Crashworthiness of offshore wind turbine jackets based on the continuous element method

Timothee Pire

September 7, 2018
Agenda

- Introduction
- Structural behaviour
- Developments
 - Models
 - Local crushing
 - Global deformation
 - Punching
 - Base deformation
- General algorithm
 - Description
 - Validation
- Conclusions
Crashworthiness of OWT jackets
T. Pire

Introduction

Wind energy
Collision risk
Methodology
Struct. behaviour
Developments
General algorithm
Conclusions
Energetic context

- Global warming
- Depletion of fossil resources

\Rightarrow Need of renewable energies
Crashworthiness of OWT jackets

T. Pire

Introduction

Wind energy
Collision risk
Methodology

Struct. behaviour
Developments
General algorithm
Conclusions

EU cumulative wind capacity

EU on- and offshore wind power installed yearly

Crashworthiness of OWT jackets

T. Pire

Introduction
Wind energy
Collision risk
Methodology
Struct. behaviour
Developments
General algorithm
Conclusions

Offshore wind turbine foundations

Crashworthiness of OWT jackets

T. Pire

Introduction

Wind energy
Collision risk
Methodology

Struct. behaviour

Developments

General algorithm

Conclusions

www.bard.edu
Crashworthiness of OWT jackets

T. Pire

Introduction

Wind energy
Collision risk
Methodology

Struct. behaviour

Developments

General algorithm

Conclusions
Ship collisions on offshore structures

Crashworthiness of OWT jackets

T. Pire

Introduction
Wind energy
Collision risk
Methodology

Struct. behaviour
Developments
General algorithm
Conclusions
Collision risk assessment

- 100s of scenarios

- Nowadays: FE method
 - Accurate but time-demanding
 - Need for strong expertise
 - ⇒ not suitable for a pre-design stage
Collision risk assessment

100s of scenarios

Nowadays: FE method

- Accurate but time-demanding
- Need for strong expertise
- ⇒ not suitable for a pre-design stage

Need a faster and simpler method
Steps to develop the method

Crashworthiness of OWT jackets
T. Pire

Introduction
Wind energy
Collision risk
Methodology

Struct. behaviour

1. Identification of governing parameters
2. Listing of deformation modes

Developments

General algorithm

Conclusions
Steps to develop the method

1. **Structural behaviour**
 - Identification of governing parameters
 - Listing of deformation modes

2. **Resistance for each deformation mode**
 - Assumption on deformation pattern
 - Development of formulations
 - Validation

Crashworthiness of OWT jackets

T. Pire

Introduction

Wind energy
Collision risk
Methodology

Struct. behaviour
Developments
General algorithm
Conclusions
Steps to develop the method

1. Structural behaviour
 - Identification of governing parameters
 - Listing of deformation modes

2. Resistance for each deformation mode
 - Assumption on deformation pattern
 - Development of formulations
 - Validation

3. Total resistance of the jacket
 - Combination of the deformation modes
 - Modelling all the collision scenarios
 - Validation
Crashworthiness of OWT jackets

T. Pire

Introduction

Wind energy
Collision risk
Methodology

Struct. behaviour
Developments
General algorithm
Conclusions

General methodology

Input data

\[\Delta \delta = v_{ship} \cdot \Delta t \]

Detection of impacted elements

Computation of crushing force

Update \(v_{ship} \)

\[v_{ship} \neq 0 \]

No

Yes

Stop

SHARP interface / Dr. L Buldgen's PhD thesis
Crashworthiness of OWT jackets

T. Pire

Introduction
Wind energy
Collision risk
Methodology

Struct. behaviour
Developments
General algorithm
Conclusions

- Input data
 \[\Delta \delta = v_{ship} \Delta t \]
- Detection of impacted elements
- Computation of crushing force
- Update \(v_{ship} \)
- \(v_{ship} \neq 0 \) → No
- \(v_{ship} = 0 \) → Yes
- Stop

SHARP interface / Dr. L Buldgen’s PhD thesis
Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Structures
Parameters
Deformation modes
Material failure

Developments

General algorithm

Conclusions
Collided OWT jacket

<table>
<thead>
<tr>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_t</td>
<td>m</td>
</tr>
<tr>
<td>W_b</td>
<td>m</td>
</tr>
<tr>
<td>W_t</td>
<td>m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Leg</th>
<th>Brace</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_e/t</td>
<td>26</td>
<td>13</td>
</tr>
</tbody>
</table>
Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Structures
Parameters
Deformation modes
Material failure

Developments

General algorithm

Conclusions

Modelled as rigid
Parameters governing the crashworthiness

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Gravity</th>
<th>Turbine - tower</th>
<th>Soil stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>Turbine - tower</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
</tr>
<tr>
<td>Soil stiffness</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
</tr>
</tbody>
</table>

H Le Sorne, A Barrera, and JB Maliakel. 2015.
Collision modelling

- Gravity not included
- Tower and turbine not modelled
- Four legs clamped at foundation level
Identification of deformation modes

Crashworthiness of OWT jackets
T. Pire

Introduction

Struct. behaviour
Structures
Parameters
Deformation modes
Material failure

Developments

General algorithm

Conclusions
Effect of material failure modelling

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Structures

Parameters

Deformation modes

Material failure

Developments

General algorithm

Conclusions
Effect of material failure modelling

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Structures
Parameters
Deformation modes
Material failure

Developments

General algorithm

Conclusions

⇒ Material failure not modelled
Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

Developments

Analytical and finite element models
Upper-bound theorem with plastic limit analysis

\[\dot{E}_{\text{ext}} = \dot{E}_{\text{int}} \]

\[P \dot{\delta} = \dot{E}_{\text{int}} \]

\[= \int_V \sigma \dot{\varepsilon} dV \]
Internal energy rate

- Deformation pattern
- Strain rate

\[
\dot{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial \dot{U}_i}{\partial X_j} + \frac{\partial \dot{U}_j}{\partial X_i} + \frac{\partial \dot{U}_k}{\partial X_i} \frac{\partial U_k}{\partial X_j} + \frac{\partial U_k}{\partial X_i} \frac{\partial \dot{U}_k}{\partial X_j} \right)
\]

- Material law

- Material law
Internal energy rate

- Deformation pattern
- Strain rate

\[\dot{e}_{ij} = \frac{1}{2} \left(\frac{\partial \dot{u}_i}{\partial X_j} + \frac{\partial \dot{u}_j}{\partial X_i} + \frac{\partial \dot{u}_k}{\partial X_i} \frac{\partial u_k}{\partial X_i} + \frac{\partial u_k}{\partial X_i} \frac{\partial \dot{u}_k}{\partial X_i} \right) \]

- Material law

- Plate subjected to lateral load:

\[\dot{E}_{int} = \frac{2}{\sqrt{3}} \sigma_0 t_p \int_A \sqrt{\dot{\varepsilon}_{XX}^2 + \dot{\varepsilon}_{YY}^2 + \dot{\varepsilon}_{XY}^2 + \dot{\varepsilon}_{XX} \dot{\varepsilon}_{YY}} dA \]
Numerical validation

- Modeller: **PATRAN**
- Solver: **LS-DYNA** explicit
- Post-processor: **LS-PrePost**
- Elastic and power law hardening

![Graph showing stress-strain relationship]
Developments

Local crushing of impacted tubular members

Objectives

- Compute local crushing of impacted tubular members
- Tubular members
 - independent from each other
 - clamped at both extremities
Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

Denting and mechanism

Effective plastic strain

1.125e-02
1.000e-02
8.750e-03
7.500e-03
6.250e-03
5.000e-03
3.750e-03
2.500e-03
1.250e-03
0.000e+00
Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions
Cross-section denting: deformation pattern

- Rings and generators independent

\[\dot{E} = \dot{E}_r + \dot{E}_g \]

Cross-section denting: rings

- Rings have constant length
- For 1 ring:
 - Moving plastic hinges
 - Change of curvature
- For all rings:
 - Integrate on dented part (between ξ_1 and ξ_2)

Cross-section denting: generators

- $E_{\text{flexural}} \ll E_{\text{axial}}$
- For 1 generator:
 - Axial elongation
- For all generators:
 - Integrate for all generators ($\beta \in [0; 2\pi]$)

Cross-section denting: dent extension

\[P_l(\delta) \ddot{\delta} = \dot{E} = \dot{E}_r + \dot{E}_g \]

- **Upper-bound theorem**
 \[\Rightarrow \text{minimise crushing force} \]

\[\frac{\partial P_I}{\partial \xi_1} = 0 ; \quad \frac{\partial P_I}{\partial \xi_2} = 0 \]
Crashworthiness of OWT jackets
T. Pire

Introduction

Struct. behaviour

Developments
Models
Local crushing
Global deformation
Punching
Base deformation

General algorithm

Conclusions
Switch between denting and mechanism

Crashworthiness of OWT jackets

T. Pire

Introduction
Struct. behaviour

Developments
Models
Local crushing
Global deformation
Punching
Base deformation

General algorithm

Conclusions
Horizontal and oblique tubular members

- Same methodology for horizontal tubular members
- Linear interpolation for oblique tubular members
Numerical validation

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models
Local crushing
Global deformation
Punching
Base deformation

General algorithm

Conclusions
Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

Developments

Global deformation of the whole jacket

Objectives

- Compute the deformation of the whole jacket
- Interaction between all the tubular members
Approach

- Similar to FE
- 1 tubular member
 → 1 3D beam element
- Specificities:
 - Second-order effects
 - Plastic hinges at 3 locations
 - Displacement control
Algorithm

- Elementary stiffness matrices k
 - Fully elastic
 - Plastic hinges at 3 locations
- Assembly
 \[K = \sum_{assembly} R^T k R \]
- Displacement control
- Iterative resolution
 \[\Delta u = K^{-1} \Delta \hat{F} \]
- Internal forces
 \[\Delta s = k R \Delta u \]
Numerical validation

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models
Local crushing
Global deformation
Punching
Base deformation

General algorithm

Conclusions
Developments

Punching of legs by compressed braces

Objectives

- Compute punching
 - at 1 connection
 - for the whole jacket
Punching at one connection: deformation pattern

- Similar to local crushing
Punching at one connection: validation

Crashworthiness of OWT jackets
T. Pire

Introduction

Struct. behaviour

Developments
Models
Local crushing
Global deformation
Punching
Base deformation

General algorithm

Conclusions

Punching in one plane: identification

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models
Local crushing
Global deformation
Punching
Base deformation

General algorithm

Conclusions

Compression - tension

Links between legs

Compression
Tension
Impacted
Rear
Punching in one plane: deformation

- Level activation
- Punching penetration
Punching in one plane: force

At one level:

\[P = P_{imp}. \]

\[P = P_{rear} = P_{r1} + P_{r2} \]

\[P = \min(P_{imp.}, P_{rear}) \]
Punching in one plane: force

At one level:

\[P = P_{imp} \]

\[P = P_{rear} = P_{r1} + P_{r2} \]

\[P = \min(P_{imp}, P_{rear}) \]

For the whole plane:

\[\sum P_{level} \]
Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models
Local crushing
Global deformation
Punching
Base deformation

General algorithm

Conclusions
Developments

Deformation at the base of the jacket

Objectives

- Compute the deformation near the foundation level
- Includes
 - Impacted leg
 - Rear leg
 - Bottom horizontal brace
Deformation pattern and zones
Zones A and B description
Zones C and D description
Numerical validation

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models
Local crushing
Global deformation
Punching
Base deformation

General algorithm

Conclusions
General algorithm

Description

Objectives

- Study the crashworthiness of the jacket
- Valid whatever the collision scenario
- Combine the four deformation modes
Crashworthiness of OWT jackets

Introduction

Struct. behaviour

Developments

General algorithm

Description

Validation

Conclusions

Algorithm

Data (speed, position, jacket, Δt, ...)

Δδ = v_{ship}Δt

Detection of impacted elements

Computation of F_i in each deformation mode, taking into account the effect of deformations in the other ones

F_{tot} = \min(F_i)

Update properties of the active deformation mode

Ship acceleration: a = \frac{F_{tot}}{m_{ship}}

v_{ship} \geq 0

No

Yes

Stop
Implementation

- Impact on a connection:
 - no 3-hinges mechanism
- \(\delta_{\text{crush}} + \delta_{\text{punch}} \leq D_e \)
- Axial force in braces computed with *global deformation* mode
- ...
Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Description

Validation

Conclusions

General algorithm

Numerical validation
Collision scenario 1

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Description

Validation

Conclusions
Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Description

Validation

Conclusions
Collision scenario 3

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Description

Validation

Conclusions

![Graphs showing resistive force and internal energy against ship penetration for semi-analytical and numerical methods.](image)
Collision scenario 4

Crashworthiness of OWT jackets
T. Pire

Introduction
Struct. behaviour
Developments

General algorithm
Description
Validation

Conclusions

![Graphs showing force and energy vs. ship penetration]

- Semi-analytical
- Numerical
Collision scenario 5

Crashworthiness of OWT jackets

T. Pire

Introduction
Struct. behaviour
Developments
General algorithm
Description
Validation
Conclusions

![Graphs showing resistant force and internal energy vs. ship penetration](image)

- **Resistant force [MN]**
 - Semi-analytical
 - Numerical

- **Internal energy [MJ]**
 - Semi-analytical
 - Numerical
Discussion of the validation

- Good accuracy
 - Mean discrepancy: 6%
 - CoV: 8%

- Collision on connection
 - Crushing and two punching

- Computation time
 - FE: 10 hours\(^a\)
 - New: 3 minutes\(^b\)
 - \(\Rightarrow\) 200 scenarios in 10h

\(^a\) Intel® Xeon®, CPU E5-2630 v2 2.60 GHz (2 processors), RAM 64 Go (DDR3, 1600 MHz)

\(^b\) Intel® Core™ i3-3217U, CPU 1.80 GHz, RAM 8 Go (DDR3, 800 MHz)
Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Conclusions
Summary and personal contributions

Crashworthiness of OWT jackets
T. Pire

Introduction
Struct. behaviour
Developments
General algorithm
Conclusions

Local crushing
Global deformation

Punching
Base deformation
Summary and personal contributions

Crashworthiness of OWT jackets

T. Pire

Introduction
Struct. behaviour
Developments
General algorithm
Conclusions

Local crushing

Global deformation

Punching

Base deformation

General algorithm
Industrial applications (I)

Crashworthiness of OWT jackets

T. Pire

Introduction
Struct. behaviour
Developments
General algorithm
Conclusions

Pre-design stage → semi-analytical

Final design stage → FE
Industrial applications (II)

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Conclusions
Future work

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Conclusions

Crashworthiness of OWT jackets

T. Pire

Introduction
Struct. behaviour
Developments
General algorithm
Conclusions

Thank you
Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Conclusions
Ship - jacket stiffnesses ratio

Crashworthiness of OWT jackets

T. Pire

Introduction
Struct. behaviour
Developments
General algorithm
Conclusions

- OSV
 - Jacket → 20%
 - Ship → 80%

- Ice-class bulk carrier
 - Jacket → 80%
 - Ship → 20%

H Le Sorne, A Barrera, and JB Maliakel. 2015.
Soil stiffness effect on base deformation

Crashworthiness of OWT jackets

T. Pire

Introduction
Struct. behaviour
Developments
General algorithm
Conclusions
Hourglass deformation modes

- Under-integrated shell element
- Fully integrated shell element
Crashworthiness of OWT jackets

T. Pire

<table>
<thead>
<tr>
<th></th>
<th>Thesis</th>
<th>USFOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local crushing</td>
<td>✔️</td>
<td>🍊</td>
</tr>
<tr>
<td>Global deformation</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Punching</td>
<td>✔️</td>
<td>❌</td>
</tr>
<tr>
<td>Base deformation</td>
<td>✔️</td>
<td>❌</td>
</tr>
</tbody>
</table>
Input data

- Jacket
 - Geometry
 - Material properties
- Ship
 - Geometry (bulbous, non-bulbous...)
 - Mass, velocity
- Impact
 - Ship trajectory, elevation
- Resolution
 - Time step
Ship-jacket initial distance
Ship-jacket distance update

Crashworthiness of OWT jackets
T. Pire

Introduction
Struct. behaviour
Developments
General algorithm
Conclusions
Zone B description