# N<sub>2</sub>O flux short-term response to meteorological solicitations and farming practices in a fertilized crop

**165 LIÈGE** université

Contact: margaux.lognoul@ulg.ac.be

## **EXPERIMENTAL SET-UP**

#### **Ecosystem :**

• Production crop - Sugar beet (2016)

#### Measurements :

- Wind velocity (Gill HS-50)
- N<sub>2</sub>O mixing ratio (Aerodyne Research Inc. QCLaser)

Margaux Lognoul, Alain Debacq, Tanguy Manise, Anne De Ligne, Bernard Heinesch and Marc Aubinet. University of Liège – Gembloux Agro-BioTech, 8 Avenue de la Faculté, 5030 Gembloux, Belgium – TERRA, Biosystems Dynamics and Exchanges (BIODYNE).

• Meteorological and soil conditions (half-hourly monitoring)

EC data processed with EddyPro® (LI-COR software)

# **EC DATA TREATMENT / N<sub>2</sub>O specifics**

- Quality of timeseries following Vickers & Mahrt, 1997
  - $\Rightarrow$  Test parameters were adjusted specifically for N<sub>2</sub>O timeseries
- Timelags assessed by
  searching for covariance
  maximum
  - ⇒ Method suitable during peaks
    (black) and periods of
    background flux (grey)



#### Stationarity and turbulence by Foken & Wishura (1996)

- ⇒ Quality classes (Mauder & Foken, 2004), level 2 discarded
- > Influence of friction velocity
  - ⇒ Selection of data to minimize the influence of N<sub>2</sub>O flux drivers (fertlization, SWC,...)

# **EVALUATION OF UNCERTAINTIES**

#### Random Error (RE)

- ⇒ Estimated by the RMSD from zero of the covariance function at a far away lag (e.g. 200 s) following Langford et al., 2015..
- > Sensitivity to spectral correction (SC)
  - Uncertainty approximated via the 99%-confident interval of the regression between correction factor and wind speed
- Sensitivity to u\* filtering (UF)
  - ⇒ Lowest and highest reasonable thresholds determined with normalized CO<sub>2</sub> fluxes
- Sensitivity to gap-filling (GF)
  - Uncertainty calculated daily as 1.96\*SD of daily mean or of a rectangular moving average if less than 18 half-hours available in a day.

#### Uncertainty on the $N_2O$ budget Uncertainty on the GHG budget ( $N_2O + CO_2$ )



- $\Rightarrow$  Still, difficult to untie the influence of u\* and temperature
- $\Rightarrow$  Use of CO<sub>2</sub> fluxes to assess the u\* threshold.

12 %

# **RESULTS – Dynamics from fertilization (F) to harvest (H)**



#### Influence of weather and farming practices

- > 30 % of N<sub>2</sub>O fluxes were emitted between fertilizer and sowing (S)
  - ⇒ Favorable conditions for N<sub>2</sub>O production with fertilization (136.5 kg N ha<sup>-1</sup>) and precipitation (SWC ~ 40%)

#### The first emission burst was inhibited after sowing (significant decrease of 70%)

⇒ This suggest that the preparation of seedbed, by disturbing the top soil layer, relocated active micro-organisms at a greater depth which decreased N<sub>2</sub>O production.



## Daily variability of N<sub>2</sub>O fluxes

- The three episodes of emission peak show different daily patterns :
- During the first emission burst, correlation between  $N_2O$  and  $CO_2$  fluxes ( $R^2 = 0.53$ ) and clear diurnal pattern.

> N<sub>2</sub>O emissions from fertilization to harvest : 6520 (±775)  $\mu$ mol N<sub>2</sub>O m<sup>-2</sup>.

- ⇒ This represents a 1.3% loss of N inputs via N<sub>2</sub>O emissions, slightly above IPCC 2006 estimates of emission factor for managed soils (1%).
- When converted to CO<sub>2</sub>-eq, it weighed for 22% of the net GHG balance of the experimental site (Buysse et al., 2017).

⇒ Importance of including N<sub>2</sub>O when measuring gas exchanges and doing so at high temporal resolution for improved estimates.

- Ouring the second peak, no correlation with CO<sub>2</sub> fluxes and a less distinct diurnal pattern.
- Ouring the third peak, important emissions during the day and during the night.



> During the background period, night fluxes significantly lower.