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Abstract. The problem to be addressed here is the mitigation of limit cycle oscillations
(LCO) in a rigid in-flow wing with nonlinear heave and pitch stiffnesses in quasi-steady
flow, using targeted energy transfer (TET). We show through simulation and Wavelet
transforms that LCO formation is a process of resonance capture, with heave response
triggering the pitch LCO. With the addition of a lightweight, fully passive attachment
– a nonlinear energy sink (NES) – to the wing, we analytically predict three distinct
mechanisms for LCO mitigation: repeated suppressed burst-outs, partial and complete
suppressions of aeroelastic instability. Subsequent wind-tunnel experiments conducted in
the Nonlinear Aeroelastic Test Apparatus (NATA) at Texas A&M University fully support
these results.

1 INTRODUCTION

Classical linear theory predicts that a flexible wing will exhibit divergent response at
flow speeds above a critical flutter speed, implying that catastrophic failure will occur
when this critical speed is exceeded. Fortunately, real structures are often sufficiently
nonlinear, displaying hardening stiffness for example, that their response at supercritical
speeds takes the form of a steady limit cycle oscillation (LCO) rather than diverging. Even
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when they do not cause damage, such oscillations are extremely undesirable because they
limit the operating envelope of high-performance aircraft such as the F-16 and F/A-18.1,2

Many authors have studied the causes of LCOs. The common factor in all aircraft
systems exhibiting limit cycle behavior is aeroelastic nonlinearities. These nonlinearities
can exist in the flow field, the structure, or both. Dowell et al.3 provides an excellent
summary of recent studies done in the fields of aerodynamics and structural dynamics to
understand nonlinear aeroelasticity.

Regarding methods for controlling or suppressing LCOs, several control laws such as
linear theory, partial feedback linearization, and adaptive control have been utilized to
stabilize an inherently unstable aeroelastic system with a single trailing edge control
surface4 or with leading and trailing edge control surfaces.5 These studies have shown
that active control can be used to raise the threshold velocity above which LCOs occur.
While active control has been shown to be effective in suppressing LCOs, these methods
require significant use of control resources. Active methods also require sensors capable
of constantly providing accurate measurements of the system state for feedback into the
controller.

On the other hand, targeted energy transfer (alternatively, nonlinear energy pumping)
refers to the irreversible transfer of vibration energy from the main structure of a dynamic
system to an attachment with essentially nonlinear (nonlinearizable) stiffness and linear
damping. Vakakis and Gendelman6 and Vakakis et al.7 showed that when the essentially
nonlinear oscillator resonates with a mode of the main system, energy is transferred
(pumped) from the main system to the nonlinear attachment irreversibly. The attachment
thus acts as a nonlinear energy sink (NES), which is a completely passive device with no
state measurement or energy input required.

The NES has been developed and studied at the University of Illinois at Urbana-
Champaign.6–11 Unlike a linear dynamic absorber, which is effective in narrow frequency
bands, the NES works against broadband disturbances. In addition, while the linear
absorber is a steady-state device, the NES provides transient protection as well.

Lee et al.12 showed the applicability of nonlinear energy pumping to suppress the LCO
of a van der Pol oscillator, which is analogous to a nonlinear aeroelastic problem. The
LCO suppression mechanism was found to be a series of captures into, and escapes from,
resonances, from superharmonic to subharmonic order. This successful demonstration of
NES applicability to suppress a self-excited instability was, in particular, the catalyst for
the present work.

This paper provides both analytical and experimental demonstrations of suppressing
aeroelastic instability with a nonlinear energy sink, respectively in Sections 2 and 3.
Relevant work was presented at the 47th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference in Newport, RI, U.S.A., in 2006.13,14
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2 ANALYTICAL STUDY

2.1 System descriptions

We consider the 2-DOF in-flow rigid wing coupled to a single-DOF ungrounded NES
(Fig. 1). The main motivation for considering this configuration lies in the LCO triggering
mechanism15 in the wing with no NES attached; that is, an initial excitation of the heave
mode of the wing acts as the triggering mechanism for the development of LCOs with
the wing oscillating predominantly in its pitch mode. Because both the initial excitation
(trigger) of the heave mode and the eventual development of the LCO are transient
phenomena, a successful strategy for aeroelastic instability suppression should address
directly the transient problem before the full LCO has developed.
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Figure 1: 2-DOF rigid wing model coupled with an SDOF NES (ac, ea, and cg stand for the aerodynamic
center, elastic axis, and center of gravity, respectively).

Assuming small motions and quasi-steady aerodynamics, one can derive the nondimen-
sional equations of motion of the wing-NES assembly as

y′′ + xαα′′ + Ω2y + ξyy
3 + µCL,αΘ (y′ + Θα)

+ελ (y′ − δα′ − v′) + C (y − δα− v)3 = 0

r2
αα′′ + xαy′′ + r2

αα + ξαα3 − γµCL,αΘ (y′ + Θα) (1)

+δελ (δα′ + v′ − y′) + δC (δα + v − y)3 = 0

εv′′ + ελ (v′ + δα′ − y′) + C (v + δα− y)3 = 0

where y, α, and v are the heave, pitch, and NES displacements, respectively; xα, the
static mass unbalance of the wing (positive aft of the ea); Ω, the ratio of the uncoupled
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linear natural frequencies for the heave and pitch modes; ξy and ξα, the coefficients for the
cubic nonlinear terms; µ, the density ratio; Θ, the reduced velocity; CL,α, the slope of the
lift curve; rα, the radius of gyration of the wing; γ, the location of the ac measured from
the ea (positive ahead of the ea); ε, λ, and C, the NES mass, damping, and coefficient of
the essential nonlinearity, respectively; and δ, the offset attachment of the NES (positive
ahead of the ea). We adopted the system parameters for this study,

xα = 0.2, rα = 0.5, γ = 0.4, Ω = 0.5, µ = (10π)−1, CL,α = 2π, ξy = ξα = 1

giving a flutter speed ΘF = 0.87.

2.2 Suppression mechanisms

Three distinct mechanisms for suppressing aeroelastic instability by means of targeted
energy transfers are identified; that is, recurring suppressed burst-outs, partial and com-
plete suppressions of instability. A synoptic presentation of the three basic LCO sup-
pression mechanisms identified in the numerical simulations is provided in the following,
focusing on their main dynamical features.
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Figure 2: The first suppression mechanism when Θ = 0.9, δ = 90%, ε = 1%, λ = 0.1, and C = 10. All
zero initial conditions except y′(0) = 0.01 are used: (a) Time responses and (b) their wavelet transforms.

• The first suppression mechanism (Fig. 2) This mechanism is characterized
by a recurrent series of suppressed burst-outs of the heave and pitch modes of the
wing, followed by eventual complete suppression of the aeroelastic instabilities. In
the initial phase of transient burst-outs, a series of developing instabilities of pre-
dominantly the heave mode is effectively suppressed by proper transient ‘activation’
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of the NES, which tunes itself to the fast frequency of the developing aeroelastic
instability; as a result, the NES engages in 1:1 transient resonance capture (TRC)
with the heave mode, passively absorbing broadband energy from the wing, thus
eliminating the burst-out. In a later phase of the dynamics, the energy fed by
the flow does not appear to directly excite the heave and pitch modes of the wing
but, instead, to get transferred directly to the NES until the wing is entirely at
rest and complete LCO suppression is achieved. At the initial stage of the recur-
rent burst-outs, at time instants when the pitching LCO is nearly eliminated, most
of the energy induced by the flow to the wing is absorbed directly by the NES
with only a small amount being transferred to the heave mode, so that both the
NES and the heave mode reach their maximum amplitude modulations. This is
followed by suppression of the burst-out, a process that is repeated until at a later
stage complete suppression of the aeroelastic instability is reached. The beating-like
(quasi-periodic) modal interactions observed during the recurrent burst-outs turn
out to be associated with Neimark–Sacker bifurcations16 of a periodic solution and
to be critical for determining domains of robust suppression.
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Figure 3: The second suppression mechanism when Θ = 0.9, δ = 90%, ε = 1%, λ = 0.2, and C = 20. All
zero initial conditions except y′(0) = 0.01 are used: (a) Time responses and (b) their wavelet transforms.

• The second suppression mechanism (Fig. 3) Intermediate suppression of LCOs
is the typical behavior in this case, and is commonly observed when there occurs
partial LCO suppression. The initial action of the NES is the same as in the first
suppression mechanism. Targeted energy transfer to the NES then follows under
conditions of 1:1 TRC, followed by conditions of 1:1 permanent resonance capture
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(PRC) where both heave and pitch modes attain constant (but nonzero) steady-
state amplitudes. We note that the heave mode response can grow larger than
in the corresponding system with no NES attached (exhibiting an LCO), while
suppressing the pitch mode. We also note that, in contrast to the first suppression
mechanism, the action of the NES is nonrecurring in this case, as it acts at the early
phase of the motion stabilizing the wing and suppressing the LCO.
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Figure 4: The third suppression mechanism when Θ = 0.9, δ = 90%, ε = 1%, λ = 0.4, and C = 40. All
zero initial conditions except y′(0) = 0.01 are used: (a) Time responses and (b) their wavelet transforms.

• The third suppression mechanism (Fig. 4) In this mechanism energy transfers
from the wing to the NES are caused by nonlinear modal interactions during 1:1
RCs. Both heave and pitch modes as well as the NES exhibit exponentially decaying
responses resulting in complete elimination of LCOs.

In order to analytically prove that the LCO suppression is due to resonance captures,
one can utilize the complexification-averaging technique.17 Based on the wavelet trans-
form (WT) results in Figs. 2–4, we assume the multifrequency decomposition for the
heave, pitch and NES transient responses,

y(τ) = y1(τ) + y2(τ), α(τ) = α1(τ) + α2(τ), v(τ) = v1(τ) + v2(τ) (2)

where the components with subscripts 1, 2 correspond to slow modulations of the fast
frequency components, ejΩτ , ejτ , respectively. Specifically, the two fast frequencies are
the two natural frequencies of the heave and pitch modes in the uncoupled linearized sys-
tem; we designate these components as LF (lower-frequency) and MF (middle-frequency)
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components, respectively, for notational convenience and also for consistency with the
notation used in Lee et al.15

Introducing the new complex variables17

ψ1 = y′1 + jΩy1, ψ3 = y′2 + jy2; ψ2 = α′1 + jΩα1, ψ4 = α′2 + jα2;

ψ5 = v′1 + jΩv1, ψ6 = v′2 + jv2; (3)

we express the original variable for the heave mode in the form

y =
1

2jΩ
(ψ1 − ψ∗1) +

1

2j
(ψ3 − ψ∗3)

y′ =
1

2
(ψ1 + ψ∗1) +

1

2
(ψ3 + ψ∗3) (4)

y′′ = ψ′1 + ψ′3 −
jΩ

2
(ψ1 + ψ∗1)−

j

2
(ψ3 + ψ∗3)

Similar expressions hold for the variables corresponding to the pitch mode and the NES.
Substitute the previous expressions into the equations of motion (1), expressing the

complex variables in polar form, ψ1(τ) = ϕ1(τ)ejΩτ , ψ3(τ) = ϕ3(τ)ejτ ; ψ2(τ) = ϕ2(τ)ejΩτ ,
ψ4(τ) = ϕ4(τ)ejτ ; ψ5(τ) = ϕ5(τ)ejΩτ , ψ6(τ) = ϕ6(τ)ejτ , where ϕi(τ) is the slowly-varying
complex-valued amplitude modulation of the respective fast-varying component ejΩτ or
ejτ . Applying two-frequency averaging over the two fast components, ejΩτ and ejτ , we
obtain a set of six complex-valued modulation equations governing the slow-flow dynamics,

ϕ′ = F(ϕ) (5)

where ϕ ∈ C6; the details of F are not included here.
Introducing the final polar-form expressions, ϕi(τ) = ai(τ)ejbi(τ) where ai(τ), bi(τ) ∈

R, i = 1, 2, . . . , 6, we express the set of six (complex-valued) slow flow modulation
equations (5) in terms of a set of twelve (real-valued) modulation equations governing the
slow evolutions of the amplitudes and phases,

a′ = f(a, φ), φ′ = g(a, φ) (6)

where a ∈ R6
+ and φ ∈ S6. The slowly-varying amplitudes a1, a3 (a2, a4; a5, a6) are

respectively LF and MF components of the heave (pitch; NES) mode. The independent
phase angle vector φ possesses the components φij = bi − bj. Note that all independent
phase interactions occur between same frequency components (LF-LF or MF-MF).

Resonance captures and escapes can be illustrated by the phase interactions in Fig.
5. An interesting observation is that the resonance captures between the heave and
pitch modes occur ahead of those between the heave mode and NES, or those between
the pitch mode and NES. This implies that in the first suppression mechanism there
occur nonlinear modal energy exchanges between the heave and pitch modes (i.e., the
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Figure 5: Analytical suppression mechanism via two-frequency averaging technique for the first mecha-
nism shown in Fig. 2.

triggering mechanism15 is activated) before TET to the NES (with the ensuing instability
suppression) occurs. This early occurrence of RCs between the heave and pitch modes
makes the repetition of suppressions and burst-outs in the first suppression mechanism
possible.

3 EXPERIMENTAL STUDY

The nonlinear aeroelastic test apparatus (NATA) at Texas A&M University was de-
veloped to experimentally test linear and nonlinear aeroelastic behavior. The low-speed
wind tunnel with a 3ft width × 2ft height (0.91 × 0.51m) test section is a closed-circuit
type with capacity of air speeds up to 45m/s. The device consists of a rigid NACA 0015
wing section capable of movement with two DOFs, pitch and heave (Fig. 6 (a)).

Experiments using the NATA are conducted at very low speeds and at very low reduced
frequency. The wing section spans the entire wind tunnel, so the flow can be considered
two-dimensional. For this flow environment, lift and drag can be modeled with quasi-
steady aerodynamics. This type of aerodynamic model has provided very good agreement
with NATA experimental results in the past, which can be referred to for the NATA
parameters.4,5

For the first proof-of-concept experiments with an NES in an aerodynamic application,
the design goals were similar to what would be desired of flight hardware, tempered by
the realities of the laboratory environment and the scale of the test program. It was
expected to design a light-weight, passive, self-contained attachment that would signif-
icantly improve the dynamic response of the NATA under typical operating conditions.
On the basis of previous studies,10,18 values of the stiffness and damping were selected,
then refined through a series of numerical simulations, carried out using MATLAB.
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Figure 6: (a) Experimental setup for the NATA coupled to an NES; (b) typical experimental results for
the NES with ms = 1.2kg, weak essentially-nonlinear stiffness, and all zero initial conditions except for
h(0) = 1.905cm (=0.75in). The solid lines with square symbol indicate the LCO responses of the NATA
when the NES is not applied; the dashed lines with triangles (the dotted lines with circles) represent
for the suppressed LCOs when low (high) damping is used. M1, M2, and M3 denote the first, second,
and third suppression mechanisms of LCOs, respectively. Amplitude modulations are denoted by a line
between two ‘+’ symbols; (c) typical aeroelastic responses of the wing exhibiting recurring suppressed
burst-outs.
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A typical experimental bifurcation diagram with the standard NES10,18 is presented
in Fig. 6 (b). The dashed lines with triangles represent the results with this typical
NES parameters. The flutter speed is significantly increased from 9m/s to 11m/s (22%
improvement). Moreover, transitions appear sequentially from the third to second sup-
pression mechanism.

Figure 6 (c) depicts the first suppression mechanism observed when the flow speed
U = 11m/s, and the NES of a lighter mass, weaker stiffness and higher damping was
applied. As in the theory, both the aeroelastic modes and the NES exhibit a nonlinear
beating phenomenon; i.e., recurring burst-outs and suppressions of aeroelastic instability.
The frequency ratio of the two aeroelastic modes exhibits 1:1 relation around 2–3 Hz
by counting the number of waves per a second. On the other hand, the frequency ratio
between the NES and heave (or pitch) mode becomes a 1:2 (or 1:3) subharmonic.

This observation can suggest that this first suppression mechanism dominantly consists
of recurring (or transient) subharmonic resonance captures between the NES and aeroe-
lastic modes, while the two aeroelastic modes are continually in 1:1 internal resonance
exchanging the respective modal energy.

4 CONCLUSIONS

Suppressing aeroelastic instability (or LCO) in a 2-DOF in-flow rigid wing by means of
passive targeted energy transfers (TETs) was investigated. The three distinct mechanisms
for LCO suppression were identified both in theory and experiments: recurrent burst-outs
and suppression, partial and complete suppressions. It was found that the passive TETs
are activated by transient resonant interactions between the NES and the aeroelastic
modes. Finally, it should be noted that a good understanding of the LCO triggering
mechanism is key to applying the NES to efficiently suppress self-excited instabilities.
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