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This paper demonstrates how the statistical distribution of pinning fields in
a ferromagnetic material can be identified systematically from standard mag-
netic measurements, Epstein frame or Single Sheet Tester (SST). The correlation
between the pinning field distribution and microstructural parameters of the mate-
rial is then analyzed. © 2017 Author(s). All article content, except where other-
wise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.4994199

I. INTRODUCTION

Ferromagnetic materials are ubiquitous in industrial and household applications. They are char-
acterized by a nonlinear and dissipative behavior determined by a rich and complex microstructure
involving grains, Weiss magnetic domains, Bloch walls and magnetic inhomogeneities or defects,
see e.g. Refs. 1 and 2. Designing and optimizing devices with ferromagnetic parts requires thus,
among others, a consistent hysteresis model whose parameters can be identified from easily available
measurement data.

There exists only one dissipation mechanism in ferromagnetic materials: Joule losses associated
with the local variation of the magnetic polarization J. More particularly, the magnetic hystere-
sis is associated with Joule losses occurring when the applied magnetic field varies in quasi-static
conditions, i.e. at vanishing frequency.

Schematically, losses in quasi-static regime are due to the existence of local minima (energy wells)
in the energy functional of the microscopic magnetic moments in the material. As the applied magnetic
field changes, the magnetic state does not change significantly in a first time because microscopic
moments are trapped in some energy well. When a field threshold is reached, the magnetic moment
can escape the energy well. The magnetic state then jumps to another state with a sudden local rotation
of some magnetic moments that induces local eddy currents and losses, so that, after damping, a new
stable state is reached. At the macroscopic scale, a jerky evolution of the magnetic polarization of
the sample is observed, which is called Barkhausen effect.

With this picture in mind, we can characterize the ferromagnetic material, from a macroscopic
point of view, as a statistical distribution of energy wells of various depths. The depths of the well
is a potential barrier, i.e., the amount of energy needed to escape the well. The potential barriers
explaining hysteresis in ferromagnetic materials are to ascribe to (i) the anisotropy of crystallites
(grains) and the existence of easy magnetization directions, and (ii) the pinning of Bloch walls
by defects. The two types of barrier can not be distinguished from a macroscopic analysis and are
therefore not distinguished by our model. Moreover, as the magnetic moments have a constant module,
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the potential barrier can also be expressed as a magnetic field κ, abstractly called pinning field. We
show in this paper that the macroscopic coercivity of ferromagnetic materials can be characterized
by a pinning field distribution function ω(κ), which can be systematically identified from standard
magnetic measurements.

The energy-based hysteresis model3–6,12 relies on a fundamental analogy between the pinning
fields κ and a dissipative dry friction force. This paper demonstrates how, based on this analogy, the
pinning field probability densityω(κ) mentioned above can be identified systematically from standard
magnetic measurements, obtained with either an Epstein frame or a Single Sheet Tester (SST). The
identified pinning field distribution is first of all a very informative characteristic, giving insight into
the microstructure of the material. It allows also classifying and comparing different steel grades with
each other on an objective basis.

The microscopic nature of the pinning field is accounted for in the macroscopic hysteresis model
by applying a two-scale approach. The ferromagnetic material sample is decomposed into independent
abstract regions, all subjected to the same macroscopic magnetic field h, but characterized individually
by a particular value of the pinning field κ. The identification of the pinning field probability density
ω(κ) is a major step for the representation of ferromagnetic materials in a finite element model for
instance, as it contains the information needed to determine straightforwardly the free parameters of
the energy-based hysteresis model.

II. ENERGY-BASED HYSTERESIS MODEL

The hysteresis model3 is based on the the conservation of energy

Ψ̇=h · ḃ − D (1)

where Ψ is the magnetic energy density of the material, h · ḃ the magnetic work, and D a dissipation
function representing magnetic hysteresis. A dot above a symbol denotes a time derivative. The
magnetic energy density Φ contains an internal energy term u related to material magnetic moments
and an empty space term,

Ψ= u + µ0
|h|2

2
. (2)

The empty space contribution plays however no role in the identification problem and can be
eliminated by rewriting (1) as

u̇=h · J̇ − D , J=b − µ0h. (3)

The internal energy is an explicit function of the magnetic polarization J, u= u(J), and its time
derivative writes

u̇=hr · J̇ with hr := ∂Ju. (4)

The field hr is called reversible magnetic field, because the magnetic work it delivers under a variation
of the magnetic polarization, is fully converted into internal energy. If we assume that the internal
energy functional u is smooth and convex, there is a 1-1 relationship between hr and J, which we
shall represent with the anhysteretic magnetic characteristic of the material

J= Jan(hr). (5)

Note that the function Jan : hr 7→ J is just a handy notation for the inverse of the function ∂Ju : J 7→hr .
Magnetic hysteresis losses can be interpreted in terms of the mechanical analogy depicted in

Fig. 1 (left).4,5 In this representation, the applied force corresponds to the applied magnetic field
h while the elongation corresponds to the magnetic polarization J. The applied magnetic field h is
thus decomposed into a reversible part hr and an irreversible part hirr , acting respectively as spring
force and friction force. The friction slider unlocks when the applied field exceeds the pinning field
threshold κ, allowing then the spring to elongate, and thus to store magnetic energy.

The dissipation functional associated with dry friction writes

D= κ |J̇|Bhirr · J̇ (6)
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FIG. 1. Mechanical analogy (left) and pictorial representation (right) of the energy-based model.

in terms of the field hirr , which is called irreversible magnetic field, because the associated magnetic
work is integrally dissipated. Because the functional (6) is not differentiable in J̇= 0, one is not
allowed to simply write hirr = ∂J̇D. The functional is however convex and convex analysis can be
invoked to define hirr , not as a single-valued gradient, but as a set

hirr ∈
{
hirr , |hirr | ≤ κ if J̇= 0, hirr = κ

J̇

|J̇|
otherwise

}
, (7)

called the subgradient of the functional D.
With these definitions, the energy conservation (1) writes

(h − hr − hirr) · J̇= 0, (8)

and, as it must hold for any J̇, one has the equilibrium equation

h − hr − hirr = 0, (9)

which is the fundamental evolution relation of the energy-based hysteresis model. Now, as the applied
magnetic field h evolves in time, two cases are to be considered. As long as the condition

|h − hr | ≤ κ (10)

is verified, there is a hirr in the set (7) that verifies (9), and hr remains unchanged, which means
that the magnetic polarization (5) is also unchanged. A change in the applied magnetic field h yields
in this case no change in the magnetic polarization. This is the typical behavior of dry friction. If
now h(t) changes in such a way that the condition (10) is no longer verified, the definition of the
subgradient gives

h − hr = κ
J̇an(hr)

|J̇an(hr)|
, (11)

which is a nonlinear differential relationship to solve for hr at each instant of time. It has a unique
solution, which we note hr(t)=U(h(t)) in terms of the so-called update rule U of the model. Dif-
ferent methods, which need not be detailed here, can be used to solve (11), with various degrees of
accuracy.

Fig. 1 (right) provides a visual representation of the update rule. The sphere of radius κ centered
in hr is the representation of the subgradient (7). Equation (10) imposes that the tip of the applied
magnetic field vector h is either inside of the sphere or on its surface. As long as the tip of the applied
magnetic field vector h is inside the sphere, (10) is fulfilled and the sphere remains fixed, which means
that both hr and the magnetic polarization J are constant. If now the magnetic field vector h tends to
stick out of the sphere, the sphere has to shift to accommodate condition (10), i.e., the sphere moves
according to the update rule hr(t)=U(h(t)). In this situation, the magnetization changes, J̇, 0. Fig. 2
shows this evolution for the case of a unidirectional variation of the applied magnetic field h, both in
the h − hr and in the h − J planes. The evolution writes h= hr ± κ along the ascending (J̇ > 0) and
descending (J̇ < 0) branches, respectively.

The notion of subgradient implies that there exists no 1-1 relationship between h(t) and hirr(t),
and hence between h(t) and hr(t). This non-univocity is the fundamental justification why the response
of a hysteretic material depends not only on the applied field h(t), but also on the history. The vector
hr plays the role of history parameter in this model.
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FIG. 2. Evolution of the reversible magnetic field hr (left) and magnetic polarization J (right) as a function an unidirectional
applied magnetic field h.

III. TWO-SCALE MODEL

Minor loops and the initial magnetization curve (virgin curve) display unrealistic horizontal
transition lines in Fig. 2. This is due to the fact that all magnetic moments making up the material
were attributed the same pinning field value κ. This is not the case in real ferromagnetic materials,
which are rather characterized by a statistical distribution of pinning fields.1,3,7,8

The idea of the multi-cell model consists in saying that the material, which is homogeneous
at the macroscopic scale, is composed of heterogeneous microscopic abstract regions characterized
by a fixed value of κ. This is a kind of multi-scale model. The statistical weight of each micro-
scopic region is given by a probability density ω(κ), ∫

∞
0 ω(κ) d κ = 1. It is also assumed that the

microscopic regions are independent of each other, and that the single-cell model described in the
previous section is applicable in each of them. In particular, the evolution of the reversible mag-
netic field h?r (κ) in the microscopic region characterized by the pinning field κ is determined by the
equations

|h?(κ) − h?r (κ)| ≤ κ (12)

and

h?(κ) − h?r (κ)= κ
J̇an(h?r (κ))

|J̇an(h?r (κ))|
, (13)

where the star indicates a quantity related to an abstract microscopic region. With these equations,
the reversible magnetic field h?r (κ) can be evaluated independently in each individual region, and
the macroscopic reversible magnetic field hr is evaluated taking into account the weighting of the
different regions. All microscopic regions being subject to the same applied magnetic field h, the
localization and homogenization relationships of this multi-scale formulation read

h?(κ)=h, hr =

∫ ∞
0
ω(κ) h?r (κ) dκ. (14)

Once the macroscopic reversible magnetic field hr is known, the magnetic flux density and the
terms of the energy balance are evaluated as follows

b= Jan(hr) + µ0h, D=h · ḃ − u̇(Jan(hr)). (15)

IV. IDENTIFICATION OF THE PINNING FIELD PROBABILITY DENSITY ω(κ)

In this model, the memory of the material is represented at each instant of time by the distribu-
tion of the reversible magnetic field h?r (κ), the demagnetized state (wiped-out memory state) being
the state with h?(κ)= 0,∀κ. It is remarkable that the pinning field probability density ω(κ) can be
identified from standard Epstein (or SST) measurements. As the loading is always unidirectional in
such measurements, we shall work throughout this section with the modulus of the field h= |h| and
h?r = |h

?
r |.

Starting from the demagnetized state, a unidirectional magnetic loading until h = hA is first
applied to the material. The microscopic regions whose magnetic state is modified by this loading
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are those for which κ < hA and one has for them, at the end of the loading, h?r (κ)= hA − κ, the other
h?r (κ) remaining zero. The homogenized macroscopic reversible field is then

hr(0→ hA)=
∫ ∞

0
max(hA − κ, 0) ω(κ) dκ =F(hA)

with the definition of an auxiliary function

F(h)B
∫ h

0
ω(κ) (h − κ) dκ, (16)

whose first and second derivatives are respectively

∂hF(h)=
∫ h

0
ω(κ) dκ, ∂2

h F(h)=ω(h). (17)

Starting over from this state, the material is now unloaded until the magnetic field reaches
hB < hA, always in the same direction. The microscopic regions involved in the unloading are those
such that hB + κ < hA − κ, i.e. κ < (hA − hB)/2. One has then

hr(0→ hA→ hB)=
∫ ∞

0
min(hB + κ, max(hA − κ, 0)) dκ

=

∫ hA−hB
2

0
ω(κ)(hB + κ) dκ +

∫ hA

hA−hB
2

ω(κ)(hA − κ) dκ

=

∫ hA

0
ω(κ)(hA − κ) dκ − 2

∫ hA−hB
2

0
ω(κ)

(hA − hB

2
− κ

)
dκ

=F(hA) − 2F(
hA − hB

2
).

The auxiliary function F, whose second derivative is the sought distribution ω(κ), plays a central
role. If we can identify F, ω is also identified in principle.

The virgin curve of the material (first magnetization curve) is also simply the composition of the
anhysteretic curve with F:

Jvirgin(h)= Jan

(
hr(0→ h)

)
= Jan

(
F(h)

)
. (18)

This relationship could serve as a basis for the identification of F. However, the anhysteretic curve
is not part of standard magnetic measurement setups (Epstein or SST). Therefore, an identification
strategy independent of Jan is preferable. To find one, it is first noted that the coercive field hc(h) of
a hysteresis loop of magnitude h is characterized by

Jan

(
hr(0→ h→−hc(h))

)
= 0, (19)

which implies

F(h) − 2F
(h + hc(h)

2

)
= 0. (20)

The coercive field characteristic hc(h) is obtained from the measurement of a series of symmetric
hysteresis loops of increasing amplitude. Figure 3 depicts the measured hc(h) characteristics for five
different non-oriented electrical steel grades. Remarkably, the hc(h) characteristics of a material
contains enough information to completely identify the function F, and hence the pinning field
probability density ω(κ) of the material.

From a mathematical point of view, the coercive field characteristic has the following
properties:

(i) hc(0) = 0,
(ii) ∃hs, hc(h)= hc,max ∀h > hs,

(iii) hc(h)< h.
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FIG. 3. Coercive field hc(h) of symmetrical hysteresis loops measured for five different non-oriented electrical steel grades.

Property (i) tells indeed that F(0) = 0. From (ii), one sees that F(h)= h− hc,max,∀h > hs. Finally,
(iii) implies that the series defined by

xn = (xn−1 + hc(xn−1))/2 < xn−1 (21)

is strictly decreasing. Starting from an arbitrary initial value x0 > hs, for which it is known that
F(x0)= x0 − hc,max, the value of F for all subsequent terms of the series is recursively given by F(xn)
= F(xn�1)/2. Clearly, the series converges towards F(0) = 0.

The coercive field characteristic for the material M235-35A and the series F(xn) are depicted in
Fig. 4. The coercive field characteristic is interpolated linearly in the measurement range [hmin, hmax],
and it is extrapolated as follows

hc(h)= hc,max if h > hmax

hc(h)= hc,min

(
h

hmin

)2

if h < hmin

FIG. 4. Coercive field characteristic and F function for the steel grade M235-35A, in logarithmic scale. The asymptotic
behavior is indicated with solid lines for both curves. The vertical line indicates the lower bound of the measurement
range.
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for field values outside the measurement range. The quadratic extrapolation at low fields is the one
that has been observed to give the best results. One sees in Fig. 4 that it prolongates reasonably the
general shape of the characteristic, which was measured from hmin = 5.11 A/m.

With a properly inter- and extrapolated hc(h) characteristic, the iteration (21) can be carried out.
As it is a geometric progression, the points of the series are almost equidistant in a logarithmic scale.
One sees that the function F(h) is smooth, and its asymptotic behavior is well defined

F(h)= h − hc,max if h > hmax

F(h)= αh if h < hmin

where α is a scalar material-dependent constant. In between these two asymptotic behaviors, the
curve F(h) contains all information about the pinning-field probability density ω(κ).

As the curve is smooth, the first and second derivatives of F(h) can be evaluated at the series
points xk by finite differences with sufficient accuracy.

∂hF(xj)=F(xj)
∆2 − ∆1

∆1∆2
+ F(xj+1)

∆1

∆2∆3
− F(xj−1)

∆2

∆1∆3

∂2
h F(xj)= 2

(
F(xj−1)
∆1∆3

−
F(xj)
∆1∆2

+
F(xj+1)
∆2∆3

)
with

∆1 = xj − xj−1 , ∆2 = xj+1 − xj , ∆3 = xj+1 − xj−1 (22)

and
∂hF(x0)= 1 , ∂2

h F(x0)= 0. (23)

Figure 5 represents a spline interpolation of the derivative of F based on the points ∂hF(xj). This
function ∂hF(κ) is the primitive of ω(κ), (17), and hence the cumulative distribution function of the
pinning field, i.e., the probability that the pinning field is lower than h. It reaches the asymptotic value
one for κ ≈ 200 A/m, which means that all pinning fields in the material are weaker than that value.
Interestingly, the non-zero value at zero magnetic field indicates that about 10% of the microscopic
regions have a zero pinning fields, i.e., behave reversibly. The cumulative distribution function of a
reversible material is indeed ∂hF = 1.

Experience shows that anhysteretic curves can be represented accurately by a double Langevin
function4,9

Jan(hr)B JaL

(
hr

ha

)
+ JbL

(
hr

hb

)
(24)

FIG. 5. Spline interpolation of the pinning field cumulative distribution function ∂hF(κ) based on the points ∂hF(xj).
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FIG. 6. Virgin curve and the identified double Langevin anhysteretic curve of the steel grade M235-35A. The asymptotic
linear behavior of the anhysteretic curve at the origin is represented by the solid line.

with L(x)= coth x − 1
x . The term indexed with a b represents the magnetic polarization due to the

motion of Bloch walls, whereas the term indexed with an a represents the magnetic polarization,
occurring at high field intensity, that is associated with the rotation of the magnetic moments relative
to their preferred easy-magnetization axis. Once the function F is known for a material, the four
parameters of the double Langevin representation (24) Jan(h) can be determined by simply matching
the measured virgin curve Jvirgin(h) with Jan(F(h)). It is an evidence of the consistency of the proposed
identification procedure that the curve Jan(F(h)), which combines two unrelated nonlinear function,
is indeed, as expected, linear at the origin. Figure 6 depicts the anhysteretic and virgin curve for the
material M235-35A.

The identification procedure relies on a set of symmetric hysteresis loops measured in unidi-
rectional conditions. The results presented above were obtained with the standard Epstein frame
protocol,11 where the magnetic core is a stack of strips taken alternatively in the rolling direction
(RD) and the transverse direction (TD), so as to average out the material’s anisotropy. During the
continuous measurements the magnetizing field is changed in a continuous fashion with a dB

dt rate
below 100mT/s, as slowly as reasonable to avoid eddy-current effects. The initial magnetization curve
is determined by monotonically increasing the magnetic field strength from zero to the maximum
field strength starting from the demagnetized state. The quasi-static hysteresis loop is identified by
cycling the magnetic field continously from the maximum positive to the maximum negative value
and back.

V. CORRELATION WITH MICROSTRUCTURAL STRUCTURE

A grain boundary is the interface between two grains, or crystallites, in a polycrystalline material.
Grain boundaries are also places where defects are preferably located. If L is the grain size, the
number of grains (assumed to have an aspect ratio close to 1) is N = V /L,3 where V is the volume
of the sample. The cumulated grain boundary surface is proportional to NL,2 and hence to V /L.
On the other hand, it is observed that coercivity is inversely proportional to the grain size. We
have thus an indication that coercivity is linked with the cumulated grain boundary surface per unit
volume.

The identification procedure described in the previous section has been applied to five non-
oriented electrical steel grades, namely, M235-35A (3.2wt% Si), M250-35A (3.2wt% Si), M330-35A
(2.4wt% Si), M330-50A (2.4wt% Si) and M400-50A (2.4wt% Si). The coercive field characteristics
hc(h), the pinning field cumulative distribution functions ∂hF(κ), and the pinning field probability
densitiesω(κ) are depicted in Fig. 3, Fig. 7 and Fig. 8. In order to determine the grain size, the samples
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FIG. 7. Pinning field cumulative distribution function ∂hF(κ) for five steel grades.

were ground and polished in different layers of the RD-TD sheet plane. The determination of the
grain size is performed analogous to the line intercept method and carried out along the RD and TD
of the micro-section. For each spatial direction, two different micro-sections are used to determine
the average grain sizes.

Each grade has its own distribution ω(κ), which can in principle be traced back to objective
differences in the lamination thickness and in the microstructure.10,13 For instance, M235-35A
and M250-35A, have the same alloy and same thickness, but the grain size of M235-35A is
100µm, whereas the grain size of M250-35A is 109µm. The smaller average grain size of
M235-35A compared to M250-35A leads to a higher coercivity, as seen in Fig. 3. This corrobo-
rates the proportionality of coercivity with the inverse of the grain size, which is also supported
by the results obtained for M330-50A. The latter has the largest average grain size, 122µm,
and a homogeneous grain structure. The peak in the pinning field distribution function of this
grade, Fig 8, is thus narrow, because of a small standard deviation of the average grain sizes,
and centered around the lowest value amog the considered materials, because of the large grain
size.

A decrease in the lamination thickness also correlates with dislocation densities and has an
effect on the coercive force. M330-35A has a reduced thickness and a reduced average grain size of

FIG. 8. Identified pinning field probability density ω(κ) for five steel grades. for five different steel grades.
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FIG. 9. Spline interpolation of the pinning field cumulative distribution function ∂hF(κ) based on the points ∂hF(xj) for
M235-35A in RD, TD and the standard alternate Epstein stacking (RTD).

87.5µm compared to M330-35A, with a large standard deviation due to an inhomogeneous grain
structure, and with a large variation in grain sizes. This yields a flatter pinning field distribution
centered around a higher field value. Finally, with the smallest average grain size of 70µm among
the considered grades, M400-50A presents the higher coercivity.

Further on, it is interesting to analyze the effect of the different stacking methods, i.e., the
difference in the pinning field distribution function for the RD and TD. The Epstein frame can be
prepared for that purpose with all strips in RD, or all strips in TD. The results depicted in Fig. 9
and Fig. 10 are then obtained, and can be compared with those obtained with the standard alternate
RD-TD-RD-TD setup (labeled RTD), for which results were shown in Fig. 7 and Fig. 8.

Due to the rolling process, grains are stretched in RD. For M235-35A, the average grain
size in RD is 105µm with a small standard deviation, whereas it is about 89µm in TD,
with a larger standard deviation. This is reflected in the curves presented in Fig. 10. It is so
observed that the pinning field probability density ω(κ) is strongly influenced by the anisotropy.
In combination with the orientation distribution function (ODF), which describes the magneto-
crystalline texture, this can be related to the model parameters of the anisotropic vector hysteresis
model.6

FIG. 10. Identified pinning field probability density for M235-35A and different stacking methods.
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VI. CONCLUSION

On basis of an analogy between pinning field and a dry friction force, and of a multi-scale
representation of microstructure, an accurate theoretical definition has been given for the probability
density of pinning fields in soft ferromagnetic materials. The mathematical properties of this definition
make it possible to extract, following a systematic procedure, the pinning field probability density
from the coercive fields of symmetric hysteresis loops, which are easily measurable quantities. The
obtained probability densities not only give insight into the microstructure of the materials, but provide
also readily objective values for the free parameters of the hysteresis model, which can then be used
in macroscopic finite element simulation.
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