

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Conclusions

University of Liège Faculty of Applied Sciences

Crashworthiness of offshore wind turbine jackets based on the continuous element method

Timothée Pire

September 7, 2018

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Agenda

Crashworthiness of OWT jackets

- T. Pire
- Introduction
- Struct. behaviour
- Developments
- General algorithm
- Conclusions

- Introduction
- Structural behaviour
- Developments
 - ▷ Models
 - ▷ Local crushing
 - ▷ Global deformation
 - ▷ Punching
 - ▷ Base deformation
- General algorithm
 - Description
 - ▷ Validation
- Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Crashworthiness of OWT jackets

T. Pire

Introduction

Wind energy		
Collision risk		
Methodology	Introduction	
Struct. behaviour		
Developments		5
General algorithm		

Conclusions

Energetic context

Crashworthiness of OWT jackets

T. Pire

Introduction

Wind energy

Collision risk

Methodology

Struct. behaviour

Developments

General algorithm

Conclusions

• Global warming

• Depletion of fossil resources

\Rightarrow Need of renewable energies

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

F Princiotta. 2011.

😻 💵 EU cumulative wind capacity

Crashworthiness of OWT jackets

T. Pire

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

3

EWEA. Wind in power - 2015 European Statistics. 2016.

EU on- and offshore wind power installed yearly

イロト 不得 トイヨト イヨト

-

EWEA. Wind in power - 2015 European Statistics. 2016.

Offshore wind turbine foundations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Offshore wind turbine jackets

Crashworthiness of OWT jackets

T. Pire

Introduction

Wind energy

Collision risk

Methodology

Struct. behaviour

Developments

General algorithm

Conclusions

(日)

www.offshorewind.biz

Ship collisions on offshore structures

Crashworthiness of OWT jackets

T. Pire

Introduction

Wind energy

Collision risk

Methodology

Struct. behaviour

Developments

General algorithm

Conclusions

Collision risk assessment

Crashworthiness of **OWT** jackets T. Pire Introduction Collision risk Methodology General algorithm

100s of scenarios

- Nowadays: FE method
 - Accurate but time-demanding
 - ▷ Need for strong expertise
 - ightarrow not suitable for a pre-design stage

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Collision risk assessment

Crashworthiness of OWT jackets	
T. Pire	• 100s of scenarios
Introduction	
Wind energy	
Collision risk	Nowadays: FE method
Methodology	Accurate but time demanding
Struct. behaviour	
	Need for strong expertise
Developments	$ ightarrow \Rightarrow$ not suitable for a pre-design stage
General algorithm	,
Conclusions	

Need a faster and simpler method

Steps to develop the method

Crashworthiness of **OWT** jackets Structural behaviour T. Pire ▷ Identification of governing parameters Introduction Listing of deformation modes \triangleright Collision risk Methodology

Steps to develop the method

Crashworthiness of **OWT** jackets Structural behaviour T. Pire Identification of governing parameters Introduction ▷ Listing of deformation modes Collision risk 2 Resistance for each deformation mode Methodology Assumption on deformation pattern \triangleright Development of formulations \triangleright Validation

Steps to develop the method

Crashworthiness of **OWT** jackets Structural behaviour T. Pire ▷ Identification of governing parameters Introduction Listing of deformation modes 2 Resistance for each deformation mode Methodology ▷ Assumption on deformation pattern Development of formulations \triangleright Validation Output I Total resistance of the jacket

- Combination of the deformation modes
- Modelling all the collision scenarios
- \triangleright Validation

General methodology

SHARP interface / Dr. L Buldgen's PhD thesis

A D > A P > A B > A B >

ж

General methodology

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

SHARP interface / Dr. L Buldgen's PhD thesis

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Deformation modes

Material failure

Developments

General algorithm

Conclusions

Structural behaviour

Collided OWT jacket

Striking ships

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Structures

Parameters

Deformation modes

Material failure

Developments

General algorithm

Conclusions

• Modelled as rigid

Parameters governing the crashworthiness

A D > A P > A B > A B >

э

H Le Sourne, A Barrera, and JB Maliakel. 2015.

Collision modelling

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Structures

Parameters

Deformation modes

Material failure

Developments

General algorithm

Conclusions

- Gravity not included
- Tower and turbine not modelled
- Four legs clamped at foundation level

Identification of deformation modes

Effect of material failure modelling

Effective plastic strain T. Pire 1.125e-03 8.750e-04 7 500e-04 6.250e-04 5.000e-04 3.750e-04 Struct, behaviour 2.500e-04 1.250e-04 Deformation modes Material failure

Effect of material failure modelling

 \Rightarrow Material failure not modelled

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

Developments

Analytical and finite element models

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Upper-bound theorem with plastic limit analysis

Internal energy rate

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

Deformation patternStrain rate

$$\dot{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial \dot{U}_i}{\partial X_j} + \frac{\partial \dot{U}_j}{\partial X_i} + \frac{\partial \dot{U}_k}{\partial X_i} \frac{\partial U_k}{\partial X_i} + \frac{\partial U_k}{\partial X_i} \frac{\partial \dot{U}_k}{\partial X_i} \right)$$

Material law

Internal energy rate

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

Deformation patternStrain rate

$$\dot{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial \dot{U}_i}{\partial X_j} + \frac{\partial \dot{U}_j}{\partial X_i} + \frac{\partial \dot{U}_k}{\partial X_i} \frac{\partial U_k}{\partial X_i} + \frac{\partial U_k}{\partial X_i} \frac{\partial \dot{U}_k}{\partial X_i} \right)$$

• Plate subjected to lateral load:

$$\dot{E}_{int} = \frac{2}{\sqrt{3}} \sigma_0 t_\rho \int_A \sqrt{\dot{\varepsilon}_{XX}^2 + \dot{\varepsilon}_{YY}^2 + \dot{\varepsilon}_{XY}^2 + \dot{\varepsilon}_{XX} \dot{\varepsilon}_{YY}} dA$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Crashworthiness of

Numerical validation

Punching

Base deformation

General algorithm

Conclusions

Modeller: PATRAN
 Solver: LS-DYNA explicit
 Post-processor: LS-PrePost

• Elastic and power law hardening

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

Developments

Local crushing of impacted tubular members

L Buldgen, H Le Sourne and T Pire. Extension of the super-elements method to the analysis of a jacket impacted by a ship. *Marine Structures*, (38):44-71, 2014.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Objectives

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

```
Base deformation
```

General algorithm

Conclusions

- Compute local crushing of impacted tubular members
- Tubular members
 - \triangleright independent from each other
 - clamped at both extremities

Denting and mechanism

Configuration

Cross-section denting: deformation pattern

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

• Rings and generators independent

$$\Rightarrow \dot{E} = \dot{E}_r + \dot{E}_g$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

T Wierzbicki and MS Suh. 1988.

Cross-section denting: rings

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

- Rings have constant length
- For 1 ring:
 - Moving plastic hinges
 - Change of curvature
- For all rings:

A D > A P > A B > A B >

э

T Wierzbicki and MS Suh. 1988.

Cross-section denting: generators

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

• For 1 generator:

0

- Axial elongation
- For all generators:
 - ▷ Integrate for all generators $(\beta \in [0; 2\pi])$

(日)

э

T Wierzbicki and MS Suh. 1988.

Cross-section denting: dent extension

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformatio

Punching

Base deformation

General algorithm

Conclusions

$$P_l(\delta)\dot{a}(\delta) = \dot{E} = \dot{E}_r + \dot{E}_g$$

Upper-bound theorem
 ⇒ minimise crushing force

$$\frac{\partial P_l}{\partial \xi_1} = 0 \quad ; \quad \frac{\partial P_l}{\partial \xi_2} = 0$$

(日) (四) (日) (日) (日)

Plastic mechanism

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Switch between denting and mechanism

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Horizontal and oblique tubular members

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

- Same methodology for horizontal tubular members
- Linear interpolation for oblique tubular members

Numerical validation

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

-		
Deve	lonments	
0000	iopinicii co	

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

Developments

Global deformation of the whole jacket

H Le Sourne, T Pire, JR Hsieh and P Rigo. New analytical developments to study local and global deformations of an offshore wind turbine jacket impacted by a ship. In *Proceedings of the ICCGS 2016, University of Ulsan, Korea.* 2016.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Objectives

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

- Compute the deformation of the whole jacket
- Interaction between all the tubular members

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

- Similar to FE
- 1 tubular member
 - ightarrow 1 3D beam element
- Specificities:
 - ▷ Second-order effects
 - ▷ Plastic hinges at 3
 - locations
 - Displacement control

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algorithm

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

Elementary stiffness matrices <u>k</u>

- ▷ Fully elastic
- ▷ Plastic hinges at 3 locations
- Assembly

$$\underline{\underline{K}} = \sum_{\text{assembly}} \underline{\underline{R}}^T \underline{\underline{k}} \ \underline{\underline{R}}$$

- Displacement control
- Iterative resolution

$$\Delta \underline{u} = \underline{\underline{K}}^{-1} \Delta \underline{\hat{F}}$$

$$\Delta \underline{s} = \underline{\underline{k}} \underline{\underline{R}} \Delta \underline{\underline{u}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Numerical validation

T. Pire

Introduction

Struct. behaviou

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

Developments

Punching of legs by compressed braces

T Pire, JR Hsieh, H Le Sourne and P Rigo. Quick assessment of the punching resistance of an offshore wind turbine jacket impacted by a ship. In *Proceedings of the ICSOS 2018, University of Chalmers, Sweden.* 2018.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Objectives

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

Compute punching

- ▷ at 1 connection
- \triangleright for the whole jacket

Punching at one connection: deformation pattern

Crashworthiness of OWT jackets

T. Pire

Introduction

Similar to local crushing

Punching at one connection: validation

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

--- Tension

Punching in one plane: deformation

Punching in one plane: force

T. Pire

• At one level:

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

 $P = P_{imp.}$

 $P = P_{rear} = P_{r1} + P_{r2}$ $P = min(P_{imp.}; P_{rear})$

Punching in one plane: force

Crashworthiness of OWT jackets

T. Pire

• At one level:

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

 $P = P_{imp.} \qquad P = P_{rear} = P_{r1} + P_{r2} \quad P = min(P_{imp.}; P_{rear})$

• For the whole plane:

$$\sum P_{level}$$

Numerical validation

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

-		
Deve	lonments	
0000	iopinicii co	

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

Developments

Deformation at the base of the jacket

T Pire, H Le Sourne, S Echeverry and P Rigo. Analytical formulations to assess the energy dissipated at the base of an offshore wind turbine jacket impacted by a ship. *Marine Structures*, (59):192-218, 2018.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Objectives

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

Models

Local crushing

Global deformation

Punching

Base deformation

General algorithm

Conclusions

- Compute the deformation near the foundation level
- Includes
 - ▷ Impacted leg
 - ▷ Rear leg
 - ▷ Bottom horizontal brace

Deformation pattern and zones

(日)

Zones A and B description

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Zones C and D description

Numerical validation

0.4

0.5

0.6

0.2

0.3

δ* [m]

Crashworthiness	of
OWT jackets	

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Description

Validation

Conclusions

General algorithm
Description

T Pire, H Le Sourne and P Rigo. Presentation of an algorithm to assess the crashworthiness of an offshore wind turbine jacket using analytical formulations, 2016. BERA PhD Day.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Objectives

Crashworth	iness of	
OWT ja	ckets	

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Description

Validation

Conclusions

- Study the crashworthiness of the jacket
- Valid whatever the collision scenario
- Combine the four deformation modes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Implementation

• . . .

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Description

Validation

Conclusions

- Impact on a connection: no 3-hinges mechanism
- $\delta_{crush} + \delta_{punch} \le D_e$
- Axial force in braces computed with *global deformation* mode

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Description

Validation

Conclusions

General algorithm

Numerical validation

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

・ロト ・四ト ・ヨト ・ヨト

æ

3,0

2,0 2,5

Validation

Discussion of the validation

T. Pire

- Introduction
- Struct. behaviour
- Developments
- General algorithm

Description

Validation

Conclusions

- Good accuracy
 - ▷ Mean discrepancy: 6%
 - ⊳ CoV: 8%
- Collision on connection
 - ▷ Crushing and two punching
- Computation time
 - ▷ FE: 10 hours^a
 - ▷ New: 3 minutes^b
 - $ightarrow \Rightarrow 200$ scenarios in 10h

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

^a Intel®Xeon®, CPU E5-2630 v2 2.60 GHz (2 processors), RAM 64 Go (DDR3, 1600 MHz)

^b Intel®CoreTMi3-3217U, CPU 1.80 GHz, RAM 8 Go (DDR3, 800 MHz)

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Conclusions

Summary and personal contributions

Summary and personal contributions

Industrial applications (I)

Industrial applications (II)

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Future work

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Conclusions

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

æ

J Amdahl, and T Holmas. 2011.

Thank you

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Conclusions

Additional slides

Ship - jacket stiffnesses ratio

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Conclusions

OSV

 $\triangleright \quad \mathsf{Jacket} \to 20\%$ $\triangleright \quad \mathsf{Ship} \to 80\%$

- Ice-class bulk carrier
 - $\,\triangleright\,$ Jacket \rightarrow 80%
 - $\vartriangleright \ \mathsf{Ship} \to 20\%$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

H Le Sourne, A Barrera, and JB Maliakel. 2015.

Soil stiffness effect on base deformation

Crashworthiness of OWT jackets

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Hourglass deformation modes

Comparison with USFOS

Input data

Crashworthiness of OWT jackets

T. Pire

- Introduction
- Struct. behaviour
- Developments
- General algorithm
- Conclusions

- Jacket
 - ▷ Geometry
 - ▷ Material properties
- Ship
 - ▷ Geometry (bulbous, non-bulbous...)
 - ▷ Mass, velocity
- Impact
 - ▷ Ship trajectory, elevation
- Resolution
 - \triangleright Time step

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ship-jacket initial distance

T. Pire

Introduction

Struct. behaviour

Developments

General algorithm

Ship-jacket distance update

Zone B description

