito
model from a static point of view: we used the Born
Oppenheimer approximation to derive an adiabaticN-N po-
tential, which showed a soft core repulsion due essentially
the color-electrostatic part of the one-gluon exchange. Pre
ous studies of theN-N interaction in terms of quark degree
of freedom@2# have pointed out the importance of dynamica
methods~such as generator coordinate or resonating grou!
in the calculation of a realisticN-N potential. For example,
in a preceding application of the nontopological solito
model to theN-N problem, Schuhet al. @3# showed that a
significant part of the repulsion was due to dynamics; t
absence of a repulsive core in some previous works was a
interpreted as an artifact of the adiabatic approximation@2#.

The Lagrangian of the chromodielectric model is define
as in Ref.@1#:

L5Lq1Ls1LG , ~1!

with

Lq5c̄~ igmDm2mq!c, ~2!

Ls5
1

2
]ms]ms2U~s!, ~3!

LG52
1

4
k~s!Fmn

a Fa
mn , ~4!

wherec is the quark operator andmq the current quark mass
matrix, set here tomq50. The quark LagrangianLq is ex-
pressed in terms of the covariant derivativ
530556-2813/96/53~3!/1368~6!/$10.00
n
-

to
vi-
s
l
p

n

he
lso

d

e

Dm5]m2 igsT
aAm

a , andFmn
a 5]mAn

a2]nAm
a1gsf

abcAm
bAn

c is
the SU~3!-color gauge field tensor, wheref abc are the SU~3!
structure constants andTa the SU~3! generators. The quantity
U(s) is the self-interaction of the scalar field,s, taken to be
of the form

U~s!5
a

2!
s21

b

3!
s31

c

4!
s41B, ~5!

and the dielectric functionk(s) is

k~s!511u~s!S s

sv
D 2F2 s

sv
23G , ~6!

wheresv is the scalar field’s vacuum expectation value an
u the usual step function.

The quark self-energy, due to interactions with confine
gluons in the dielectric medium, generates an effective co
pling between the quarks and the scalar field:

Lqs52geff~s!c̄c, ~7!

we choosegeff(s) to be of the form:

geff~s!5g0svS 1

k~s!
21D . ~8!

The expression in Eq.~8! is an approximation to what has
been calculated in Ref.@4#, and it is constructed to simulate
spatial confinement already at the mean field level. Note t
the coupling in Eq.~8! breaks the chiral invariance of the
Lagrangian of Eq.~1!. This is an example of dynamical sym
metry breaking from which a massless Goldstone bos
emerges naturally.

The parameters involved in our calculation ar
a,b,c,g0 , andas5gs

2/4p, as discussed in detail in Ref.@1#.
By fitting the nucleon and theD masses and the proton’s rm
charge radius one remains with two free parameters,
1368 © 1996 The American Physical Society



first
th-

-
n,
th

nal
-
ces
der-

e-
m-

nd

that

53 1369NUCLEON-NUCLEON INTERACTION IN THE . . .
which it is convenient to use the dimensionless quantitie
and f5b2/ac. In this paper, we have chosen the setf5`
and c510 000 taken from Table I of Ref.@1#. Contrary to
Ref. @3#, the quarks here are not only coupled to thes field
but also interact among themselves through one-gluon
change~OGE!. The OGE is treated in Abelian approxima
tion, and it can be separated into two terms: a self-interac
term @in addition togeff(s) of Eq. ~8!#, which is required for
color confinement and which contributes to the one-bo
part of the Hamiltonian, and a term of mutual interaction
which gives rise to the two-body part of the Hamiltonian. A
mentioned earlier, in the adiabatic approximation of Ref.@1#,
it was the color-electrostatic part of the OGE, which aris
from the time component of the gluonic quadrivectorAm

c ,
and especially the corresponding self-energy diagra
which were responsible for the soft core repulsion.

In this work, we incorporate the dynamics of theN-N
interaction by employing the generator coordinate meth
~GCM!; we derive an approximate differential equation f
theN-N wave function describing the relative motion of th
two nucleons. This equation contains a localN-N potential
and an effective, coordinate dependent mass. By means
Fujiwara transformation, we then define aN-N separation
length,x, from the deformation parameter used previously
the adiabatic approximation. This allows us to introduce
constant mass and to rewrite the effective potential in ter
of this coordinatex. One of our objectives is to study th
explicit role of the one-gluon exchange effects on the lo
N-N potential, included for the first time in such type o
calculations. Another aim is to establish a connection
tween our effective deformation parameter and the true
ternucleon separation. The latter will enable us to apply
six-quark wave functions to studies of the quark substruct
of light nuclei, as has been carried out already, for instan
in Ref. @5#. The present numerical results correspond to
(TS)5~10! sector, although the formalism at hand can eas
be extended to other isospin-spin channels.

II. THE GENERATOR COORDINATE METHOD

The GCM was introduced in the 1950s by Hill an
Wheeler@6# to describe collective motion in nuclear system
such as rotation, vibration or center of mass motion@7,8#.
Starting from a many-body wave functionua& depending on
a collective coordinatea ~the deformation parameter of th
six-quark system in our case!, a trial wave function is con-
structed by taking a linear combination of the statesua& with
some weight functionF(a),

uC&5E F~a!ua&da, ~9!

whereF(a) is determined through the variational principl

dE 5
d

dF*
^CuHuC&

^CuC&
5 0, ~10!

which leads to the Hill-Wheeler integral equation:

E ^auH2Eua8&F~a8!da850. ~11!
s c
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This is a homogeneous Fredholm-type equation of the
kind, notoriously unstable numerically. Although some me
ods exist to make it stable~such as regularization@9#, re-
moval of the zero normalization eigenmodes@10#, Gaussian
transform@11#, etc.!, we prefer to solve a differential equa
tion approximately equivalent to the Hill-Wheeler equatio
both for numerical stability and to facilitate comparison wi
analyses based on the Schro¨dinger equation. In general,a is
a multidimensional parameter. It is at least three-dimensio
when correspondence is made tor . We here restrict the cal
culations to the zero-impact parameter case, which redu
the problem to a one-dimensional one, and leave consi
ation of the angles to a later study.

III. THE HILL-WHEELER DIFFERENTIAL EQUATION

To derive such a differential equation, it is more conv
nient to work with mean and relative deformation para
eters,b andd, defined as

b 5
a1a8

2
,

d 5 a2a8. ~12!

Expanding the weight function in a Taylor series arou
d50, one has

^CuH2EuC&5E dbE ddFF* ~b!1
d

2
F* 8~b!

1
d2

8
F* 9~b!1 . . . G K b1

d

2
uH2Eub2

d

2 L
3FF~b!2

d

2
F8~b!1

d2

8
F9~b!1 . . . G .

~13!

It is convenient to introduce the moments:

Hn5E dd K b1
d

2UHUb2
d

2 L dn, ~14!

Nn5E dd K b1
d

2Ub2
d

2 L dn. ~15!

Becausê b1d/2uH2Eub2d/2& is an even function ofd,
the odd moments are zero. Supposing, moreover,
^b1d/2uH2Eub2d/2& is a sharply peaked function ofd,
one can stop the expansion at second order ind. Partial
integration and variation bydF* leads then to the Hill-
Wheeler differential equation:

1

2

d

db S ~H22EN2!
dF

db D1FH01
1

8

d2H2

db2 GF
5EFN01

1

8

d2N2

db2 GF. ~16!

The introduction of a new function

F̃~b!5AÑ0~b!F~b!, ~17!
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where

Ñ05N01
1

8

d2N2

db2 , ~18!

allows us to transform Eq.~16! into Hermitian form

F2
d

db

1

2B~b!

d

db
1V~b!GF̃~b!5EF̃~b!, ~19!

whereV(b) is given by

V~b!5
H̃0

Ñ0

1
1

2AÑ0

d

db F ~H22EN2!
d

db S 1

AÑ0
D G ,

~20!

with

H̃05H01
1

8

d2H2

db2 . ~21!

The termB(b) is the effective mass

B~b!52
Ñ0

H22EN2
. ~22!

The total energyE enters the definition ofB; its asymptotic
form at threshold is

E52mN , ~23!

wheremN is the nucleon mass. Note that because we did
incorporate center of mass corrections the asymptotic va
of the potential in Eq.~20! is not equal to the experimenta
value of 2mN . We have indeedV(`) 5 2468 MeV when
gluons are not included andV(`) 5 2240 MeV when they
are. In practice, we could obtain a value closer to the exp
mental value by subtracting recoil corrections from the
ymptotic energy:

mN
25SV~`!

2 D 22^P2&, ~24!

but we prefer to avoid this step. This simplification does n
affect our conclusions. Following Brink and Banerjee@12#,
we replaceE in the mass term by

E→
H0~b!

N0~b!
. ~25!

This approximation is consistent with neglecting higher o
der derivatives of the moments in the Hamiltonian.

The momentsHn (n50, 2! and the corresponding quan
tities B(b) andV(b) have been calculated for three distin
cases:

~a! H5H1
bag1HOGE,

~b! H5H1
bag1HOGE

mag ,

~c! H5H1
bag, ~26!

whereH1
bag, HOGE

mag , andHOGE are, respectively, the nonglu
onic one-body term of the Hamiltonian, the color-magne
not
lue
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and the full one-gluon exchange contribution; they are give
explicitly in Ref. @1#. In case~c!, the one-gluon exchange
was left out altogether. This is in the spirit of an earlie
investigation where the Friedberg-Lee soliton model was a
plied toN-N scattering without considering gluonic degree
of freedom@3#. In case~b!, the color-magnetic hyperfine in-
teraction was accounted for, and in case~a! the full color-
magnetic and color-electrostatic OGE was included. The re
son to distinguish between cases~a! and ~b! is that in the
literature it was claimed that the color-magnetic part of th
OGE itself is responsible for the repulsive core of theN-N
interaction@13#. We shall return to this point at the end of
Sec. V.

The plot ofB as a function ofb is given in Fig. 1 for the
three cases~a!, ~b!, and~c!. B converges towards a constan
valuem, which can be calculated from considering two well
separated noninteracting three-quark bags:

m5763.6 MeV in cases~a! and~b!, ~27a!

m5502.3 MeV in case~c!. ~27b!

We would expectm to be equal to the reduced mass,mN/2.
The discrepancy between the values ofm andmN/2, which is
especially drastic if the OGE is included, i.e., in cases~a! and
~b!, is related to the well-known Peierls-Yoccoz diseas
@8,10#, i.e., the fact that the simplest version of the GCM
theory does, in general, not yield the proper mass. In t
framework of the GCM, this shortcoming can be cured b
either including the momentum conjugate to the collectiv
coordinate and carrying out double projection@14# or by pro-
viding the state vectors with a collective boost@15#. Alterna-
tively, one could evoke a time-dependent Hartree-Fock ca
culation or employ the variation-after-projection method
However, all of this is far beyond the scope of this invest
gation.

IV. THE FUJIWARA TRANSFORMATION

The dependence of the effective mass onb prevents us
from directly interpreting the potential in Eq.~20! as an or-
dinary N-N potential. Moreover,b does not correspond to

FIG. 1. The effective mass,B(b) of Eq. ~22!, as a function of
the deformation parameterb; the solid, dashed, and dotted lines
correspond, respectively, to the cases~a!, ~b!, and~c! introduced in
Eq. ~26!. The asymptotic values of Eqs.~27a! and ~27b! are indi-
cated by the arrows.
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the trueN-N separation distance~except for large positive
b when the two nucleons are well separated!. Therefore, we
wish to transform Eq.~19! into a Schro¨dinger-like equation
with a constant, coordinate independent mass term. For
purpose, one can use a Fujiwara transformation@16,17#,
which relates the generator coordinateb to an effectiveN-N
separation length:

x~b!52E
b

`FAB~b8!

m
21Gdb81b. ~28!

If one now redefines the weight function in Eq.~19! as

F̃~b!5A4 B~b!

m
c~x!, ~29!

Eq. ~19! transforms into the familiar form

F2
1

2m

d2

dx2
1V1VFGc~x!5Ec~x!, ~30!

with V given by Eq.~20! and

VF~b!5
7

32B3 S dBdb D 22 1

8B2

d2B

db2 . ~31!

Figure 2 displays the explicit relationship betweenx and
b, as obtained from Eq.~28!. As expected, the deformatio
parameterb converges asymptotically towards the effecti
internucleon separationx. For finite deformations,b differs
from x due to dynamical effects. The correspondenceb↔x
should be very useful in discussions of the quark substr
ture of nuclei or nuclear matter using Schro¨dinger-based
many-nucleon calculations and employing our six-qua
wave functions.

V. RESULTS FOR THE EFFECTIVE N-N POTENTIAL

We now wish to present detailed results for

Vloc~b!5V~b!1VF~b!2V~`!, ~32!

FIG. 2. The Fujiwara coordinate,x(b) of Eq. ~28!, as a function
of the deformation parameterb. The long-dashed line shows th
asymptotic solution,x(b)5b, and the remaining labeling is the
same as in Fig. 1.
this
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whereV(b) andVF(b) are given in Eqs.~20! and~31!. The
value of V(`) corresponds to the asymptotic value o
H̃0 /Ñ0 calculated from two well-separated noninteractin
three-quark bags, and it is given in Sec. III. This asymptot
value is the same in cases~a! and ~b! because the color-
electrostatic mutual and self-energy terms cancel exactly d
to color neutrality when the two nucleons are well separate

It is convenient to rewriteVloc(b) in the following form:

Vloc~b!5V0~b!1V1~b!, ~33!

with

V0~b!5
H̃0

Ñ0

2V~`!, ~34!

V1~b!5
1

4B Fd2lnÑ0

db2 1
1

2 S dlnÑ0

db D 22 dlnÑ0

db

dlnB

db G
1

1

8B F34 S dlnBdb D 22 d2lnB

db2 G . ~35!

In order to calculate these derivatives, lnB and lnÑ0 were
fitted to polynomials. The two contributionsVi(b) ( i50, 1!
to Vloc(b) are plotted in Fig. 3 as functions of the deforma
tion parameterb for the three cases outlined previously. Fig
ure 4 showsVloc as a function ofb and of the Fujiwara

FIG. 3. The two contributions to the local potential,V0(b) of
Eq. ~34! andV1(b) of Eq. ~35!, as functions of the mean generato
coordinateb. The solid, dashed, and dotted lines correspond
cases~a!, ~b!, and~c! introduced in Eq.~26!.
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coordinatex, respectively. Note that Eq.~35! was obtained
from Eq. ~20! by replacingH22EN2 with 2Ñ0 /B, as indi-
cated in Eq.~22!.

The shape ofV0(b) is quite similar to the adiabatic po-
tentials displayed in Fig. 10 of Ref.@1#, both for the ‘‘full
OGE’’ and ‘‘no-OGE’’ cases. This tends to confirm our as
sumption that the matrix elements^b1d/2uH2Eub2d/2&
are rather sharply peaked aroundd50. The termV1(b) cor-
responds to the contribution of nonadiabaticity. It grows im
portant only forb&22 fm, and yields in all cases a repul
sion due to the dynamics. This is according to ou
expectation and in agreement with Ref.@3#. Note that in
cases~b! and especially~c!, we also obtain an intermediate
range attraction inVloc . The fact that ourN-N potential ex-
tends to negativex should not be taken too literally. It simply
reflects inadequacies in the relationship between the de
mation parameterb and theN-N separation lengthx, which
are connected to the Peierls-Yoccoz disease mentioned
lier. As pointed out in Sec. IV, the deformation paramet
b converges asymptotically towards the effective inte
nucleon separationx.

FIG. 4. The nonadiabatic, local potential,Vloc of Eq. ~33!, as a
function of the deformation parameterb and the Fujiwara coordi-
natex, respectively. The labeling is the same as in Fig. 3.
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We recall that one of the main objectives of this and o
previous study@1# was to incorporate explicitly one-gluon
exchange effects, in contrast to Ref.@3# where they were
neglected. Comparing, for instance, cases~a! and ~c!, one
can see that the OGE reinforces the repulsive core consid
ably. The existence of a repulsive core in all three cas
makes us attribute it to dynamics rather than to the colo
magnetic interaction@case~b!#, as was inferred in Ref.@13#.

VI. CONCLUSIONS

In this investigation, we found that the dynamics ar
manifestly responsible for the hard core repulsion of th
short-range part of theN-N interaction, and we observed tha
we could obtain both short-range repulsion and some int
mediate range attraction if the entire one-gluon exchange
at least its electrostatic part were neglected.

In the results containing the full OGE effects the lack o
attraction is due to the omission of explicit meson ex
changes. Then, to reproduce the experimental phase shift
other two-body data one necessitates to attach a local O
potential beyond a certain internuclear distance@18#. To ob-
tain this potential in the framework of our model we coul
consider extending our calculations by either including qua
tum surface fluctuations and/or introducing configurations
the form q7q̄ in addition to theq6 states. This would be a
rather cumbersome procedure within the present model. T
most convenient would be to either allow mesonic degrees
freedom and to consider, e.g., an explicit pion exchange b
tween the individual quarks@19# or to simply choose a phe-
nomenological potential.

Another important result of this work is the evaluation o
the relationship between the deformation parameterb and
the effectiveN-N separation lengthx through the Fujiwara
transformation. This correspondence is very useful for app
cations of our model to the description of phenomena invol
ing the quark substructure of light nuclei. It furthermore a
lows us to relate many-body correlation functions orN-N
wave functions given in the literature to the GCM formalism
presented here.

An attractive way to confirm our results would be to solv
directly the Hill-Wheeler integral equation in order to obtai
phase shifts. Projection on good angular momentum sta
should also improve our calculations.
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