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of PLS which promotes an inner variable/feature selection, 
is an interesting existing solution. But a new intuitive algo-
rithm is proposed in this paper to combine sparsity and the 
advantages of an orthogonalization step: the “Light-sparse-
OPLS” (L-sOPLS). L-sOPLS promotes sparsity on a previ-
ously optimized deflated matrix which implies the removal 
of the Y-orthogonal components.
Results  A discussion around the compromise between 
sparsity and predictive modelling performances is provided 
and it is shown that L-sOPLS produces convincing results, 
illustrated principally on the basis of 1H-NMR spectral data 
but also on genomic RT-qPCR data.
Conclusion  The L-sOPLS algorithm allows to reach bet-
ter predictive performances than (O)PLS and sPLS while 
taking into account only a very small number of relevant 
descriptors.

Keywords Biomarker discovery · (O)PLS models · 
Feature selection · Sparse models · L-sOPLS · 1H-NMR 
data · RT-qPCR data

1 Introduction

In a large variety of current metabolomics studies, as for the 
whole family of -omics, the research of accurate biomark-
ers is a key issue whether it is to diagnose a disease or to 
measure the degree of progress of a disease, to estimate the 
effects of a pharmaceutical treatment, to control the qual-
ity of consumer goods, etc. Biomarkers are then a way to 
explain and to anticipate an event, event which can be of a 
critical importance for example in case of a medical deci-
sion to operate or the choice of a heavy-duty or long-term 
medical treatment.

Abstract 
Introduction  In the context of metabolomics analyses, 
partial least squares (PLS) represents the standard tool to 
perform regression and classification. OPLS, the Orthogo-
nal extension of PLS which has proved to be very useful 
when interpretation is the main issue, is a more recent way 
to decompose the PLS solution into predictive components 
correlated to the target Y and components pertaining to the 
data X but uncorrelated to Y. This predominance of (O)PLS 
can raise the question of the awareness of alternative mul-
tivariate regression and/or classification tools able to find 
biomarkers. Actually, the search for biomarkers remains a 
key issue in metabolomics as it is crucial to very accurately 
target discriminating features.
Objective  Most of the time, (O)PLS methods perform 
well but a drawback often occurs: too many variables can be 
selected as potential biomarkers even using adapted statisti-
cal significance tests. However, for final users (in medical 
studies for instance), it can be advantageous to deal with 
only a small number of easily interpretable biomarkers.
Methods  This drawback is approached in this paper via the 
use of sparse methods. The sparse-PLS (sPLS), an extension 
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In practice, the statistical detection of these biomarkers is 
carried out by many researchers using partial least squares 
(PLS) analyses when the response matrix of interest Y is 
continuous; or PLS-DA (Discriminant Analysis) if Y is cat-
egorical or coded as a binary vector y when only two levels 
are of interest (for instance, y = 1 for patients with a disease 
and y = 0 for healthy people). The popularity of PLS regres-
sion methods in metabolomics dates from the early 2000s, 
mainly based on the works of Wold et al. (2001, 2002), and 
the parallel development of the SIMCA software (see for 
instance Bylesjo et al. 2006). Since then, this popularity has 
never stop ped growing and the vast majority of the past 
and current biomarkers’ researches have depended on the 
PLS(-DA) principles.

A bit more recently, the OPLS methodology was pro-
posed (Gabrielsson et al. 2006; Stenlund et al. 2008) and 
also gained a huge popularity among the metabolomics com-
munity. OPLS(-DA) is a more recent way to decompose the 
PLS solution into components correlated (predictive) to the 
target Y to predict and components unique in the data table 
X and uncorrelated (orthogonal) to Y. The common OPLS(-
DA) methodology very often leads to nearly the same results 
than PLS(-DA); the predictions are identical in both cases, 
but the indisputable advantage of OPLS comes from a better 
capacity of interpretation of the results, which may facilitate 
the work of final users.

PLS and OPLS are then massively used for classification, 
searching for biomarkers, and are obviously efficient to do 
that. But an issue can rapidly occur in most cases: too many 
variables (spectral zones in NMR) can be considered and 
proposed as candidate biomarkers. However, for final users 
(in medical studies for instance), it can be advantageous to 
deal with only a small number of -very- significant and ide-
ally easily interpretable biomarkers. In these situations, a 
critical objective would then be to build the lightest and most 
effective possible model. In recent years, this challenge is 
approached and filled via the use of sparse methods, with 
the objective to reinforce the most significant biomarkers’ 
coefficients and to force the less significant ones to be equal 
to zero (according to some LASSO-like penalties and to the 
well known LARS algorithm Efron et al. 2004).

In this paper, the notion of sparsity will be explored in the 
context of the biomarker discovery issue in metabolomics. 
An overview of the already known, but not yet enough used, 
sparse-PLS (sPLS) algorithm will be provided. sPLS can be 
viewed as an extension of the PLS regression which includes 
an additional and simultaneous variable/feature selection.

Then, a new methodology, called “Light-sparse-OPLS” 
(L-sOPLS), both innovative and quite intuitive, will be 
proposed and detailed. It can be viewed as an extension 
of OPLS adapted with sparse penalties. The idea is to take 
advantage of an orthogonalization step by applying sparse 
algorithms (such as the sPLS, Elastic Net,...) on a previously 

optimized decorrelated matrix (called Xd ∶ a deflated matrix 
where Y-orthogonal components have been optimally 
removed from the initial data matrix X of spectra).

The goal of this paper is then to demonstrate, on two real 
data sets, that the L-sOPLS alternative performs well as it 
can highlight the most relevant biomarkers (and furthermore 
a very small number of them). The sparse models’ predictive 
performances are also carefully taken into account via the 
automatic use of cross-validated RMSEP criteria. Often, a 
trade-off between a strong level of sparsity and a competi-
tive predictive power must be considered. It is shown in this 
paper that it is the case for sPLS but not for L-sOPLS, which 
allows to reach better predictive performances than (O)PLS 
and sPLS while taking into account only a very small num-
ber of final accurate descriptors.

The paper is organized as follows. Section 2 provides a 
detailed description of the two real data sets used to perform 
the algorithms: a 1H-NMR one obtained from spiked urine 
of rats and a genomic RT-qPCR one linked with the endome-
triosis disease. All the above-mentioned regression models 
or algorithms (PLS, OPLS, sPLS and L-sOPLS) are detailed 
in the methodological Sect. 3. Results on both data sets are 
then shown and discussed in Sect. 4. Finally, a general con-
clusion and description of further works are given in Sect. 5.

2  Materials: data sets and experimental protocols

In this section, the two selected data sets used to train the 
classical and sparse algorithms are presented. For both of 
them, a description and motivational explanations are pro-
vided, as well as the main acquisition parameters.

2.1  Spectral 1H‑NMR data set based on urine

The first experimental data set is a one dimensional Proton 
Nuclear Magnetic Resonance (1H-NMR) spectral set based 
on spiked urine samples from rats.

2.1.1  Description and motivations

This database was experimentally created according to a 
design aimed at studying the ability of statistical models to 
find, as biomarkers, the descriptors of the spectra for which 
a variability was carefully controlled. This property allows 
to evaluate the performances of statistical analysis for poten-
tially a large panel of methods. In this experiment, homog-
enized medium urine samples were spiked with two products 
(citrate and hippurate) at three levels of concentration and 
analyzed by spectroscopy. These concentrations of citrate 
and hippurate are aimed to mimic the variability focused in 
a biomarker discovery study. The basic design is presented 
in Fig. 1a and a typical urine spectrum with spiked citrate 
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and hippurate is provided in Fig. 1d. For each point of the 
design, six samples were prepared and analyzed over three 
days (two replicates per day).

To challenge the biomarker discovery issue, several bal-
anced and unbalanced sub-data sets have been extracted 
from the full database. In this paper, two of them are used 
to illustrate the ability of classification methods to recover 
hippurate peaks as group biomarkers. As shown in Fig. 1b, 
c, the combinations [(0, 0), (Qc/2, 0), (Qc, 0)) and ((0, Qh), 
(Qc/2, Qh), (Qc, Qh)] are conserved for the balanced study; 
and the combinations [(Qc/2, 0), (Qc, 0)) and ((0, Qh), 
(Qc/2, Qh)] are conserved for the unbalanced study. For 
each of these subcases, a target binary vector y was created 
accordingly to determine the groups to discriminate : for 
instance, for the hippurate balanced case, y = 1 if the obser-
vation is concerned by one of the [(0, 0), (Qc/2, 0), (Qc, 0)] 
combinations and y = 2 if the observation is concerned by 
another [(0, Qh), (Qc/2, Qh), (Qc, Qh)] combination.

The goal is to discriminate groups of spectra in these 
two subcases. Intuitivelly, in the balanced case, all other 
things being equal, the search for relevant discriminating 
biomarkers would primarily lead to the concerned product 
ppm spectral zone, i.e. hippurate only. In the unbalanced 
one, it would lead to a mixture of both products ppm spec-
tral zones, i.e. citrate and hippurate, as the changes of these 
two factors are confounded. The further use of unsparse and 
sparse models, in subsequent sections of this paper, has to 
confirm this intuition.

The whole input data sets are X numeric matrices of 
dimensions (36 × 600) for the balanced case, and (24 × 600) 
for the unbalanced one. The lines in X, the individual spec-
tra, are identified by the way of the citrate and hippurate 
levels of concentration.

2.1.2  Acquisition

This database was designed with spectroscopists from Eli 
Lilly and from the University of Liège (ULg). All the sam-
ples preparation and acquisition parameters are already 
explained in specific details in Rousseau (2011) (in part 2.3).

Some pre-treatments have been incorporated before the 
statistical analyses as such: the part of the spectrum between 
0.2 and 10 ppm has been reduced to 600 descriptors, the 
ppm values corresponding to the large non-informative urea 
and to the water zone (4.5–6.0 ppm) were set to zero and the 
data were normalized via a classical constant sum (CS = 1) 
normalization. It is also possible to integrate into one peak 
the spectral region around the citrate resonances (2.56–2.72 
ppm) to suppress the high shifts of the citrate peaks, but this 
decision was not taken in the context of this work.

2.2  RT‑qPCR genomic data set

In this subsection, a description of a second data set is 
provided. It consists in Reverse Transcription-quantitative 
Polymerase Chain Reaction (RT-qPCR) results from miR-
NAs expression analysis in groups of patients suffering or 
not from endometriosis (vector y). This leads to the search 
for discriminant differences of miR expression between the 
two groups and the potential discovery of endometriosis 
biomarkers.

2.2.1  Description and motivations

Endometriosis is characterized by the presence and growth 
of functional endometrial-like tissues outside the uterine 
cavity. It is a common and benign gynecological disorder 

Fig. 1  a The whole urine 
experimental design; b the 
hippurate balanced case; c the 
hippurate unbalanced case; d 
A typical urine spectrum with 
spiked citrate and hippurate
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(Giudice and Kao 2004) but women with endometriosis 
commonly experience a diagnostic delay of 6–12 years, 
often associated with increased severity of the disease. The 
current standard to detect the pathology is laparoscopy, a 
very invasive, expensive and associated to high surgical risks 
method. Even though extensive studies have been performed 
there are to date no specific reliable biomarker (Nisenblat 
et al. 2016).

An emerging strategy to detect pathologies is miRNAs 
quantification by RT-qPCR in bodyfluids. MicroRNAs 
(miRNAs) are small non-coding RNAs (20–24 nucleotides) 
that regulate gene expression through post-transcriptional 
repression or degradation of messenger RNA (mRNA) (Bar-
tel 2009; Lai 2002). In this study, 19 previously described 
miRNAs are evaluated to be associated with endometriosis 
(log_miR_x1 to log_miR_x19, which are log-transformed 
and for now anonymized). The data set contains information 
from 120 individuals, 63 suffering from endometriosis and 
57 others for control.

2.2.2  Acquisition

Total RNA, including miRNA, was extracted from 200μl 
of serum using the miRNeasy Serum/Plasma Kit (Qiagen) 
according to the manufacturers recommendations, and it was 
then eluted in 30μl of nuclease-free water. A synthetic spike-
in control miRNA (C. elegans miR-39 mimic, Qiagen) was 
added for subsequent normalization.

Total miRNA (2μl) from each sample was reverse-tran-
scribed with the miScript II TR kit (Qiagen) according to 
the manufacturers instructions. The miRNAs were subse-
quently quantified using the miScript SYBR Green PCR Kit 
(Qiagen) and specific forward primers. The reaction mixture 
included 2.5μl of cDNA, 12.5μl of Quantitect SYBR Green 
PCR Master Mix, 2.5μl of forward primer, 2.5μl of miScript 
Universal Primer and 5μl of RNase-free water (for a final 
reaction volume of 25μl). The thermal cycling consisted of 
an initial denaturation at 95 °C for 15 min, followed by 45 
cycles at 95 °C for 15 s, 55 °C for 30 s, and 70 °C for 30 s. 
All reactions were run in duplicate.

3  Methods: (O)PLS and corresponding sparse 
solutions: sPLS and L‑sOPLS

In this methodologic section, all the tested algorithms are 
presented, from classical PLS to advanced sparse solutions. 
First, some reminders about (O)PLS are provided. Then, 
the sparsing issue is approached with an existing tool, the 
sparse-PLS (sPLS). Finally, an innovative alternative is 
presented in details: the “Light-sparse-OPLS” (L-sOPLS), 
aimed at combining the advantages of the orthogonality and 
of the use of sparse modelling penalties.

3.1  The PLS(‑DA) regression model: some reminders

PLS is a broad spread method for modelling relations 
between dependant and independant variables. It is very 
popular and extensively used in chemometrics, and therefore 
in metabolomics where it has proved its usefulness and effi-
ciency to underline metabolic changes in biofluids (due for 
example to toxicity or disease process). The PLS regression 
(Geladi and Kowalski 1986; Wold et al. 2001) is primarily 
constructed in order to optimize the quality of prediction 
but is also able to extract factors, called latent variables, 
to best resume the available information in both regressors 
and response(s). Thus, the popularity of PLS is principally 
based on this two levels capacity: to explain and represent 
the information in X and Y (Y can be univariate or multi-
variate), and to model the link between X and Y in order to 
allow further predictions. In practice with omics data, PLS 
is also often used as a variable selection tool for searching 
for biomarkers.

The fundamental objective of PLS implies a computa-
tion of X and Y scores, in order to capture a high amount 
of variance in X and Y matrices and also a high amount of 
“correlations” between X and Y. In most PLS algorithms, the 
uncorrelated components of the model are extracted sequen-
tially and every iteration deflates from the data the variation 
that is associated with the last estimated component.

More formally, consider a data matrix X with n observa-
tions and m variables and, to simplify, a vector y for the 
dependent variable of size (n × 1). To specify the latent com-
ponent matrix T such that T = XW  (linear combinations), 
PLS requires finding the columns of W = (w1, ...,wq) from 
successive optimization problems. For the iterative compu-
tation of each component k = 1, ..., q, the PLS goal can be 
written as follow:

subject to w�
k
wk = 1, where ωk is the PLS X-weights vec-

tor for dimension k.
Alternatively, this criteria can be written:

The outer relation for X is built as follow: the X-scores T(n×q) 
are obtained from linear combinations of the original data X 
with the matrix of weights W(m×q), such that Tq = XWq. One 
multiplies Tq with the X-loadings matrix P�

(q×m)
, as Pq = X�Tq. 

The product is then a good “summary” of X if one obtains 
small residuals E(n×m) in X = TqP

�
q
+ E.

Similarly, for the other part of the bilinear decomposi-
tion, the outer relation for y is defined as the addition of 
some summarized information and some error terms: 

(1)max
�

{
corr2(y,Xwk)var(Xwk)

}
≡ max

�

{
w�
k
X�
k
yy�Xkwk

}

(2)
minw

{
−w�

k
Mwk

}

subject to w�
k
wk = 1, where M = X�yy�X.
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y = Uqc
�
q
+ g, where Uq is the (n × q) matrix of y-scores, c′

q
 

is the (q × 1) vector of y-weights and g(n×1) is the residual 
vector of y. Since Tq is a good predictor of y, the following 
inner relation occurs: y = Tqc

�
q
+ g∗, where the y-residuals 

g∗
(n×1)

 are equal to the difference between the modelled and 

observed responses. Consequently, the goal is to obtain 
‖g∗‖ as low as possible and also to obtain the best possible 
relation between X and y.

The first component can be retrieved from a singular 
value decomposition (SVD) of a matrix that combines both 
information from X and y: R = X�y and gives the singular 
vector w∗

1
 known as the first weights column (Hoskulds-

son 1988). For each subsequent iteration, the X matrix 
is deflated by the variation associated with the estimated 
component. Eventually, the process is maintained until one 
decides to stop after a certain number of latent variables 
or until all the components have been calculated. The rel-
evant choice of q is therefore essential to avoid overfitting 
of the model, giving a poor prediction power especially 
when the regressors are numerous and/or correlated (Abdi 
2010). Usually, a cross-validation criterion is added to 
decide on the optimal number of latent variables to keep.

Computationally, several PLS algorithms are available 
according to some specificities: classical PLS, [canoni-
cal powered partial least squares (CPPLS) (Indahl et al. 
2009)], [straightforward implementation of a modification 
of PLS (SIMPLS) (De Jong 1993)], [nonlinear iterative 
partial least squares (NIPALS) (Wold 1975)], etc. In this 
paper, the SIMPLS algorithm will be used for each PLS 
routine because of its higher computational speed. With 
the descriptor matrix X and a the target vector y, this algo-
rithm consists in:

– Centering of X by columns
– Initialization: r

1
= X�y

– Iterations from k = 1 to q :

1. Weights normalization: wk =
rk√
r�
k
rk

2. Scores calculation: tk = Xwk

3. Scores normalization: tk =
tk√
t�
k
tk

4. Loadings calculation: pk = X�tk
5. Deflation step: rk+1 = rk − pk(p

�
k
pk)

−1p�
k
rk.

– Choice of q, the optimal number of components of the 
PLS model using an adequate validation criterion. The 
[root mean square error of prediction (RMSEP), Mevik 
and Cederkvist (2004)] is a traditional criterion. It must 
be minimized and it can be calculated for each size of 
model by k-fold or Leave-One-Out (LOO) cross-valida-
tion. Note that working with an external and independ-

ent validation/test set is very often too expensive and 
not possible is most metabolomics studies.

– Matrices T = XW and P = X�T are obtained, based on 
the optimal q.

– Final coefficients of the PLS model are calculated as 
bPLS = W(T�T)−1T�y and allow to make subsequent pre-
dictions on new observations.

From these results, the descriptors with highest (abso-
lute) coefficients can be considered as primary candidate 
biomarkers.

PLS discriminant analysis (PLS-DA) (Barker and Rayens 
2003) is a particular case of PLS regression aiming at pre-
dicting one (or several) binary responses y still from a matrix 
X of descriptors. PLS-DA is specifically suited to deal with 
problems where the number of predictors is large (compared 
to the number of observations) and collinear, two major chal-
lenges frequently encountered with, for instance, 1H-NMR 
data. For spectral biomarker discovery, PLS-DA provides 
regression parameters that can be used as biomarker scores 
and the descriptors with the highest coefficients are naturally 
linked with discriminating zones.

3.2  The OPLS(‑DA) algorithm

Projection methods such as PLS remain strongly affected by 
the potential occurrence of systematic variation in the data 
source that is not relevant for response prediction. That’s 
why Orthogonal Projection to Latent Structures (OPLS) has 
emerged in chemometrics as a filtering method enabling the 
removal of variation from X that is not correlated to the 
dependant variable Y (or y). It leads to a different model 
since some of the extracted components are identified as 
corresponding to systematic or specific orthogonal causes of 
variation. A generalisation of its use in metabolomics studies 
[for example, among many others, in Wiklund et al. (2008), 
Jung et al. (2010) and Weljie et al. (2011)] is explained by 
the relative simplicity of the algorithm, derived from the 
NIPALS-PLS one, and the ability to manipulate and inter-
pret the resulting predictive and orthogonal matrices. Note 
that NIPALS-PLS (Wold 1975) predictions are equal to 
SIMPLS predictions, described in Sect. 3.1, when consid-
ering an univariate target variable y (Wehrens 2011).

As for PLS regressions, the OPLS extracts sequentially 
each component. Several orthogonal components can be 
estimated and the X matrix is, at each step, deflated with 
respect to orthogonal variations. Considering a two-class 
classification problem, the OPLS(-DA) approach only con-
siders one predictive component along with potentially sev-
eral orthogonal components. Finally, the goal is to find the 
projection that classify and discriminate in the best way the 
y levels, or groups.
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The whole statistical methodology behind the OPLS(-
DA) approach is available in details in Trygg and Wold 
(2002). The algorithm differs slightly from the classical 
NIPALS-PLS one and works as follow for an univariate y:

– Centering of X by columns, as for PLS
– The NIPALS algorithm is sequentially applied to find 

the predictive component by removing a bilinear struc-
ture from the centered X that is torthoip

′
orthoi

 (Wold et al. 

2002). Remember that, generally, Tortho is the orthogo-
nal X-scores (n × (q − 1)) matrix for the OPLS(-DA) 
model with (q − 1) orthogonal components, and P′

ortho
 

is the orthogonal X-loadings matrix for the same 
model.

 1. Initialization: X1 = X, starting from the initial 
mean-centered data matrix X to be deflated.

   Iterative orthogonalization from k = 1 to q − 1 ∶

 2. w̃k =
X�
k
y

y�y

 3. X-weights normalization to ∥ w̃k ∥ = 1: w̃k =
w̃k√
w̃�
k
w̃k

 4. X-scores computation: tk = Xkw̃k

 5. X-loadings computation: pk =
X�
k
tk

t�
k
tk

 6. Calculations of the orthogonal components’ 
weights: w̃ok = pk −

w̃�
k
pk

w̃�
k
w̃k

w̃k, then normalized to 

w̃ok =
w̃ok√
w̃�
ok
w̃ok

 7. Computation of orthogonal scores: tok = Xkw̃ok

 8. And computation of orthogonal loadings: 
pok =

X�
k
tok

t�
ok
tok

 9. Deflation step on X: Xk+1 = Xk − tokp
�
ok

 10. A whole deflated matrix can be extracted at the 
end of the iterations such that: 

 where To = (to1, ..., toq−1) and Po = (po1, ..., poq−1).

– The PLS algorithm, using one predictive component, 
can now be performed on Xd according to the same 
pattern:

1. w̃d =
X�
d
y

y�y
, then w̃d =

w̃d√
w̃�
d
w̃d

2. td = Xdw̃d

3. pd =
X�
d
td

t�
d
td

– OPLS coefficients are obtained by: 

(3)Xd = X − ToP
�
o
= X − Xo

(4)bOPLS = w̃d(p
�
d
w̃d)

−1
y�td

t�
d
td

– Since the bOPLS are linked with Xd and not directly with 
the initial data matrix X, note that these coefficients, 
although very informative, are not stricly interpretable 
in the same way as bPLS. So, bOPLS can be transformed to 
match with X as follow: 

 where Im is the identity matrix involving m columns and 
W̃o = (w̃o1, ..., w̃oq−1). The OPLS predictions are then: 

It is important here to note that the corrected OPLS coef-
ficients (bOPLScorr) obtained with (q − 1) orthogonal com-
ponents and one predictive component will be equal to the 
corresponding PLS coefficients obtained with q components 
(Tapp and Kemsley 2009). Therefore, the subsequent predic-
tions will be the same for both models:

As for PLS models, to avoid overfitting, a cross-validation 
step can be added to optimize a criterion (RMSEP for 
instance) in order to select the best number of orthogonal 
components (q − 1). From (Eq. 7), it follows that if a solu-
tion implying q components was optimally selected during 
a previous PLS model for a specific study, the solution with 
(q − 1) orthogonal dimensions is also optimal when using 
OPLS for this same study.

3.3  The sparsity issue and the sparse‑PLS (sPLS) 
solution

Both PLS(-DA) and OPLS(-DA) are efficient and massively 
used in -omics studies for biomarker discovery because of 
the m >> n characteristic of the X matrix. In these models, 
descriptors with highest absolute coefficients can be selected 
as candidate biomarkers. Other tools can also be used as, for 
instance, the [variable importance in the projection criterion 
(VIP) (Afanador et al. 2013; Lu et al. 2014)] or the popular 
S-plots for OPLS. Most of the time, these methods lead to 
a high number of biomarkers considered as of interest for 
further investigations in metabolomics experiments, which 
quickly induces difficulties of interpretation.

If decision rule is based on the highest absolute coeffi-
cients, the choice of a threshold to determine what is of inter-
est and what is not is inevitably needed. But what threshold 
to use? This question is obviously subjective. To objectify 
this decision, a solution is to reinforce the more significant 
biomarkers’ coefficients and to force the other ones to be 
equal to zero. This represents the key basis of the sparsity 
(Hastie et al. 2015) and leads to the additional application of 
penalties (LASSO-like, Ridge, Elastic Net (Zou and Hastie 
2005,...). Moreover, a lighter and more interpretable model, 
not less efficient or relevant, should be ideally provided to 

(5)bOPLScorr = (Im − (W̃o(P
�
o
W̃o)

−1P�
o
))bOPLS

(6)ŷOPLS = Xd.bOPLS = X.bOPLScorr

(7)ŷOPLS(q−1) = ŷPLS(q)
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final users for medical decisions, treatment adjustments, etc. 
Of course, the quality of prediction of the sparse alternatives 
must be assessed and, sometimes, a compromise between 
predictive performances and sparsity needs to be found.

In this context, the use of the Sparse-PLS (sPLS) method 
is increasing in metabolomics studies. sPLS keeps the spirit 
of PLS models but provides a restricted number of final 
selected biomarkers. Different algorithms exist in the litera-
ture, the two main of them being respectively implemented 
in the mixOmics R package [detailed in Lê Cao et al. (2008)] 
and in the spls R package [detailed in Chun and Keles (2007) 
and Chung et al. (2012)].

On the basis of the PLS objective [see Eq. (2)], the sPLS 
algorithm of Chun and Keles, used in this paper, provides 
an efficient implementation based on the LARS objective 
function:

This formulation promotes exact zero property onto the 
weights by imposing L1 penalty (�1) onto a surrogate direc-
tion vector c (linked with the Y-weights) instead of the origi-
nal direction w (linked with the X-weights), while keeping 
w and c close to each other. In other words, this L1 penalty 
encourages sparsity on c. The L2 penalty (�2) takes care of 
the potential singularity of matrix M when solving for c. 
Finally, the effect of the concave part, and the local solution 
issue, is reduced by using a small additional parameter � 
(Chun and Keles 2007).

The generalized regression formulation (Eq. 8) is then 
solved by alternatively iterating between solving for w for 
fixed c, and solving for c after fixing w. For the problem of 
solving w for fixed c, the objective function becomes:

This constrained least squares problem can be solved via 
the method of Lagrange multipliers (Chun and Keles 2007). 
When solving for c for fixed w, it becomes:

with R = X�y. This second problem is equivalent to the 
naive elastic net (EN) problem of Zou and Hastie (Zou and 
Hastie 2005) when Y in the naive EN is replaced with R′w 
and can be solved efficiently via the least angle regression 
spline algorithm (LARS) (Efron et al. 2004). sPLS often 
requires a very large �2-value to solve Eq. (10) because R′ is 
a matrix with usually a small number of lines, i.e. one line 
when Y = y is univariate. As a remedy, an EN formulation 
with �2 = ∞ is used.

(8)

minw,c
{
(−�w�

k
Mwk) + (1 − �)(c − wk)

�M(c − wk) + �1c1 + �2c2
}

subject to w�
k
wk = 1 for k = 1, ..., q, where M = X�yy�X.

(9)
minw

{
(−�w�

k
Mwk) + (1 − �)(c − wk)

�M(c − wk)
}

subject to w�
k
wk = 1 for k = 1, ..., q.

(10)min
c

�
(R�c − R�wk)

�(R�c − R�wk) + �1‖c‖1 + �2‖c‖2
�

In order to promote sparse solutions in a restricted 
X-space, sPLS searches for relevant variables, the so-called 
active variables. Specifically, at each step of either the 
NIPALS or the SIMPLS algorithm, Eq. (8) is optimized 
and all direction vectors are updated to form a Krylov sub-
sequence (Chapman and Saad 1997) on the subspace of the 
active variables. This is achieved by conducting PLS regres-
sion by using the selected features. Let � be an index set 
for active variables, q the number of components and X� 
the submatrix of X whose column indices are contained in 
� . The sPLS-SIMPLS algorithm works as follow (Chun 
and Keles 2007):

– Initialization step: bPLS1 = {.}; �1 = {.}; and X1 = X

– While 1 ≤ k ≤ q,1. Find ŵk by solving the objective 
(8) with M = X�

k
yy�Xk,

2. Update � = �k as 
{
i ∶ ŵki ≠ 0

}
∪
{
i ∶ bPLSki ≠ 0

}
,

3. Fit then a PLS (SIMPLS) model with X�k
 as explan-

atory matrix, using k number of latent components,
4. Compute active weights W�k

 and the loading matrix 
P�k

 such that P�k
= X�

�k
X�k

W�k
(W �

�k
X�
�k
X�k

W�k
)−1,

5. Define and update the SIMPLS regression param-
eters bPLSk by the new estimates of the direction vec-
tors,

6. Update Xk by deflation of the subset �k of active 
c o l u m n s  t h r o u g h 
X�(k+1)

← X�k
(I − P�k

(P�
�k
P�k

)−1P�
�k
).

Note that the sPLS-SIMPLS algorithm, used in this paper, 
has similar attributes to the sPLS-NIPALS one. It selects 
more than one variable at each step and handles multivariate 
responses as well.

An additional cross-validation step (for minimizing 
RMSEP for instance) is greatly useful to determine the opti-
mal couple formed by the number of predictive components 
q to keep, as for PLS, and the �1 penalty term. The final 
descriptors with non-zero coefficients (i.e. in X�q

) can finally 

be considered as primary candidate biomarkers. In terms of 
interpretation, final biomarkers are directly available through 
their non-zero coefficients and the number of biomarkers is 
obtained as a result of the objective optimization of (q, �1). 
Using the VIP or any variable ranking criterion at the end of 
a (O)PLS regression, this number would be inevitably 
subjective.

3.4  Sparsity with OPLS: the new “light‑sparse‑OPLS” 
(L‑sOPLS) solution

If one want to keep the OPLS interpretability advantages 
which consist of a withdrawal of the Y(or y)-orthogonal 
effects relative to X, and if one also want to propose sparse 
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results, a natural way is to explore the possible combinations 
of OPLS and sPLS. Although some interesting work already 
exist about this topic (van Gerven and Heskes 2010; Munoz-
Romero et al. 2015), the theory is not always very clear and 
no intuitive and user-friendly solution is proposed yet to the 
-omics community.

The innovative proposal of this paper consists in the 
development of the “Light-Sparse-OPLS” (L-sOPLS) 
model. The idea is quite intuitive and requires to start from 
the OPLS algorithm described in details in Sect. 3.2, to fol-
low the process until the construction and the recovery of the 
data matrix Xd [deflated by the y-orthogonal components, 
see Eq. (3)] and to apply a sparsing model on this filtered 
matrix specifically, instead of on the initial data matrix X. 
The sparsing technique may be freely chosen between sPLS, 
Lasso logistic regression, Elastic Net, etc. In this paper, 
L-sOPLS combines the OPLS orthogonalization step with 
sPLS.

For interpretability and intuitiveness concerns, the 
L-sOPLS algorithm implies two optimization steps in 
order to maintain the best possible predictive ability (i.e. 
for each step, minimization of the RMSEP via an adapted 
cross-validation technique). The first step is aimed at opti-
mally selecting the number of orthogonal components, as 
in a classic OPLS process. The deflated resulting matrix Xd 
is then built according to this number (qortho). The second 
step builds the sPLS sparse model, using Xd as input, whose 
number of predictive components (qpred) and penalty term 
�1 are chosen optimally.

The L-sOPLS algorithm can be summarized as follow:

1. Application of an OPLS model (see Sect. 3.2) on the 
initial centered spectral matrix X.

Minimization, via k-fold or LOO cross-validation, of the 
predictive quality error criterion (i.e. RMSEP, MSPE, 
...) in order to select the optimal number of orthogonal 
components qortho.

2. Computation of the qortho-deflated matrix Xd = X − Xo.

3. Application of a SIMPLS-sPLS model (see Sect. 3.3) 
using Xd as input. This implies the inner identifications 
of Md = X�

d
yy�Xd and Rd = X�

d
y instead of M and R in 

Eqs. (9) and (10). Note again that the process is similar 
for a multivariate Y.

Minimization, via cross-validation, of the predictive quality 
error criterion (i.e. RMSEP, MSPE,...) in order to select 
the optimal number of predictive components qpred and 
the optimal penalty criterion �1.

4. The final non-zero coefficient vector b∗ is obtained by 
conducting PLS regression on the selected variables 
only. The lenght of b∗ is obviously smaller or equal than 
the lenght of bPLS or bOPLS.

5. The descriptors (features) associated with b∗, which 
strictly contains non-zero coefficients, at the end of the 

sPLS process are finally considered as primary candi-
date biomarkers (see Sect. 3.3).

Note that, as opposed to OPLS with a binary y, L-sOPLS 
allows the potential use of several predictive dimensions 
qpred, combined with potentially several orthogonal dimen-
sions qortho. The optimal number of orthogonal dimension(s) 
qortho is obtained after a first cross-validation step within 
an OPLS framework, and the optimal number of predictive 
dimension(s) qpred is independently obtained after a second 
cross-validation step this time within a sPLS framework. 
This makes the modelling even more flexible and focused on 
the prediction of the target Y (or y). Indeed, since the sPLS 
step is performed on a deflated object, which is supposed to 
be very strongly linked with Y by construction, the predictive 
goal is probably strengthened and prioritized at the expense 
of the descriptive goal when using L-sOPLS. This intuition 
is confirmed in the next results section.

It can’t seem so obvious that the potential use of more 
than one predictive dimension in L-sOPLS can really lead 
to parsimonious models (compared to OPLS). But the fact 
that qpred is chosen by cross-validation simultaneously along 
with the �1 term avoids high risks of final non-parsimonious 
or very huge models (see further results in Table 1).

Note also that, according to some subsequent trials, 
L-sOPLS seems to be robust to overfitting toward the major 
class (i.e. if P(y = 0) ≠ P(y = 1)).

This new method was implemented in R version 3.3.2 and 
a function is available here: https://github.com/ManonMar-
tin/MBXUCL. A subsequent “LSOPLS” R package is under 
construction.

4  Results and discussion

In this section, all the obtained results are discussed, only 
some of them are shown for convenience and readability. 
Parameters will be provided for each PLS, OPLS, sPLS and 
L-sOPLS optimal model and for the two data cases.

4.1  Results for the 1H‑NMR urine spectral data set

Starting from the 1H-NMR urine of rat design, two main 
sub-data sets are considered, with balanced and unbalanced 
hippurate doses (see Sect. 2.1.1). 600 descriptors, all poten-
tial spectral biomarkers in X (without metadata or medical 
extra information), are available to explain the membership 
in a group, i.e. the corresponding binary target vector y. For 
the balanced case, the discovery of only one product spectral 
zone(s) is principally expected to classify the observations 
into the two groups. For the unbalanced case, the spectral 
zones of both hippurate and citrate would be of interest to 

https://github.com/ManonMartin/MBXUCL
https://github.com/ManonMartin/MBXUCL
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Table 1  (O)PLS and sparse results for the 1H-NMR citrate and hippurate data: the balanced and unbalanced hippurate cases (a “–” means that 
the peak is not among the first fifteen coefficients in absolute value for PLS or OPLS)

The hippurate balanced case (see Fig. 1d)

Biomarkers (in 
ppm)

Zone PLS coefficients OPLS bOPLS sPLS selection L-sOPLS selection

q = 5 q = 4 + 1 qpred = 5, �
1
= 0.6 qortho = 4, qpred = 3,

�
1
= 0.72

LOO-RMSEP LOO-RMSEP LOO-RMSEP LOO-RMSEP

= 0.0197 = 0.0197 = 0.0206 = 0.0162

2.478 − 7.636 – No No
2.593 Citrate – 2.906 No No
2.609 Citrate – 3.331 No No
2.626 Citrate – 2.906 No No
2.642 Citrate – 2.505 No No
3.017 − 10.677 4.728 Yes (− 9.329) No
3.050 − 5.730 3.331 Yes (− 5.381) No
3.279 − 13.839 5.646 Yes (− 20.556) No
3.295 − 7.153 – Yes (− 13.606) No
3.442 7.573 – Yes (− 13.651) No
3.801 − 7.260 – No No
3.981 Hippurate 17.115 28.699 Yes (16.829) Yes (22.737)
3.997 Hippurate 19.408 6.744 Yes (19.907) Yes (27.409)
6.055 − 9.734 – No No
7.558 Hippurate 11.335 16.204 Yes (11.777) Yes (5.543)
7.574 Hippurate 23.517 13.906 Yes (24.738) Yes (16.282)
7.639 Hippurate – 5.368 Yes (6.128) No
7.656 Hippurate 7.135 7.889 Yes (6.113) Yes (− 7.126)
7.836 Hippurate 14.159 14.768 Yes (16.952) Yes (39.541)
7.852 Hippurate 24.122 18.855 Yes (23.682) Yes (26.641)
The hippurate balanced case (see Fig. 1e)

Biomarkers (in 
ppm)

Zone PLS coefficients OPLS bOPLS sPLS selection L-sOPLS selection

q = 5 q = 4 + 1 qpred = 5, �
1
= 0.6 qortho = 4, qpred = 3,

�
1
= 0.73

LOO-RMSEP LOO-RMSEP LOO-RMSEP LOO-RMSEP

= 0.0187 = 0.0187 = 0.0184 = 0.0114

2.478 − 7.822 – No No
2.560 Citrate – − 4.385 Yes (0.370) No
2.576 Citrate – − 5.847 Yes (0.492) No
2.593 Citrate – − 7.309 Yes (0.615) Yes (− 17.008)
2.609 Citrate – − 8.771 Yes (0.738) Yes (− 20.409)
2.625 Citrate – − 7.309 Yes (0.615) Yes (− 17.008)
2.642 Citrate – − 5.847 Yes (0.492) No
2.658 Citrate – − 4.385 Yes (0.370) No
3.017 − 9.581 – Yes (13.995) No
3.279 − 13.519 – Yes (− 44.365) No
3.295 − 6.299 – No No
3.442 7.802 4.953 Yes (− 44.365) No
3.801 − 6.120 – No No
3.981 Hippurate 17.592 22.496 Yes (11.672) Yes (− 5.564)
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explain this discrimination. The design also involves three 
different days of measurements.

On each set, PLS (using the SIMPLS algorithm), OPLS, 
sPLS (using the spls R package) and L-sOPLS algorithms 
were applied, along with LOO cross-validation steps in order 
to choose optimal parameters for prediction purpose. For 
each optimal model, the objectives are focused on the rel-
evance and the final number of the selected biomarkers on 
one hand (and their graphical interpretability), and on the 
analysis of the predictive abilities on the other hand. For 
the sparse models, the penalty parameter �1 was in all cases 
considered between 0.6 and 0.99 in order to provide sparse 
enough results.

The choices of the optimal numbers of components for 
PLS and OPLS were made by minimizing the RMSEP crite-
rion via LOO cross-validation. Finally, five components are 
used for PLS and OPLS (four orthogonal dimensions and 
one predictive dimension for OPLS), providing a minimal 
LOO-RMSEP equal to 0.0197 for the balanced case. For the 
unbalanced one, the same solution is found for a minimal 
LOO-RMSEP equal to 0.0187.

For the sparse methods, the optimal parameters (the num-
ber of predictive components qpred and the penalty term �1
) were also chosen to minimize the LOO cross-validated 
RMSEP.

For sPLS and for the balanced hippurate case, the opti-
mal parameter combination is qpred = 5 and �1 = 0.6 (not 
very severe) and leads to a minimal LOO-RMSEP equal to 
0.0206. For L-sOPLS: qpred = 3 and �1 = 0.72 after a defla-
tion of matrix X though four orthogonal components (i.e. 
qortho = 4). For this last model, LOO-RMSEP is equal to 
0.0162, which is lower than the minimal value obtained with 
the initial (O)PLS.

For the unbalanced case, the optimal parameter combina-
tion for sPLS is qpred = 5 and �1 = 0.6 and leads to a minimal 
LOO-RMSEP equal to 0.0184. For L-sOPLS: qpred = 3 and 
�1 = 0.73 after a deflation of matrix X though four orthogo-
nal components. This last model has a LOO-RMSEP equal 
to 0.0114 and contains only eight final descriptors with non-
zero coefficients (see the last column of the second part of 
Table 1). Thus, L-sOPLS provides (very) sparse models with 
a better predictive power than (O)PLS.

In Table 1, the first two columns lead to the main bio-
markers selected by PLS and OPLS (fifteen for PLS and 
fifteen for OPLS, most of them being concerned by both) 
on the basis of their higher coefficients in absolute values. 
The number fifteen was arbitrarily chosen. The hippurate 
spectral zones are mainly represented in these highest coef-
ficients for both PLS and OPLS; the citrate zone appears 
with lower coefficients in the OPLS results only, with posi-
tive low values in the balanced case and negative values in 
the unbalanced one (as expected according to the design). 
The sparse decisions concerning these biomarkers are also 
shown in Table 1 for optimized sPLS and L-sOPLS methods 
(Yes/No to indicate if the biomarker is selected, and the cor-
responding final sparse coefficient if yes).

For the balanced case, the optimal sPLS model finally 
selects more than twenty biomarkers from the 600 initial 
input variables. Among them, all the hippurate peaks are 
selected but not those of the citrate spectral zone. The opti-
mal L-sOPLS model leads to the selection of only seven 
final biomarkers. It is very important to note that all of them 
are connected to the hippurate spectral peaks only.

For the unbalanced case, the optimal sPLS model selects 
twenty biomarkers (see also Table 2) from the 600 initial 
input variables. All the hippurate and citrate peaks are 

Table 1  (continued)

The hippurate balanced case (see Fig. 1e)

Biomarkers (in 
ppm)

Zone PLS coefficients OPLS bOPLS sPLS selection L-sOPLS selection

q = 5 q = 4 + 1 qpred = 5, �
1
= 0.6 qortho = 4, qpred = 3,

�
1
= 0.73

LOO-RMSEP LOO-RMSEP LOO-RMSEP LOO-RMSEP

= 0.0187 = 0.0187 = 0.0184 = 0.0114

3.997 Hippurate 18.548 – Yes (18.164) No
6.055 − 7.750 – No No
7.558 Hippurate 11.061 12.686 Yes (9.313) Yes (15.340)
7.574 Hippurate 23.622 10.917 Yes (29.902) Yes (14.196)
7.639 Hippurate 5.664 4.251 Yes (10.180) No
7.656 Hippurate 7.294 6.172 Yes (1.588) No
7.836 Hippurate 12.166 11.554 Yes (12.701) Yes (27.561)
7.852 Hippurate 25.717 14.693 Yes (30.735) Yes (40.921)

The selected sparse biomarkers are highlighted in bold
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selected among them. The optimal L-sOPLS model only 
selects eight final biomarkers. It is very important to note 
that all of these later biomarkers are either hippurate or 
citrate descriptors only, which coincides with the corre-
sponding design (Fig. 1c). Furthermore, the selected citrate 
descriptors are well associated with negative sparse coef-
ficients and localized at the center of the citrate peak.

Figure 2 shows the final coefficients and the first two load-
ings of each model for the unbalanced hippurate case. The 
main hippurate and citrate peaks are highlighted by vertical 
lines. One can see that the orthogonal models offer better 
performances to find the negative effect of the citrate dose. 
The optimal L-sOPLS model only involves eight non-zero 
final coefficients strictly linked with the hippurate or citrate 
spectral peaks only (positive coefficients for the majority of 
hippurate peaks and negative ones for citrate, as expected). 
The first L-sOPLS loadings reveal these effects very quickly 
in a quite intuitive and iterative way.

Figure  3 shows the obtained scores for PLS, OPLS, 
sPLS and L-sOPLS. For all the models, the discrimination 
between the two groups of interest is very clear, as already 
seen via very low LOO-RMSEP values, and one can see the 
interest of the orthogonalization which perfectly aligns the 
groups. The four subgroups linked with the different concen-
trations of hippurate and citrate may be also well separated 
(see symbols in Fig. 3). Finally, the day effect does not seem 
to be very relevant for the group classification (the numbers 
are not always ordered in Fig. 3).

For the unbalanced hippurate case’s sPLS and L-sOPLS, 
Table 2 illustrates the LOO-RMSEP variations over a grid 
of (qpred, �1) different values. Remember that the (O)PLS 
reference value of LOO-RMSEP is 0.0187 in that case. One 
can see that only one (qpred, �1) combination leads to a bet-
ter, i.e. lower, LOO-RMSEP value when using sPLS. What 
is already very positive. But, in other words, for all other 

combinations, a compromise has to be made between spar-
sity (degree or severity of feature selection) and predictive 
power.

For the L-sOPLS solution, almost all the (qpred, �1) com-
binations lead to lower LOO-RMSEP values. Sparsity, even 
very severe, goes hand in hand with better predictive ability 
when using L-sOPLS instead of non-sparse PLS or OPLS. 
Furthermore, since the vast majority of possible models have 
a similar better predictive power, one can imagine that final 
users can be free to “manually” select some parameters and, 
consequently, to choose their L-sOPLS model according to 
the final number of biomarkers which they want to explore 
(beyond the automatic approach of the algorithm).

The evolution of the final number of selected biomarkers 
(displayed in brackets in Table 2) shows, as expected, that 
high values of �1 lead to a restricted number of selected 
descriptors because of a greater degree of severity. More-
over, when qpred increases into the model, the number of 
selected biomarkers also increases.

Note that all these results and conclusions are very similar 
when considering the citrate case sub-data sets: the citrate 
peak regions are primarily selected as final biomarkers for 
the balanced case, both hippurate and citrate ones for the 
unbalanced case. And similar conclusions can be highlighted 
about the models’ predictive power.

4.2  Results for genomic RT‑qPCR data

In the RT-qPCR data set described in Sect. 2.2, m = 19 
anonymized, log-transformed and standardized miRNAs 
are considered as explanatory variables of the model, and 
n = 120 observations are available. These data aim at show-
ing how the algorithms behave when the number of variable 
is drastically limited, just like the level of information. The y 

Table 2  Evolution of the LOO-RMSEP criterion for both sPLS and L-sOPLS models according to different values for the qpred and �
1
 param-

eters

The corresponding number of final selected biomarkers is in brackets. The combinations leading to better LOO-RMSEP performances than ini-
tial (O)PLS models (RMSEP = 0.0187) are highlighted in bold

The hippurate unbalanced case

�
1 qpred for sPLS qpred for L-sOPLS (with qortho = 4)

1 2 3 4 5 1 2 3 4 5

0.6 0.1164 (2) 0.0317 (6) 0.0284 (12) 0.0235 (17) 0.0184 (20) 0.0171 (2) 0.0121 (6) 0.0123 (12) 0.0139 (17) 0.0131 (20)
0.65 0.1706 (2) 0.0409 (6) 0.0286 (11) 0.0263 (17) 0.0205 (19) 0.0171 (2) 0.0121 (6) 0.0123 (11) 0.0141 (17) 0.0141 (19)
0.7 0.1759 (1) 0.0557 (5) 0.0284 (9) 0.0266 (15) 0.0269 (19) 0.0222 (1) 0.0123 (5) 0.0121 (9) 0.0141 (15) 0.0140 (19)
0.75 0.1759 (1) 0.0559 (4) 0.0279 (7) 0.0263 (12) 0.0279 (16) 0.0222 (1) 0.0115 (4) 0.0121 (7) 0.0133 (12) 0.0135 (16)
0.8 0.1759 (1) 0.0549 (3) 0.0587 (5) 0.0257 (8) 0.0292 (12) 0.0222 (1) 0.0127 (3) 0.0122 (5) 0.0133 (8) 0.0135 (12)
0.85 0.1759 (1) 0.0552 (3) 0.0681 (5) 0.0258 (6) 0.0326 (9) 0.0222 (1) 0.0127 (3) 0.0122 (5) 0.0136 (6) 0.0135 (9)
0.9 0.1759 (1) 0.0548 (2) 0.0611 (4) 0.0609 (5) 0.0289 (6) 0.0222 (1) 0.0126 (2) 0.0120 (4) 0.0131 (5) 0.0131 (6)
0.95 0.1759 (1) 0.0548 (2) 0.0566 (3) 0.0593 (4) 0.0462 (5) 0.0222 (1) 0.0126 (2) 0.0134 (3) 0.0119 (4) 0.0124 (5)
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Fig. 2  (O)PLS, sPLS and L-sOPLS coefficients (left) and two first loadings (right) for the unbalanced hippurate case
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binary vector to predict is the presence/absence of the endo-
metriosis pathology.

In the same way as for the previous data, cross-validated 
PLS and OPLS coefficients and sparsing results obtained 
via sPLS and L-sOPLS are displayed in Table 3, along with 
the optimal parameters and the obtained minimal LOO-
RMSEP. An underlined “Yes” in the sparsing selection 
columns means that the corresponding miRNA variable is 
always selected as important biomarker for any penalty term, 
even very severe; when the “Yes” is not underlined, it means 
that the corresponding variable is often selected when the 
penalty term is slightly modified.

The optimal PLS regression involves here two predictive 
components; optimal OPLS involves one orthogonal and one 
predictive component; optimal sPLS involves two predictive 
components and �1 = 0.68; and finally, optimal L-sOPLS 
involves (qortho, qpred, �1) = (1, 1, 0.67).

As for the previous data set, the global minimal LOO-
RMSEP (= 0.4147) is obtained with a L-sOPLS model pro-
viding seven final biomarkers; and the majority of tested 
L-sOPLS models, for different (qpred, �1) combinations, 
provide better predictive performances than the best (O)
PLS reference model. So, again, no compromise must be 
done between very competitive predictions on one side and 

sparsity on the other side (leading to simpler and more inter-
pretable models) when using L-sOPLS.

Two clear primary biomarkers are identified by the four 
algorithms: log_miR_x2 and log_miR_x3 (Table 3). These 
miRNAs are among the higher coefficients found by PLS/
OPLS and are also selected by the sparse solutions.

5  Conclusion and further works

In this article, objective sparse solutions are provided in 
order to solve the problem linked with the subjective selec-
tion of biomarkers in -omics studies (how many? What 
thresholds? What cut-offs?) when using PLS or OPLS. 
Sparse-PLS (sPLS) is already implemented in computer 
software and begins to be used in the metabolomics com-
munity, but an innovative and quite intuitive approach com-
bining sparsity in the feature selection and the orthogonali-
zation advantages of OPLS is proposed in this paper with 
the Light-sparse-OPLS (L-sOPLS).

Applied on urine 1H-NMR spectral data or on genomic 
q-PCR data, this new sparse algorithm leads to very con-
vincing results, by selecting a (very) small number of 
(very) relevant features as biomarkers and by providing, 

Fig. 3  (O)PLS, sPLS and 
L-sOPLS scores for the unbal-
anced hippurate case. Colours 
discriminate Group 1 and Group 
2, symbols refer to the citrate 
and hippurate concentrations 
and numbers refer to the day of 
measurement
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consequently, lighter cross-validated optimal models to 
practitionners which may be much easier to interpret and 
to deploy. However, often, the sparsity goal can be only 
reached at the expense of lower predictive performances, 
when classifying new observations, compared to non-sparse 
models. It is mainly the case for sPLS models, for which 
compromises have to be made between drastic feature selec-
tion and predictive power. But such compromises do not 
seem to be necessary for the L-sOPLS, for which sparsity, 
even at a severe level, goes hand in hand with a better predic-
tive ability than (O)PLS and sPLS models.

The objective of this article remains focussed on bio-
marker identification. A further interesting work would con-
sist in more deeply investigate the predictive performances 
of L-sOPLS (binary predictions, false positives/negatives, 
ROC curves,...) and compare them to standard PLS or OPLS 
predictions. Then, it would probably emphasize even more a 
question of compromise between “perfect” predictions and 
interpretable sparse predictions.

Another further possible work would be to address the 
correlation or colinearity into the data that very often charac-
terizes metabolomics spectral databases. Several signals, for 

instance peaks in 1H-NMR, can overlap, move together and/
or be associated to a same molecule. So, an idea would be 
to apply L-sOPLS on 2D-NMR spectra (COSY for instance 
Feraud et al. 2015) or to take into account groups of features 
instead of individual features as inputs of the sparse algo-
rithms. Methods like Group-LASSO, Sparse-Group-LASSO 
or Overlay-Group-LASSO (Friedman et al. 2010) could then 
be tested in this context.

5.1  Softwares

As mentioned regularly all along this paper, the R software 
(http://www.R-project.org) environment was exclusively 
used, via existing packages (pls, spls, ropls), or coded ad hoc 
(OPLS and L-sOPLS, functions which are available here: 
https://github.com/ManonMartin/MBXUCL).
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Table 3  (O)PLS and sparse 
results for the RT-qPCR data

The six higher coefficients in absolute value are highlighted in bold for PLS and OPLS
An underlined "Yes" denotes that the corresponding variable is always selected as important biomarker for 
any sparsity penalty term

miRNAs PLS coefficients OPLS bOPLS sPLS selection L-sOPLS selection
q = 2 q = 1 + 1 qpred = 2, �

1
= 0.68 qortho = 1, qpred = 1,

�
1
= 0.67

LOO-RMSEP LOO-RMSEP LOO-RMSEP LOO-RMSEP

= 0.4356 = 0.4356 = 0.4297 = 0.4147

log_miR_x1 − 0.083 − 0.031 Yes (− 0.115) No
log_miR_x2 0.066 0.050 Yes (0.073) Yes (0.072)
log_miR_x3 0.065 0.045 Yes (0.081) Yes (0.065)
log_miR_x4 − 0.053 − 0.009 No No
log_miR_x5 0.053 0.034 Yes (0.065) Yes (0.049)
log_miR_x6 − 0.049 0.014 No No
log_miR_x7 − 0.048 − 0.019 No No
log_miR_x8 0.042 0.037 Yes (0.046) Yes (0.054)
log_miR_x9 − 0.031 − 0.001 No No
log_miR_x10 0.026 0.040 Yes (0.014) Yes (0.058)
log_miR_x11 0.024 0.039 Yes (0.009) Yes (0.056)
log_miR_x12 0.022 0.028 No No
log_miR_x13 0.022 0.038 Yes (0.009) Yes (0.055)
log_miR_x14 0.015 0.009 No No
log_miR_x15 − 0.015 − 0.004 No No
log_miR_x16 0.007 0.015 No No
log_miR_x17 0.002 0.032 Yes (− 0.020) No
log_miR_x18 0.001 0.023 No No
log_miR_x19 − 0.001 0.030 No No

http://www.R-project.org
https://github.com/ManonMartin/MBXUCL
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