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ABSTRACT 
 
The Hilbert-Huang transform (HHT) has been shown to be effective for characterizing a wide range of nonstationary 
signals in terms of elemental components through what has been called the empirical mode decomposition. The HHT 
has been utilized extensively despite the absence of a serious analytical foundation, as it provides a concise basis for the 
analysis of strongly nonlinear systems. In this paper, we attempt to provide the missing link, showing the relationship 
between the EMD and the slow-flow equations of the system. The slow-flow model is established by performing a 
partition between slow and fast dynamics using the complexification-averaging technique, and a dynamical system 
described by slowly-varying amplitudes and phases is obtained. These variables can also be extracted directly from the 
experimental measurements using the Hilbert transform coupled with the EMD. The comparison between the 
experimental and analytical results forms the basis of a nonlinear system identification method, termed the slow-flow 
model identification method, which is demonstrated using numerical examples. 
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1. INTRODUCTION 
 
Nonlinear structural dynamics has been studied for a relatively long time, but the first contributions to the identification 
of nonlinear structural models date back to the 1970s1. Since then, numerous methods have been developed because of 
the highly individualistic nature of nonlinear systems. A large number of these methods were targeted to single-degree-
of-freedom (SDOF) systems, but significant progress in the identification of multi-degree-of-freedom (MDOF) lumped 
parameter systems was realized during the last ten years. However, it is fair to say that there is no general analysis 
method that can be applied to all systems in all instances. For a review of the literature on the subject, the reader is 
invited to consult the textbook2 or the recent overview3. 
 

The idea of using slow-flow dynamics for nonlinear system identification dates back to Feldman who exploited the 
Hilbert transform. SDOF systems were first studied in the FREEVIB method4, and the generalization to 2DOF systems 
soon followed5. The proposed procedure is one of the most successful approaches to tracking the varying nature of 
vibration of a large class of nonlinear systems thanks to the extraction of backbone curves from experimental data. 
Alternative approaches for slow flow-based identification were developed, in particular the Wigner-Ville approach 
described by Feldman and Braun6 and the wavelet transform7,8,9. Using the Gabor transform, Bellizzi et al.10 related the 
slow-flow dynamics to the concept of coupled nonlinear modes. 
 

Because multicomponent signals do not admit a well-behaved Hilbert transform, the Hilbert-Huang transform 
(HHT) was introduced in Ref. 11. It has been shown to be effective for characterizing a wide range of signals in terms 
of elemental components, termed intrinsic mode functions (IMFs), through what has been called the empirical mode 
decomposition (EMD). Several applications of this technique to structural dynamics recently appeared. For instance, 
Yang et al.12,13 used it for modal analysis and were able to relate the IMFs to the modal properties, giving a clear 
interpretation of the outcome of HHT in linear dynamics. 
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The strength of the method lies in its ability to deal with nonlinear and nonstationary data (see, e.g., Refs. 14 and 

15), despite the absence of a serious analytical foundation under those assumptions. In this paper, we attempt to provide 
a fundamental understanding of the HHT in nonlinear structural dynamics by linking its outcome to the slow-flow 
dynamics. The slow-flow model is established by performing a partition between slow and fast dynamics using the 
complexification-averaging technique, and a dynamical system described by slowly-varying amplitudes and phases is 
obtained. These variables can also be extracted directly from the experimental measurements using the Hilbert 
transform coupled with the EMD. The comparison between the experimental and analytical results forms the basis of a 
nonlinear system identification method, termed the slow-flow model identification (SFMI) method. The SFMI method 
can be viewed as a generalization of Feldman’s FREEVIB approach to MDOF systems. In addition, it identifies the 
parameters of the equations of motion, something which was not considered in Refs. 4 and 5. 
 

2. THE COMPLEXIFICATION-AVERAGING METHOD 
 
The complexification-averaging (CX) method, which was introduced by Manevitch16, establishes the governing 
equations of the slow flow of structural systems. To illustrate the method, a damped Duffing oscillator is considered. 
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where ω  is the frequency which best describes the system response. Equation (1) becomes 
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A partition of the dynamics into slow and fast components is realized, ( ) ( ) j tt t e ωψ ϕ= ; the motion is approximated by a 
single fast-frequency component with modulated amplitude and phase. By averaging out the fast-frequency component 

j te ω , eq. (3) is transformed into 
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To extract the envelope and phase variables, the complex amplitude ( )tϕ  is expressed in polar form, 
( )( ) ( ) j tt a t e βϕ = , 
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The real and imaginary parts of this equation are 
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respectively. These equations describe the slow-flow dynamics and may be solved analytically in this case. 
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Figure 1.  Approximation of the response of a damped Duffing oscillator using the CX method ( 0.1c = ). 
 

 
The system response predicted by the CX method is given by 

 ( ) sin( )ax t tω β
ω

= +  (8) 

and is compared to the response computed using numerical simulation of the original equation of motion (1) in Figure 1. 
Four cases are considered, namely (i) a linear system ( , , ) (0,1,1)C k X = ; (ii) a weakly nonlinear system 
( , , ) (1,1,0.2)C k X = ; (iii) a strongly nonlinear system ( , , ) (1,1,1)C k X = ; and (iv) a system with an almost essential 
nonlinearity ( , , ) (1,0.1,1)C k X = ; the dashpot constant is 0.1c = . The agreement between predictions and simulations 
is perfect for the linear and weakly nonlinear systems. For the strongly nonlinear system, the agreement is excellent 
during the first few cycles, but deteriorates at the end of the signal. Finally, for system (iv), the predicted response 
significantly deviates from the actual response. This example gives an idea about the validity of model (6). We note that 
it is possible to substantially improve the predictive capability of this model by considering the time scaling 

 ( )Aτ ω=  (9) 

where A  is the amplitude of the motion, prior to the application of the CX method. This is not further discussed here. 
 

Moving now to a 2DOF system, 
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four complex variables are introduced, because the system response should possess two main components, 
1 2( ) ( ) ( )x t x t x t= +  and 1 2( ) ( ) ( )y t y t y t= + , with frequencies 1ω  and 2ω , respectively, 

 1 1 1 1 2 2 2 2 3 1 1 1 4 2 2 2, , ,x j x x j x y j y y j yψ ω ψ ω ψ ω ψ ω= + = + = + = +  (11) 

By substituting this ansatz into (10), averaging separately over the two fast frequencies and expressing the complex 
amplitudes in polar form, the slow-flow model is derived. 
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Figure 2 shows the comparison between the system response predicted by the CX method 
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and the response computed using numerical simulation of the original equations of motion (10) for 
1 2 12 1 2 1k k k m m= = = = = , 2C = , 1 2 0.05c c= = , and initial displacements (0) 1x =  and (0) 0y = . Because the 

nonlinear coefficient and the initial displacements are (1)O  quantities, a strongly nonlinear system is investigated. 
Satisfactory agreement between prediction and numerical simulation is observed throughout the responses of the two 
oscillators. 
 

3. CHARACTERIZATION OF A MULTICOMPONENT SIGNAL 
 
The Hilbert transform17 characterizes a signal ( )x t  through the extraction of its envelope ( )A t  and instantaneous phase 

( )tΦ as ( ) ( ) cos ( )x t A t t= Φ . It is based on the analytic signal ( )X t  defined as 

 ( ) ( ) [ ( )] ( ) exp[ ( )]X t x t jH x t A t j t= + = Φ  (14) 

where ( )H ⋅  is the Hilbert transform and 1j = − . It follows that 
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Figure 2.  Approximation of the response of a 2DOF nonlinear system using the CX method. 

 

 
Figure 3.  Wavelet transform applied to the response of a 2DOF nonlinear system. 

 
Figure 4.  EMD applied to the response of a 2DOF nonlinear system. 

 
Figure 5.  HHT applied to the response of a 2DOF nonlinear system. 

 



The instantaneous frequency is the time derivative of the instantaneous phase. The investigation of the vibrations of 
nonlinear systems based on this procedure was proposed by Feldman4. 
 

For a multicomponent signal (i.e., a signal possessing multiple frequency components), the Hilbert transform cannot 
be applied because the assumption ( ) ( ) cos ( )x t A t t= Φ  is no longer valid. An extension of the procedure in this case, 
the HHT, was developed by Huang and co-authors using a combination of EMD and the Hilbert transform11. The EMD 
decomposes a signal ( )x t  in a sum of elemental signals, termed IMFs, such that the number of extrema and the number 
of zero-crossings are equal or differ by one and such that there is only one extremum between successive zero-
crossings. As a result, the Hilbert transform can be applied to each IMF individually, giving a characterization of a 
multicomponent signal in terms of the amplitude and phase of its IMFs. A complete description of the method is beyond 
the scope of this paper; the interested reader may consult Ref. 11 for further details. 

 
For illustration, the multicomponent signal ( )y t  in Figure 2 is considered. Figure 3 depicts the wavelet transform of 

this signal, which reveals the presence of two dominant frequency components in the vicinity of the two natural 
frequencies of the linearized system, respectively. The application of the HHT begins with the decomposition of the 
signal in terms of its IMFs using EMD. The first 4 IMFs are displayed in Figure 4. The first 2 IMFs account for more 
than 99.5% of the total of variance in ( )y t , which confirms that ( )y t  can be approximated using a two-component 
signal. The Hilbert transform can now be safely applied to each of the first 2 IMFs. The final outcome of HHT in terms 
of amplitude and phase, or equivalently in terms of amplitude and instantaneous frequency, of the IMFs is shown in 
Figure 5. 
 

4. SLOW-FLOW MODEL IDENTIFICATION METHOD 
 
In the last two sections, the CX and HHT methods were described separately. Both approaches share a common basis by 
expanding a signal in a series of simple, monocomponent signals, which are related to the dominant frequency 
components of the signal: 
 

• The CX method transforms the equations of motion of a nonlinear system into a set of approximate 
equations that govern the slow flow. Two equations, one for the amplitude and one for the phase, are 
derived for each modeled frequency component (note that there is a priori no restriction on the number of 
frequency components that can be taken into account). As a result, an expansion of the phase space 
occurs for multifrequency signals [compare, for instance, the dimension of the phase space of systems 
(10) and (12)].  

• The HHT characterizes a signal through the envelope and phase of the elemental components, the IMFs. 
 
The link between the methods is clear: the equations derived using the CX method are the equations governing the 
amplitude and phase of the modeled IMFs. The CX method therefore provides a rigorous analytical framework for the 
HHT in nonlinear structural dynamics. As further evidence, the envelope and phase of the response ( )y t  of system (10) 
with 1 2 12 1 2 1k k k m m= = = = = , 2C = , 1 2 0.05c c= =  are computed separately using both methods and compared in 
Figure 6 for two different initial displacements, (0) 0.5x =  and (0) 1x = . There is an almost pointwise agreement for 

(0) 0.5x = ; the agreement for (0) 1x =  is less good, but it is still satisfactory keeping in mind that a strongly nonlinear 
system is analyzed. 
 
 



 
Figure 6. Envelope and phase of the two dominant components of signal ( )y t  (solid line: CX method; dashed line: 
HHT). 

It is now demonstrated that the joint application of the methods enables us to develop a nonlinear system 
identification scheme, the SFMI method. Considering that the experimental response of a system with unknown 
physical parameters (e.g., the stiffnesses or the nonlinear coefficient) is measured, the HHT can be applied to the 
experimental data in order to extract the amplitudes ia  and phases iβ  of the different frequency components. Based on 
the knowledge of the slow-flow model and the mass coefficients, the physical parameters can then be identified in a 
straightforward manner using a least-squares procedure. 

 
Taking system (10) as an example, its slow-flow model (12) can be recast into 
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The physical parameters are computed using the Moore-Penrose inverse. 

 1( )T T−=x A A A b  (17) 



Table 1.  System identification results for the 2DOF system. 

 
 
The validation of the SFMI method has been performed using data resulting from the numerical integration of the 

equations of motion of system (10). Four cases are analyzed, and the identified physical parameters together with their 
percentage error are listed in Table 1. Overall, the system is identified accurately since the percentage errors are almost 
all within 5%. 

 
In addition to the numerical experiments described above, we include here preliminary experimental results obtained 

for a 2DOF system described by 
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Very briefly, the values obtained by individually identifying the parameters of the (sometimes decoupled) components 
are shown in Table 2, while the values found using the method of this paper are given in Table 3.  The agreement is 
deemed satisfactory, especially at this early stage of development. 
 

Table 2.  Parameters of the experimental fixture (separately identified). 

  
Parameter Value 

1k  427.2 N/m 

12k  421.1 N/m 

nlk  5.77(106) N/m3 

1c  0.13 Ns/m 

2c  0.05 Ns/m 
 

Table 3.  Parameters of the experimental fixture identified using the SFMI method. 

Parameter Value 
1k  447.3 N/m 

12k  402.9 N/m 

2k  4.4 N/m 

nlk  6.15(106) N/m3 

1c  0.39 Ns/m 

2c  0.35 Ns/m 

12c  0.01 Ns/m 



 

 
5. CONCLUDING REMARKS 

 
This paper focuses on the intimate relation between the outcome of the HHT and the slow-flow model with the aim of 
bringing a better understanding of this time-frequency decomposition in nonlinear structural dynamics. This has led to 
the development of the SFMI method, which identifies the physical parameters of a system from experimental data. The 
proposed method has interesting features: 
 

• It is a linear-in-the-parameters method and does not rely on nonlinear optimization techniques. 

• It lends itself naturally to the identification of MDOF systems. 

• It is based on the free response and does not require the measurement of the impulsive excitation. 

• It has inherent characterization capabilities because it exploits the Hilbert transform. In addition, the 
Hilbert transform gives sharper frequency and time resolutions compared to other time-frequency 
decomposition such as the wavelet and Gabor transforms. 

 
The fact that the slow-flow model is an approximation of the true dynamics may be seen as a limitation. However, 

as demonstrated in this paper, this does not prevent one from identifying strongly nonlinear systems satisfactorily.  
 
Finally, we note that the study is still at the exploratory stage. Several issues such as robustness to noise, 

nonparametric identification, identification with intermittent frequency components (harmonics) and experimental 
validation will be investigated in subsequent studies. 
 

ACKNOWLEDGMENT 
 
G. Kerschen is supported by a grant from the Belgian National Fund for Scientific Research (FNRS), which is gratefully 
acknowledged. 
 

REFERENCES 
 
1. Masri, S.F. and Caughey, T. K., A nonparametric identification technique for nonlinear dynamic problems, Journal 

of Applied Mechanics, Vol. 46, pp. 433-447, 1979. 
2. Worden, K. and Tomlinson, G.R., Nonlinearity in Structural Dynamics: Detection, Identification and Modelling, 

Bristol, Philadelphia, Institute of Physics Publishing, 2001. 
3. Kerschen, G., Worden, K., Vakakis, A.F. and Golinval, J.C., Past, present and future of nonlinear system 

identification in Structural Dynamics, Mechanical Systems and Signal Processing, in press (available via 
http://www.sciencedirect.com), 2005. 

4. Feldman, M., Nonlinear system vibration analysis using the Hilbert transform - I. Free vibration analysis method 
‘FREEVIB’, Mechanical Systems and Signal Processing, Vol. 8, pp. 119-127, 1994. 

5. Feldman, M., Non-linear free vibration identification via the Hilbert transform, Journal of Sound and Vibration, 
Vol. 208, pp. 475-489, 1997. 

6. Feldman, M., Braun, S., Identification of non-linear system parameters via the instantaneous frequency: application 
of the Hilbert transform and Wigner-Ville technique, Proceedings of the 13th International Modal Analysis 
Conference (IMAC), Nashville, pp. 637-642, 1995. 

7. Staszewski, W.J., Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet 
transform, Journal of Sound and Vibration, Vol. 214, pp. 639-658, 1998. 

8. Garibaldi, L., Ruzzene, M., Fasana, A. and Piombo, B., Identification of non-linear damping mechanisms using the 
wavelet transform, Mecanique Industrielle et Materiaux, Vol. 51, pp. 92-94, 1998. 

9. Argoul, P. and Le, T.P., Instantaneous indicators of structural behaviour based on the continuous Cauchy wavelet 
analysis, Mechanical Systems and Signal Processing, Vol. 17, pp. 243-250, 2003. 



10. Bellizzi, S., Gullemain, P. and Kronland-Martinet, R., Identification of coupled non-linear modes from free 
vibration using time-frequency representation, Journal of Sound and Vibration, Vol. 243, pp. 191-213, 2001. 

11. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H., The 
empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, 
Proceedings of the Royal Society of London, Series A — Mathematical, Physical and Engineering Sciences, Vol. 
454, pp. 903-995, 1998. 

12. Yang, J.N., Lei, Y., Pan, S.W. and Huang, N., System identification of linear structures based on Hilbert-Huang 
spectral analysis; Part 1: Normal modes, Earthquake Engineering and Structural Dynamics, Vol. 32, pp. 1443-
1467, 2003. 

13. Yang, J.N., Lei, Y., Pan, S.W. and Huang, N., System identification of linear structures based on Hilbert-Huang 
spectral analysis; Part 2: Complex modes, Earthquake Engineering and Structural Dynamics, Vol. 32, pp. 1533-
1554, 2003. 

14. Zhang, R.R., King, R., Olson L, and Xu, Y.L., Dynamic response of the Trinity River Relief Bridge to controlled 
pile damage: modeling and experimental data analysis comparing Fourier and Hilbert-Huang techniques, Journal of 
Sound and Vibration, Vol. 285, pp. 1049-1070, 2005. 

15. Peng, Z.K., Tse, P.W. and Chu, F.L., An improved Hilbert Huang transform and its application in vibration signal 
analysis, Journal of Sound and Vibration, Vol. 286, pp. 187-205, 2005. 

16. Manevitch, L.I., Complex Representation of Dynamics of Coupled Oscillators in Mathematical Models of 
Nonlinear Excitations, Transfer Dynamics and Control in Condensed Systems, New York, Kluwer 
Academic/Plenum Publishers, pp. 269-300, 1999. 

17. Ziemer, R.E. and Tranter, W.H., Principles of Communication: Systems, Modulation and Noise, Boston, Houghton 
Mifflin, 1976. 


