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We study the nucleon-nucleon interaction in the framework of the chromodielectric soliton model
(CDM). Here, the long-range parts of the non-Abelian gluon self-interactions are assumed to give rise
to a color-dielectric function which is parametrized in terms of an effective scalar background field.
The six-quark system is con6ned in a deformed mean 6eld through an effective nonlinear interaction
between the quarks and the scalar 6eld. The CDM is covariant, respects chiral invariance, leads
to absolute color confinement, and is free of the spurious long-range van der Waals forces which
trouble nonrelativistic investigations employing a confining potential. Six-quark molecular-type
configurations are generated as a function of deformation and their energies are evaluated in a
coupled channel analysis. By using molecular states instead of cluster model wave functions, all
important six-quark con6gurations are properly taken into account. The corresponding Hamiltonian
includes the efFective interaction between the quarks and the scalar background field and quark-quark
interactions generated through one gluon exchange treated in Coulomb gauge. When evaluating
the gluonic propagators, the inhomogeneity and deformation of the dielectric medium are taken
into account. Results for the adiabatic nucleon-nucleon potential are presented, and the various
contributions are discussed. Finally, an outlook is given on how, in the next stage of our investigation,
dynamical efFects will be incorporated by employing the generator coordinate method.

PACS number(s): 24.85.+p, 21.30.+y, 13.75.Cs, 12.39.Ba

I. INTRODUCTION

The nucleon-nucleon interaction is one of the most ba-
sic problems of nuclear physics. There exists extensive
experimental information, &om N-N scattering data and
the properties of the deuteron, but no single theoretical
picture seems to be able to describe the relevant physics
for all internuclear distances. In N-N phenomenology,
both relativistic and nonrelativistic, one treats the nu-

cleons as elementary particles interacting through a two-
body potential which is either local or includes some
nonlocality through momentum and state dependence in
the interaction. The general features of that potential,
i.e., the short-distance core and the long-range attrac-
tion, have been known for over forty years.

Already in 1935, Yukawa [1] suggested that the attrac-
tion was due to the exchange of an intermediate mass,
strongly interacting particle, the subsequently discov-
ered pion. This led to the development of meson field-
theoretic models which today form the most accurate
phenomenological description of the N Ninteraction (see-
Ref. [2] for an excellent overview). In these models, one
treats the nucleons as elementary particles with an em-
pirical form factor, and their interactions are mediated
through one boson exchange (OBE) plus two pion ex-
change (TPE), where the latter is frequently simulated
by a (fictitious) scalar meson.

Within these descriptions, the long-range (r & 1.5
fm) part of the N Ninteraction is contr-olled by one
pion exchange, while the intermediate range (0.5 fm & r &

1.5fm) attraction is dominated by OBE and TPE. The
short-range (r & 0.5 fm) repulsion is the "mystery" re-
gion in such prescriptions. It has been described by hard
or soft cores, or form factors, both of the order of 0.5
to 0.8 fm, or by the exchange of vector mesons which,
however, have a range of 1/m = 0.2 fm.

The advent of QCD and quark models has lifted the
veil of mystery &om the short range N-N interaction
exposing a new level of simplicity. However, the system is
no longer just a two-body, but at least a six-body, entity
and more properly a field-theoretical problem. The quark
core of nucleons is of the order of 0.7 fm (a rms radius of
0.5 fm), and one thus expects the quark substructure to
be effective within a range of N-N separations of up to
about 1 fm.

A description of the N-N interaction within the kame-
work of quark degrees of freedom has been the subject
of much research. The ideal venture would be a lattice
gauge theory calculation (see, e.g. , [3]), but we are quite
far kom that stage, and therefore we have to rely on
modeling. We mention, nonexhaustively, several differ-
ent avenues which have been explored in that context:
nonrelativistic constituent quark models [4], relativistic
current quark models, such as the MIT bag [5) and var-
ious soliton models [6], string models, and the topologi-
cal Skyrme model [7—9]. There are many varieties under
each category, and we will not attempt to review them all
here, but rather recommend the reader to see the review
articles by Oka and Yazaki [10], Myhrer and Wroldsen
[11],or Shimizu [12].
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In addition to the various methods which have been
employed to model nucleon-nucleon interactions, one has
to further distinguish between static and dynamical cal-
culations. In the static calculations, a local N-N po-
tential is obtained in Born-Oppenheimer [13] (adiabatic)
approximation &om the energy difference of a deformed
six-quark bag and two separated noninteracting nucle-
ons. Nonadiabatic calculations, on the other hand, yield
a nonlocal interaction through a consideration of the dy-
namics involved. In the latter category, usually the res-
onating group [14] or the generator coordinate method

[15] is applied.
Quark models hold promise for giving a good descrip-

tion for short and intermediate range, but beyond, say,
1 fm the interaction, although in principle describable
in terms of quarks, is much more easily represented by
mesonic models, with the nucleonic substructure giving
rise to form factors for the meson-nucleon couplings.

The ultimate object of our study is not only to repro-
duce the two-body data such as N-N phase shifts and
bound state properties of the deuteron, but also to quan-
tify the quark substructure of nuclei. With respect to the
latter, we will describe the collision process as an act of
fusion followed by a separation into three-quark clusters,
and this will be used in conjunction with the indepen-
dent pair model of nuclei to obtain, e.g. , quark structure
functions. With this in mind, the main aspects of our
current project can be described as follows:

(i) We employ the chromodielectric soliton model

[16,17], which respects covariance, yields absolute color
confinement and is &ee of the color van der Waals prob-
lem [18] (which is inherent to most nonrelativistic cal-
culations). In addition, one gluon exchange is evaluated
with a "confined" gluonic propagator.

(ii) The six-quark wave function is expanded in terms
of "molecular" states [19], including all configurations
based on the two lowest spatial single-particle states.
This allows for consideration of basis states normally
omitted in the cluster model and which have been demon-
strated to be important in decreasing the energy of
a spherical six-quark system in variational calculations
[20,21].

(iii) Dynamics will be handled through the generator
coordinate method [22], which leads to a set of coupled
integral equations. It has been claimed [6] that a signifi-
cant part of the short-range repulsion is due to dynamics,
and the absence of a repulsive core in some early calcula-
tions is now seen as an artifact of the adiabatic approx-
imation [23,24]. In addition, the effective interaction is
nonlocal in terms of the N-N separation parameter.

(iv) In order to reproduce two-body properties, be-
yond a certain internuclear distance we will attach the
interaction we derive to a phenomenological local OBE
potential (cf. for example Ref. [25]). We could, however,
also consider extending our calculation more deeply into
the intermediate-range region by either including quan-
tum surface Buctuations and introducing configurations
of the form q q in addition to our q basis states, or by
explicitly allowing mesonic degrees of &eedom.

In this first of a planned series of papers, we are mostly
concerned with the introduction of the model and a pre-

sentation of the formalism we use. Therefore, we restrict
ourselves to an adiabatic, or static, approximation. We
calculate (a~H[n), where a is the separation or deforma-
tion parameter, including diagonalization with respect to
the various six-quark configurations. We defer steps (iii)
and (iv) to subsequent papers in this series [26,27].

The outline of this work is as follows. In Sec. II,
we review some of the earlier work on the chromodielec-
tric soliton model and construct three-quark nucleons.
In Sec. III, we describe how we generate single-quark
wave functions through a constrained mean Beld calcu-
lation. Section IV is devoted to the "molecular" states
which form the basis for the six-quark configurations we
consider. Section V describes the treatment of the one
gluon exchange, and in Sec. VI we present the results of
our numerical calculations. Finally, we summarize, con-
clude, and give an outlook on our future work in Sec.
VII.

II. THE MODEL

The chromodielectric model [16,17] is an evolution of
the Friedberg-Lee nontopological soliton model [28]. Its
Lagrangian is the same as the fundamental QCD La-
grangian, supplemented by a scalar Geld which is sup-
posed to simulate the gluonic condensate and other scalar
structures which inhabit the complicated physical vac-
uum. It is assumed that the scalar Beld, which has
a nonvanishing vacuum expectation value, parametrizes
the bulk of nonperturbative effects which arise due to the
nonlinearity of QCD.

The extra degrees of &eedom introduced by the scalar
field are redundant, and in order to avoid double counting
we do not include diagrams which correspond to struc-
tures with the quantum numbers of the cr field. Since the
model parameters are readjusted at each level of approx-
imation to fit key physical data, one might hope that as
the level of sophistication of the calculations is increased,
one would Gnd a decoupling of the cr degrees of &eedom
and would thus be left with pure QCD. But, we are cur-
rently far &om that stage, and although the model has
its basis in QCD, we regard it as phenomenological.

The model Lagrangian

with

@ (zp"D„—m ) @,
2 B„oB"o—U(o),
—

4 rc(o.) E„'„F""',

(2a)

(2b)

(2c)

is covariant and, for massless quarks, satisfies chiral sym-
metry. It di6'ers in. that respect from most effective quark
models, such as the MIT [29], Friedberg-Lee [28], or
Nielsen-Patkos [30] models, which explicitly violate chi-
ral symmetry through the interaction of the quarks with
some scalar field.

Here, mq is the current quark mass matrix; for the rest
of this investigation, we set mq = 0. In addition, P

„

is
the color-SU(3) gauge field tensor, and U(o) is the self-
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interaction energy of the scalar field which is taken to be
of the form

a 2 b ~ c 4U(o) = —a + —o + —cr + B.
2! 3I 4I

(3)

The quartic form of U(a) would assure renormalizabil-
ity if r zoere a constant [31]. The bag pressure B
{which corresponds to the "bag constant" of the MIT
model) is chosen such that U(o.) has a minimum and
vanishes at the scalar field's vacuum expectation value,
i.e. , U(o„) = U'(cr„) = 0. One defines

U"(o„)—= mGn,

r.(cr„) = r.'(cr„) = r'(0) = 0

r. (0) = 1.

where mGB is identi6ed with the mass of the lowest 0++
glueball state. The scalar field furthermore governs the
chromodielectric properties of the medium through K(a),
and in order to guarantee absolute color con6nement and
a regular behavior as e —+ cr, the dielectric function must
satisfy

hence an effective mass, through their interactions with
the gluon field. This con6nement mechanism has been
studied for a uniform dielectric function [17] as well as a
cavity model in which K is unity at the center and goes
to zero outside the bag [32]. It was shown [17] that the
quarks' self-energy acquires an asymptotic form which
increases as K decreases and becomes in6nite as K ~ 0.
This corresponds to a realization of spatial confinement,
since this mass is "color blind. "

Color confinement, on the other hand, arises through
the enclosure of the quark cavity by the physical vacuum
where the dielectric function goes to zero [31].Note that
K -+ 0 also ensures that there are no spurious color van
der %aals forces. Furthermore, the gluonic propagator
depends on cr through e(a) and is thus also "confined. "

Inspired by the results of these studies [16,17,32], we
introduce an effective coupling between the quarks and
the scalar 6eld,

—g.ff(~) @ 0

with

1
g.ff(~) = go ~.

~
" ( r.(o).)

We choose the form (with z = o/o„)

K(cr) = 1 + 8(z)z"[nz —(n+ 1)], (6)

which is designed to simulate spatial con6nement already
at the mean field level.

The efFective energy functional is given by

and set n = 2 for our present investigation.
Although the quarks are massless and there is no direct

quark-sigma coupling, they still acquire a self-energy, and where

H= d r'Rr

2

@t n (p —2g, A' A') + pg, ff(cr) + 2g, A' Ao Q+ —
~ ~

+ 2~V'cr~ + U(o) .
2 qatar

(10)

This must be supplemented by the field equations for A&

and A', which will be given in Sec. V.
In order to fit the parameters of the model, we con-

struct a self-consistent solution for the nucleon. %e treat
the scalar field classically and drop the gluonic terms
when determining the quark wave function or the scalar
field. See Ref. [33] for more details. We incorporate cer-
tain approximate recoil corrections [34], which should be
compared with methods using projection and boost [35].
Of the five parameters involved [a, b, and c in U(o), go in

g ff, and the strong coupling constant n, ], three are fixed

by fitting the nucleon mass, the 4 mass, and the proton
rms charge radius. This leaves two free parameters, for
which we choose the dimensionless quantities f —:b /ac
B,Ild C.

For f = 3, the bag pressure B vanishes, which gener-
ates "hard" bags with a thin surface. For f = oo, the
quadratic term in U(o') disappears, and cr = 0 turns from
a second minimum to an inflection point. This yields
"soft" bags with a thick surface. In general, for increas-

ing c, the glueball mass and the bag pressure increase, the
agreement in the axial vector coupling g~, which is inher-
ently too small by about 10 percent, improves, but the
proton's magnetic moment p~ (which is also consistently
underestimated) grows to differ more from its experimen-
tal value. Table I gives an overview of the corresponding
quantities for the various parameter sets under consider-
ation.

As already remarked, we work in the one gluon ex-
change approximation. Since for both the nucleon and
the 4 all of the quarks are in the same spatial state,
and the entire system is a color singlet, the total (mutual
plus self) color-electrostatic energy is zero. The color-
magnetic interaction, on the other hand, is responsible
for the N-A mass splitting. In general, part of this en-

ergy difFerence should be attributed to the difFerent pion
dressing of the nucleon and the 4, but since presently our
soliton does not contain any pionic effects, we disregard
this contribution. As usual [36], the magnetic self-energy
contribution is neglected and no intermediate excitations
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TABLE I. Results of a self-consistent mean field calculation for the nucleon for various parameter
sets as characterized by f = b /ac and c, adjusted to yield the same recoil corrected proton rms

charge radius of 0.83 fm and recoil corrected nucleon mass of 939 MeV. The quantities listed are

the 0++ glueball mass m~B, the bag pressure B, the nucleon's axial vector coupling constant g~,
and the proton's magnetic moment p,„.The strong coupling constant cx, is adjusted to yield the
mass of the 4 resonance of 1232 MeV, employing either a free or a confined gluonic propagator.

c moa (MeV) B (MeV/fm )

3.0

3.2

30000
10000
3000
1000

30000
10000
3000
1000

30000
10000
3000
1000

2933
1948
1254
734

2501
1787
1214
783
2355
1755
1243
874

0

0
0

40
32
22
12
67
62
52
38

1.24
1.21
1.18
1 ~ 12
1.21
1.20
1.19
1.15
1.21
1.21
1.20
1.18

2.21
2.29
2.34
2.42
2.28
2.31
2.34
2.38
2.31
2.31
2.32
2.35

Free
3.36
3.36
3.34
2.90
3.49
3.48
3.45
3.18
3.66
3.64
3.58
3.49

Confined
1.32
1.42

1.57
2.25
1.43
1.46
1.56
2.03
1.47
1.50
1.59
1.79

of the quarks into higher spatial orbitals are taken into
account. The evaluation of the X-6 mass splitting al-
lows the adjustment of the strong coupling constant, and
the corresponding results are given in Table I. Hereby, a
"confined" gluonic propagator is used, i.e., the explicit
dependence of the gluonic field equations on the die)ec-
tric function e(o) is taken into account. For details see
Sec. V and Ref. [36]. For comparison, we also show the
values of a, which we obtain by using a free propagator,
i.e., by setting K = 1.

q = f d r g(r) q(r) g(r),

for some chosen set q(r). In the above, we have dropped
the label "n" for simplicity, and in the following, we limit
ourselves to a one-dimensional deformation parameter
space and consider zero-impact trajectories (or central
collisions) only. The constrained mean field equations
then assume the form

cx p+ g,g (r r —Aqr —e„„=0,

III. CONSTRAINED MEAN FIELD
APPROXIMATION

dU(o) dg, p(o)—
(14)

The starting point of any evaluation of a multidimen-
sional potential energy surface and the input to any cal-
culation employing the generator coordinate method is a
wave function which is characterized by a set of deforma-
tion parameters, which in the following will be denoted
collectively as n. In our case, the n describe the static
configuration of a system of six quarks and the corre-
sponding deformed scalar u Geld, which is treated quan-
tum mechanically through the coherent state approxima-
tion. Consideration of various six-quark configurations
(see Sec. IV for more details) allows for each deformation
the construction of a complete basis, which is indicated
by a set of state vectors lcz, n).

In general, these state vectors are generated by means
of a constrained mean field calculation, i.e., by extremiz-
ing the expectation value of the total Hamiltonian, as
given by (cxlHln), with respect to a variational wave
function for the quarks and a coherent state for the scalar
field, subject to the constraints

where (QQ) is the six-quark scalar density and A is a
Lagrange multiplier imposing the subsidiary condition of
Eq. (11). All gluonic terms have been dropped &om the
above equations, and the label n identifies the di8'erent
single-particle quark states.

Instead of specifying the constraint function q(r) ex-
plicitly and solving the above pair of equations simulta-
neously and self-consistently, we specify the function

g, ir (o (r)) —A q(r) = V (r):—g,s (o (r) ) (15)

for each value of the collective deformation parameters o..
V (r) then plays the role of an external potential gener-
ating the wave function for the quarks, and it is expressed
in terms of a scalar field with a prescribed deformation,
o (r).

Following Schuh et al. [6], we construct the field o (r)
by folding a Yukawa-shaped smoothing function with the
union (for o. ) 0) or intersection (for n ( 0) of two
spheres whose centers are separated by the distance lal,
1.e.)

where the Q are some moments of the quark distribution
as defined through

(r) = e„—eo f T (r') f(ir —r'i) d r', (16)



618 W. KOEPF, L. WILETS, S. PEPIN, AND FL. STANCU 50

T~ I' 8[B(n) —]r —zn/2~] for z & 0,
&[&(n) —(r + zn/2(] for z ( 0, (17)

(18)

450—

400—

350—
where o. is the vacuum expectation value of the scalar
field, and where o. ) 0 corresponds to prolate defor-
mations and o. ( 0 to oblate deformations. In this,
we restrict ourselves to a physically reasonable three-
parameter representation of the external potential V (r).
The underlying parameter space is, of course, infinite di-
mensional.

The parameters R, I', and oo are determined &om our
self-consistent solution for the nucleon, such that the cor-
responding scalar field of two &ee nucleons is well approx-
imated at asymptotic deformations, i.e.,

cr (r) ~ o~(r —i' n/2) + or~(r+ zn/2) —o„.
(19)

In order to select a definite path in configuration space,
the field strength oo and the surface parameter I' are kept
constant and the radius B = R(n) is varied in such a way
that the volume of the six-quark cavity is independent of
its deformation and remains fixed at the value of two
nucleonic volumes. In Fig. 1, we show the field cr (r)
obtained in that manner for four different o.'s.

Selecting this particular path in the geometrical con-
figuration space spanned by R, I', and oo is equivalent to
treating the scalar Geld as an incompressible liquid. In
order to check this approximation, we constructed self-
consistent stationary eigenstates of the total Hamiltonian
for a spherically symmetric bag, i.e. , for o. = 0. Our Gnd-

ings, which will be discussed in Sec. VI, show that the
quality of the "constant volume" approximation is quite
remarkable.

The potential V (r) serves to generate a set of single-

particle quark states, which are determined from the
eigenvalue equation (13). Here, we limit ourselves to the

0fm

FIG. 1. The scalar field, o (r) of Eq. (16), from which the
single-quark wave functions are generated, for four diferent
values of the deformation parameter o. between 2 fm and —2
fm. The fields correspond to the parameter set with f = 3
and c = 10000, and are shown with equal increments between
adjacent contours.

300 =

250 —3 —2 —1 0 1

a (fm)

FIG. 2. The eigenenergies of the lowest single-particle
states of positive and negative parity determined from Eq.
(13) for values of the magnetic quantum number of m = +1/2.
Results are shown for two particular parameter sets with
c = 10000 and f = 3 (solid line) or f = oo (dot-dash line).

lowest states of positive and negative parity, denoted by
~o) and ~7r), and to values for the single-particle mag-
netic quantum number of m = +1/2. The corresponding
eigenenergies, e and e, are shown in Fig. 2 for two par-
ticular parameter sets (c = 10000; f = 3 and f = oo).
Figure 2 depicts the increasing binding of the positive
parity state for small o., as well as the convergence of
both levels for separating bags, i.e., as o. m oo. Then,
the two states become degenerate and turn into linear
combinations of ~R} and ~1), corresponding to an s state
in either bag. As a ~ 0, the single-particle states evolve
to 0 ~ sz/2 and m ~ p3/2, respectively.

IV. QUARK MOLECULAR BASIS STATES

The classification and construction of antisymmetric
six-quark basis states is a central part of any study of
the N-N system in terms of quark degrees of &eedom.
Incorporating all possible degrees of freedom [color (C),
orbital motion (0), spin (S), and isospin (T)] we use a
classification scheme based on SU(4) spin-isospin sym-

metry, as introduced by Harvey [37], to construct config-
urations which are totally antisymmetric with respect to
the interchange of any pair of particles, i.e. , have Young
symmetry [1 ]. Using &actional parentage coefficients

[38] we can reduce the six-body matrix elements of the
effective Hamiltonian to linear combinations of one- and
two-body matrix elements.

The novelty with respect to Harvey's scheme and other
similar studies lies in the choice of the orbital share of the
wave function. In most previous calculations, the cluster
model has been used (see Ref. [11] for a review), which
describes the orbital degrees of freedom in terms of two

separate three-quark clusters centered at the locations
of the two respective nucleons, denoted in the follow-

ing as ~B} and ]I }. In this investigation, on the other
hand, we use "molecular orbitals" [19],where the spatial
single-particle states are wave functions of a static single-

particle Hamiltonian, such as obtained from constrained
Hartree-Pock or soliton mean field theories, and which

in our case are the two lowest orbitals of either parity,
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11) = 1NN),

14& = 142+[6]o [»]»&
15) = 142'[42]o[»1»)
16& = 142'[42]ol»l»&
17& = I»+[6]o [»]»&

(20)

for the basis of our truncated Hilbert space. The 6rst
three form the "physical" basis in Harvey's investigation
of the N Ninteraction [-37], and they contain solely con-
figurations which are asymptotically of the type 1R L ).
The other four are asymptotically of the form 1R4L +
R L4) or 1R L + RL ), denoted as 42+ and 51+, respec-
tively. Configurations of that type do not occur in the
standard cluster model.

]a& and 1m&. It is obvious that the molecular states are
orthogonal at any separation, whereas the cluster model
states are not. The latter even overlap completely for
vanishing internucleon separation, (R[L)[~ o

——1. Note
also that in the cluster model, the limit o. —+ 0 requires
special care in the normalization of the various symme-
try configurations [19]. Otherwise some contributions are
mistakenly left out, as was the case in Refs. [5], [23], and
[37], for example.

In Refs. [20] and [21],results for a united six-quark bag
obtained with cluster model wave functions were com-
pared with corresponding calculations employing molec-
ular basis states and, in particular, the constituent quark
model and the MIT bag model were investigated. In both
cases, the authors found that the ground state energies
were substantially lowered through the use of molecular
orbitals. The reason for this is that con6gurations of
the type 1R L "(n P 3)&, which are absent in a cluster
model basis, proved to be quite important.

The only sectors which are compatible with I = 0 N-
N partial waves are T = 0, S = 1 and T = 1, S = 0
(Ref. [39]). The relevant orbital symmetries are then

[f]o = [6] and [42] assuming that each nucleon is asymp-
totically in a [f]o = [3] state. For the spin-isospin chan-
nels, on the other hand, only the [f']ps = [51] and [33)
evolve into asymptotic dibaryon states for large inter-
nucleon separations. As all other [f']ps states couple
very weakly to the latter [20,21], they can safely be dis-
regarded for the N-N problem. This leaves the following
states (employing the notation of Ref. [19]):

B"(~(cr) (B„A'„—B„A'„)) = J', (21)

where the total quark color-current operator is

(22)

with g, = +4xo.„andGell Mann's color-SU(3) matrices
are denoted by A'. The gluonic fields are explicitly af-
fected by the scalar field through m(0). As the dielectric
is constructed in such a way as to ensure absolute color
confinement, the resulting gluonic propagators will also
be "confined, " and there will be no gluons propagating
outside the solitonic bags.

In order to solve the Geld equations, we choose the
Coulomb, or transverse, gauge,

V (~A) = 0,
which decouples Ao in (21) through

(23)

—V ]c VAO —— Jo . (24)

The 6eld equation for the spatial components of A'„reads

lcB, A —V'~A + Vx(AxVK) = Jg,

where the transverse current is de6ned by means of

Ji = J —KV B~Ao .

(25)

(26)

%e note that due to the scalar nature of the medium,
the field equations are diagonal in the color indices, which
have hence been omitted in Eqs. (23)—(26). From these
equations, we can furthermore deduce the mutual and
self-interaction energies between the quarks which arise
due to the OGE, and finally evaluate their contribu-
tions to the one-body and two-body parts of the effective
Hamiltonian. Respective diagrams are shown in Figs.
3(a) and 3(b), and the corresponding matrix elements

/CD) are assumed to be simulated by the scalar field.
The field equations therefore linearize and become identi-
cal to Maxwell's equations in an inhomogeneous medium
[31]. In this approximation, we find from Eqs. (2a) and
(2c)

V. ONE-GLUON EXCHANGE
)r,mP )s,m, &

We treat quark-gluonic interactions in the one-gluon
exchange approximation. At this level, we are not con-
fronted with the problem of double counting, since col-
orless structures which are already represented by the
scalar 6eld begin with two-gluon exchange or the excita-
tion of qq pairs.

In addition, the non-Abelian terms in the /CD gauge
6eld tensor E„„havebeen neglected, since higher order
eff'ects (which arise due to the non-Abelian character of

(b)

FIG. 3. Typical one-gluon exchange diagrams that con-
tribute to the gluonic share of the effective Hamiltonian. The
diagram shown in (a) corresponds to the two-body mutual
interactions, while the graph depicted in (b) corresponds to
one-body self-interactions.
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are evaluated by Grst determining the gluon propagator
"in medium. " We follow here Bickeboeller et al. [40], as
subsequently corrected by Tang and Wilets [41] where,
however, the corrections in Ref. [41] do not affect the
matrix elements used here.

The part of the OGE interactions that arises &om
the time component of the gluonic Geld is responsible
for the realization of color confinement, and the part of
the OGE interactions that stems &om the spatial com-
ponents of the gluonic Geld generates the color-magnetic
hyperGne interaction which, in turn, produces the %-6
mass splitting. As usual, the self-interaction terms have
been included in the time part of the OGE and have
been neglected for the spatial contributions. This is in
accordance with the minimal self-energy prescription of
the MIT bag model [42]. Only when taking the color-
electrostatic self-energy diagrams arising from the time
component of the gluonic field into account, the color-
electrostatic interaction between two well separated nu-
cleonic color singlets vanishes, as is required by color neu-
trality [5].

In addition, the OGE matrix elements from the color-

magnetic hyperGne interaction are signiGcantly smaller
than the ones generated by the color-electrostatic inter-
action. The reason for this reduction is that the latter
always involve the "small" lower components of the rel-
ativistic quark spinors. Inasmuch as the magnetic inter-
action is not directly involved in color conGnement, we
simplify our calculations by using a free (i.e. , r—:1) ten-
sor propagator and an effective a, m a,'" adjusted to
yield the experimental N-6 splitting.

VI. RESULTS AND DISCUSSION

In the following, we will present our results for the adi-
abatic, local N Npote-ntial, V& (n) = (o.]H]o.) —2Eiv,
obtained in Born-Oppenheimer approximation &om the
energy difference of a deformed six-quark bag and two
well separated noninteracting nucleons. The underlying
effective Hamiltonian can be separated into two distinct
contributions, (Hi s) and (HciGK). The nongluonic one-
body term has the form

(H, s) = e (b+b ) + e (b+b ) — — d r
~

'„o(gQ)+ 0 —2U(0)
~

with the scalar quark density

(Hi ) arises from the single-particle energies [e and e of Eq. (13) and depicted in Fig. 2] and the scalar field o
fmm Eq. (14) as well as the external potential generating the quark wave functions g,ir(0 ) of Eq. (15). Note the
distinction between the scalar Geld cr, which is an explicit dynamical degree of &eedom, and the auxiliary quantity
o. , which, as outlined in Sec. III, is only used to generate single-quark wave functions with a certain deformation.

In addition, there is the one gluon exchange contribution,

(H G~) = (H, )+(H;)+(H, )+(H, )+(H, )+(H, )+(H, -), (29)

with the one-body self-energy terms, (Hi ) and (Hi ),
and the various two-body contributions (Hfv"') allowed
by parity conservation. The corresponding diagrams are
shown in Fig. 4. It is important to note that in the OGE
self-energy terms only the color-electrostatic interaction
was taken into account, and that the o. —a —a and er-
a —7r "oK-diagonal" terms are essential in providing for
the confinement of the color-electric flux [5].

The adiabatic potential will be shown as a function of
the deformation parameter a, which was introduced in
Sec. III [see Eqs. (16)—(18)]. For large prolate deforma-
tions, n coincides with the true nucleon-nucleon separa-
tion. For smaller deforrnations, however, only a dynami-
cal calculation employing, e.g. , the generator coordinate
method, can yield the transformation between u and the
exact internucleon separation. In Fig. 5 we show the
dependence of the internucleon separation r on the de-

formation parameter o. , as taken from Ref. [6]. There, the
X-N interaction was investigated in terms of quark de-
grees of &eedom within the Priedberg-I. ee soliton model,
but no gluonic eKects were included. We note that the
spherical configuration, a = 0, corresponds to a still Gnite
internucleon separation, and that r ~ 0 is approached for
oblate deformations, i.e., for n ( 0. Although the exact
form of the transformation r(n) depends on the details
of the Hamiltonian and can thus only be established by
a consideration of the dynamics involved, which we leave
to subsequent work [26], the general behavior will still be
similar to the one depicted in Fig. 5.

Neither approximate recoil corrections [34] nor mo-
mentum projection and boost [35] are incorporated into
the present six-quark calculations. For consistency, the
potentials we calculate are therefore normalized with re-
spect to the energy
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& Hg~) & Hg &H,"& H crcfcrcr
8

4FCÃff &H,

FIG. 4. The various one-body and two-body contributions to the effective Hamiltonian.

M+2 +

and not the mass, MN ——939 MeV, of two noninteract-
ing nucleons. The recoil corrections (Pz) stem from the
quark wave functions and from the scalar 0' field. The
two sets of parameters for which the N-N interaction was
calculated are given in Table II. For those, the quantity
EN varies between 1145 MeV and 1212 MeV for the sets
with f = oo and f = 3, respectively.

Throughout this investigation, the strong coupling
constant o., we use for evaluating the gluonic share of
the effective Hamiltonian is obtained by fitting the ex-
perimental N-4 splitting by employing either a &ee or
a "confined" gluonic propagator. The corresponding val-
ues for af,"' and a,' "c for the two sets of parameters
under consideration are listed in the sixth and seventh
columns of Table II, respectively. Thus, when evaluat-
ing the color-magnetic hyperfine interaction where, as
pointed out in the last section, a &ee gluonic propaga-
tor is used, o.+" is substituted for the strong coupling
constant. Correspondingly, o.,' "~ is used for the color
electrostatic part of the interaction where, on the other
hand, "confined" gluonic propagators are employed.

In addition, in all actual numerical calculations an in-

and use ~„=0.1 throughout this investigation. We have
convinced ourselves that our final results are stable with
respect to variations in this regularization parameter.
Note that "intermediate quantities" (e.g. , the energies
associated with individual diagrams or the strong cou-
pling constant a, ) will, however, well depend on e„.

In Figs. 6 and 7 we show the adiabatic N-N potential
obtained &om a diagonalization of the effective Hamil-
tonian in the Hilbert space spanned by the six-quark
configurations listed in Eq. (20). Results are depicted
for the isospin-spin channels (TS) = (01) (Fig. 6) and
(TS) = (10) (Fig. 7). For (TS) = (01), the potential
can furthermore be split into a central and a tensor part,
where [39]

v' "=
cent

Y(Ts)—(01)
tens

2~(Ts)=(01) P(Ts)=(01)
] (32 )

—(Y( i(( —V( i(i) (32b)
6 E

M=+1 M=0

The central interaction we find is purely repulsive with
a "soft" core between 200 MeV (f = 3, solid line) and
350 MeV (f = oo, dot-dash line) for the two sets of pa-

frared regularization of the dielectric function e(o) was
introduced [16] in order to handle the infinities in the one
gluon exchange diagrams associated with a vanishing di-
electric constant. We replace m(o) with

~(o) + ~(o) (1 —~„)+ r„

p
C$

—2-
—3—3 —8 —1 0 I

a (fm)
2 3 4

TABLE II. Parameter sets for which the adiabatic N-N
potential was calculated. The sets are adjusted to yield the
proton rms charge radius, the nucleon mass, and the N-A
mass splitting, where the latter quantity was evaluated em-
ploying a free as well as a "confined" gluonic propagator. For
further details see Sec. II.

FIG. 5. The internucleon separation r as a function of the
deformation parameter n The Sgur.e is taken from Ref. [6]
where the Friedberg-Lee soliton model was applied to N-N
scattering. Note that no gluonic efFects were taken into ac-
count in Ref. [6].

3.0 97.45
0.00

—1709.9
—726.1

f a(fm ) b(fm ') go as
free conf
s s

10000 0.81 3.36 1.42
10000 1.80 3.64 1.50
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300—

2OO

100

—3 —2 —1 0
a (fm)

1 2 3

0

—5—
—10 .—

—20 —.

—3 —2 —1 0
a (fm)

FIG. 6. The adiabatic N-N potential for the isospin-spin
channel (TS) = (01) is split into a central [Eq. (32a)] and
a tensor part [Eq. (32b)]. The solid line corresponds to the
parameter set with f = 3 and the dot-dash line to the set with

f = oo. Both sets were adjusted to the standard properties
of the nucleon and are listed in Table II.

rameters under consideration. As outlined in Sec. II,
for f = 3 the bag pressure vanishes which leads to hard
bags with a thin surface, and f = oo yields soft bags
with a thick surface. This leads to a very different be-
havior of the surface energy associated with the scalar
field, which extends to the variations observed in the in-
teraction. Also, the cusp in the central potential around
a --2.3 fm for f = 3 originates in that surface energy.
At that deformation, the scalar field turns abruptly &om
forming two separated bags to spanning just one united
cavity.

An intermediate-range attraction, as observed in ear-
lier calculations of that type (see, e.g. , Ref. [5]), is not
at all visible in our results. De Tar [5] attributes that to

the strong color-electrostatic attraction within the quark
triplets. Although the color-electrostatic one-gluon ex-
change diagrams are entirely attractive, in our inves-
tigation, their effects are actually more than canceled
by the repulsive self-energy diagrams, (Hf) and (HP)
Note that the color-magnetic self-energies were left out
altogether in this investigation. On the other hand, the
long- and medium-range N-N attraction should actually
be attributed to the meson exchange, and to get a good
description of this in a quark model requires the "sea"
quarks to be taken into account explicitly [43], which are
not accounted for in our investigation at this stage. To
cure that shortcoming, we plan [27] to include an explicit
pion exchange between the quarks, which will then lead
to an effective pionic dressing of the individual nucleons
along the lines proposed, e.g. , by Miller et al. [44].

To determine the relevance of the so-called [37]
"hidden-color" states []3) through ]7) in Eq. (20)], which
asymptotically fission into color non-singlets, in Fig. 8
we show their relative admixture to the six-quark ground
state of the effective Hamiltonian. We observe that their
contributions become significant as soon as the nucleonic
bags overlap considerably, and that up to 50% of the
ground state wave function can actually be made up of
"hidden-color" components for small internucleon sepa-
rations, i.e., oblate deformations. This proves the impor-
tance of channel coupling in that realm, and is consistent
with the findings of Ref. [21], as corrected in Ref. [45].

The different contributions to the adiabatic N-N po-
tential are analyzed in Figs. 9 and 10 and in Table III.

0.5

0.4

0.3

0.2

0.1

0 0 ~ I . I

0.3

0.2

300— (Ts) =(&0) 0.1

200

100

0.0 I . I . I . I

—3 —2 —1 0
a (fm)

—3 —2 —1 0
a (fm)

I

1 2 3

FIG. 7. The adiabatic N-N potential for the isospin-spin
channel (TS) = (10). The labeling is the same as in Fig. 6.

FIG. 8. The admixture of "hidden-color" states, ~3)

through ]7) in Eq. (20), in the ground state of the ef-

fective Hamiltonian for two difFerent isospin-spin channels,
(TS) = (01)]~=0 and (TS) = (10), and for the two sets of
parameters listed in Table II. The solid line corresponds to
f = 3 and the dot-dash line to f = co.
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TABLE III. The contributions to the adiabatic N-N potential stemming from the various di-

agrams shown in Fig. 4 and given in Eqs. (27) and (29). Results are listed for well separated

(a = 3.5 fm) as well as completely overlapping nucleonic bags (a = 0.0 fm), and also for the adi-

abatic potential at o. = 0.0 fm, which is the difference of the latter two quantities. The energies
shown correspond to the isospin-spin channel (TS) = (10), and are obtained using the parameter
sets given in Table II.

(H, ')
(Hi)
(H, )

(Hdddd)
(H&%'7I'w)

(Hdddd)
(Hdddd )
(H

d 1I'd' Ã
)

(H)

&lo.or
93

5849
2654

—3728
—901

—3403
—92

—403
69

f =3.0
&Is.sr

240
3757
3756

—1100
—1098
—2504
—1402
—1649

0

NN
~o.o fm
—147
2092

—1102
—2628

197
—899
1310
1246

69

@lo.o fm

212
5506
3093

—3222
—1101
—3651
—144
—518

175

E[s.sr
256

4685
4682

—1507
—1504
—3390
—1480
—1742

0

NN
lo.or

—44
821

—1589
—1715

403
—261
1336
1224
175

In Fig. 9, we show the various potentials we obtain when
employing different approximations for the one gluon ex-
change. Results are depicted for the isospin-spin chan-
nel (TS) = (01) and for a two-nucleon state with the
spins aligned antiparallel along the separation axis, i.e.,
for M =0.

200

~ ~

~ -200—

The dashed line in Fig. 9 corresponds to a calculation
where the OGE was left out altogether, and in agreement
with an earlier investigation [6] where the Friedberg-Lee
soliton model without the OGE was applied to N-N scat-
tering, we 6nd a strongly attractive adiabatic potential.
The dotted line shows the results of a calculation where
the color-magnetic hyper6ne interaction was included,
which in the literature is quoted as being responsible for
the short-range repulsive core [46]. In contrast to that be-
lief, the spin-spin interaction reduces the attraction but
does not yield any repulsion. The dot-dash and the solid

-400 =
I . I . I . T . I

—3 —2 —1 0 1
a (fm)

400

I

2 3

—50
@

-100
'0 &H

200

0

-200—

-150—
I . I . I . I

—3 —2 —1 0
a (fm)

—3 —2 —1 0 1 2
a (fm)

400 =

FIG. 9. The various N-N potentials obtained when em-

ploying different approximations for the one gluon ex-
change. Results are shown for the isospin-spin channel
(TS) = (01)~M=o, and for the two sets of parameters given in
Table II. The dashed line corresponds to a calculation where
the OGE was omitted altogether, and the dotted line shows
the results of a calculation where only the color-magnetic hy-
per6ne interaction was included. The dot-dash and the solid
lines correspond to calculations where, in addition, different
versions of the color-electrostatic OGE were taken into ac-
count. In detail, the solid line shows the results of a cal-
culation employing a "con6ned" Green's function, while the
dot-dash line corresponds to the use of a free gluonic propa-
gator.

300

200

100

—3 —2 —1 0
a (fm)

1 2 3

FIG. 10. The adiabatic potential for the isospin-spin chan-
nel (TS) = (10) is split into a part independent of the one
gluon exchange, (H~ s) of Eq. (27), and a gluonic contribu-
tion (Hooz) of Eq. (29). The solid line corresponds to f = 3
and the dot-dash line to f = oo.
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line correspond to calculations where, in addition, the
color-electrostatic OGE was included, and they indeed
yield a repulsive core. In contrast to the solid line, which
shows the results of a calculation employing a "confined"
scalar Green's function, the dot-dash line corresponds to
the use of a kee gluonic propagator, as outlined in Sec.
V. The differences between both calculations prove to be
rather minute, which gives us confidence that the uncer-
tainties we encounter from evaluating the color-magnetic
hyperfine interaction with a free tensor propagator are
quite small, as well.

In Fig. 10, the adiabatic potential for the isospin-spin
channel (TS) = (10) is split into a gluonic contribution,
(H~GE) of Eq. (29), and a part that is independent of the
one-gluon exchange (Hi s) of Eq. (27). The nongluonic
contribution (which stems from the single-particle ener-
gies, the scalar 0 field, and the external potential used
to generate the quark wave functions) is always attrac-
tive, while the OGE part of the Hamiltonian is purely
repulsive. Also, the differences between the two sets of
parameters, which we observed in the central adiabatic
potentials shown in Figs. 6 and 7, stern almost entirely
from (Hi s), with the "hard" set (f = 3, the solid line)
being much more attractive. As previously mentioned,
the origin of that variation is the very different behavior
of the surface energy associated with the scalar o. field for
the two sets of parameters under consideration. Despite
those differences, their gluonic shares of the energy are
very similar.

At this point, a more detailed comparison with De
Tar's [5] pioneering study of the adiabatic two-nucleon
interaction in the framework of the MIT bag model is
appropriate. As can be seen from Ref. [5], for the MIT
bag model, the nongluonic contribution (Hi ) is repul-
sive, while the gluonic share of the Hamiltonian, (HoGE),
yields all the attraction. This is just opposite to our find-

ings. The difference concerning the nongluonic interac-
tion is due to the very different nature of the surface dy-
namics of the scalar background field for the MIT and the
solitonic bag. The differences in the gluonic share of the
Hamiltonian, on the other hand, arise both from the ap-
proximations De Tar made in the evaluation of the OGE
self-energy terms, and &om the differences in the color-
dielectric constant (and thus also in the gluonic propaga-
tors) between the two models. Also, the six-quark con-

figuration space we are using is much larger than the one
De Tar was employing, and his single-quark states are
rather artificial constructions, while our "molecular or-
bitals" are eigenstates of a constrained mean field Hamil-
tonian.

To get a more detailed understanding of the origins
of our results, in Table III we list the various contri-
butions to the adiabatic N-N potential stemming from
the individual diagrams shown in Fig. 4. The energies
printed are the expectation values of the ground state
of the effective Hamiltonian for the isospin-spin chan-
nel (TS) = (10). They correspond to the limiting cases
of two well-separated nucleons (n = 3.5 fm) as well as
one united spherically symmetric cavity (n = 0.0 fm).
The individual OGE mutual interaction terms (H2 "')
are all attractive, while the self-energy diagrams, (Hi )
and (Hi), are always repulsive. Furthermore, only if
the color-electrostatic "off-diagonal" self-energy terms
(o.—ir —o and ir —cr —x) are taken into account is the color-
electric Hux confined [5] and the interaction vanishes at
asymptotic internucleon separations, i.e. , (H) m 0 for
large o.. That this can really be observed in our results
(see the third and sixth column in the table) is nontrivial
and is a nice confirmation that our numerics are correct.
It can also be seen from Table III that the adiabatic
potential at vanishing N-N separation arises from sig-
nificant cancellations between individual terms that are
rather large, with the repulsive one gluon exchange con-
tributions overpowering the attractive nongluonic share
of the effective Hamiltonian.

For all the results reported in this section, the single-

quark wave functions were generated from a scalar po-
tential having a particular shape, as characterized by
the geometrical parameters R(u), I', and pro [see Eqs.
(16)—(18)]. As outlined in Sec. III, the radius of the six-
quark bag R(o.) is varied as a function of the deformation
such that the volume of the cr field cavity remains fixed.
In order to test the validity of that approximation, for
o. = 0 we construct self-consistent eigenstates of the to-
tal Hamiltonian requiring a spherically symmetric scalar
field. In Table IV, we compare results for the geometri-
cal shape parameters and the adiabatic potential, which
we find from the self-consistent calculation with the cor-
responding quantities obtained by using the "constant
volume" approach. Results are listed for (TS) = (01)

TABLE IV. The geometrical parameters R(o.), I', and oo, characterizing the field cr [see Eqs.
(16)—(18)] from which the external scalar potential, V of Eq. (15), is obtained. The quantities
shown correspond to the isospin-spin channel (TS) = (01)iM=o and to zero deformation, i.e., o = 0

fm. Self-consistent solutions constrained to yield a spherically symmetric scalar 6eld are compared
with the "constant volume" approach outlined in Sec. III.

3.0 Constant volume
Self-consistent

Constant volume
Self-consistent

R (fm)
1.021
1.178
1.226
1.257

I' (fm ')
4.230
5.548
2.167
2.032

o'0 (fm ')
0.4050
0.3514
0.2592
0.2249

V g (MeV)
128.8
124.2
264.5
262.3
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and M = 0. Although the geometrical paraxneters of
the self-consistently determined scalar 6eld are quite dif-

ferent &oxn the ones characterizing 0. in the "constant
vob~me" approximation, the resulting adiabatic poten-
tials are very similar. This shows that the uncertainties
we encounter by choosing this particular path in the con-
figuration space spanned by the geometrical parameters
B, I', and 0.0 will also be minute and will hence not afFect
our conclusions.

VII. CONCLUSION AND OUTLOOK

We have evaluated the adiabatic nucleon-nucleon po-
tential in a relativistic quark bag model, which yields
spatial as well as color confinement and is &ee of the
spurious color van der Waals forces which trouble most
nonrelativistic calculations in that realm. The six-quark
system we investigate is con6ned in a deforxned baglike
mean 6eld through an effective nonlinear interaction be-
tween the quarks and a scalar field. The shape of this
confining field is adjusted to reproduce the correspond-
ing quantity for the asymptotic case of two well-separated
noninteracting nucleons, and is then varied with deforma-
tion treating the scalar field as an incompressible liquid.

Six-quark molecular-type con6gurations are then gen-
erated as a function of deformation, and their energies
are evaluated in a coupled channel analysis. By using
molecular states instead of cluster model wave functions,
we can be sure that all important six-quark configura-
tions are properly considered, a necessary prerequisite
for 6nding reasonable results.

The corresponding effective Hamiltonian includes not
only the interaction between the quarks and the scalar
background field but also quark-quark interactions gen-
erated through one gluon exchange. Furthermore, when
calculating the gluonic propagators mediating that inter-
action, the inhomogeneity and deformation of the dielec-
tric medium were taken into account, and the Coulomb
gauge was applied.

Results for the adiabatic local nucleon-nucleon poten-
tial have been presented for the difFerent spin-isospin
channels which are compatible with L = 0 partial waves,
and they differ quite considerably &om a realistic phe-
nomenological interaction [47] fit to the experimental
phase shifts. Although the adiabatic central potentials
display a "soft" repulsive core, as is desirable &om phe-
nomenology, they totally lack the intermediate-range at-
traction, which was observed in earlier calculations of

that type and which was attributed to the strong color-
electrostatic attraction [5].

Although the color-electrostatic exchange diagrams are
also entirely attractive in our investigation, their effects
are actually xnore than canceled by the repulsive glu-
onic self-energy diagraxns. A detailed analysis of the
difFerent contributions to the effective Hamiltonian un-

veils that the nongluonic one-body terms would lead to
considerable attraction for vanishing internucleon sepa-
ration, while the one-gluon exchange (mutual and self-
interaction) terms produce all the repulsion. To be more
speci6c, in our case it is the color-electrostatic one gluon
exchange which leads to the repulsion at small N-N sep-
arations, and not the spin-spin color-magnetic hyper6ne
interaction, which in the literature [46] is quoted as being
responsible for the short-range repulsive core.

Considering that the long- and medium-range nucleon-
nucleon attraction should actually be attributed to ex-
plicit meson exchange and not to quark rearrangement,
we are not at all surprised to be missing a good descrip-
tion of this part of the interaction in a quark model which
does not include the "sea" quarks. We plan to over-
come that detriment by either including quantum surface
fIuctuations, which would introduce configurations of the
form q q in addition to our q basis states, or by consid-
ering an explicit pion exchange between the individual
quarks along the lines followed in the cloudy bag model
[44]. The latter mechanism is favorable as it also leads
to a restoration of the explicitly broken chiral symmetry.
Work in that direction is currently in progress [27].

We also plan [26] to account for the dynamics of the N
N interaction by extending this work through means of
the generator coordinate method. It has been shown that
a signi6cant part of the short-range N-N repulsion is due
to dynamics [6], and that the absence of a repulsive core
in some early calculations was an artifact of the adiabatic
approximation [23,24]. In addition, the efFective N N-
interaction is highly nonlocal in terms of the separation
paraxneter.
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