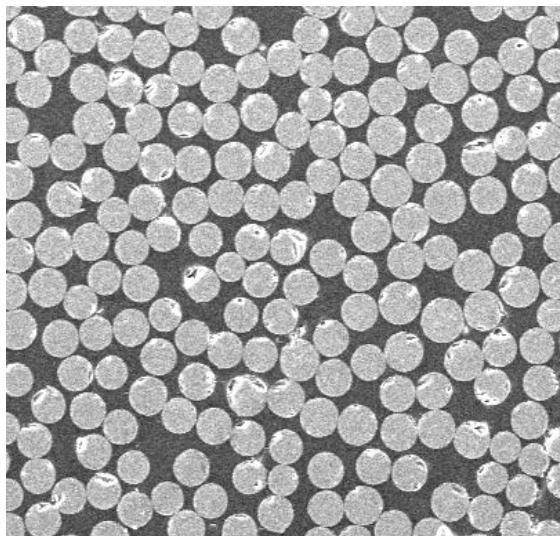
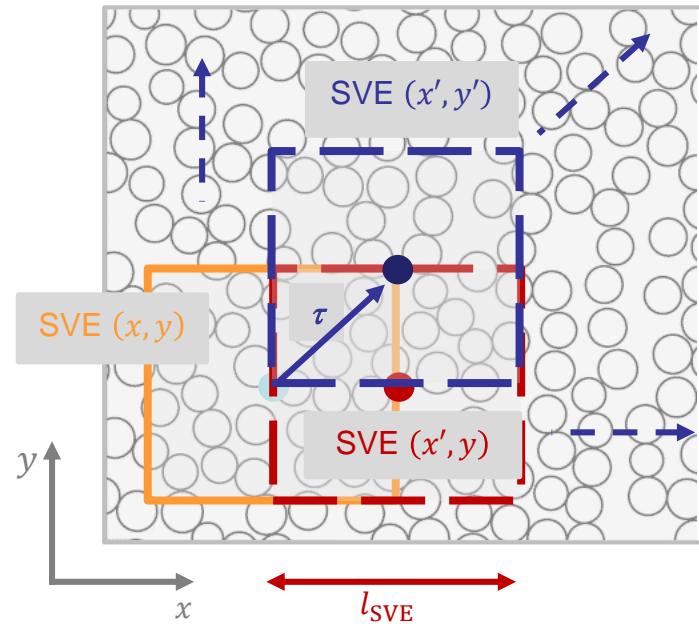


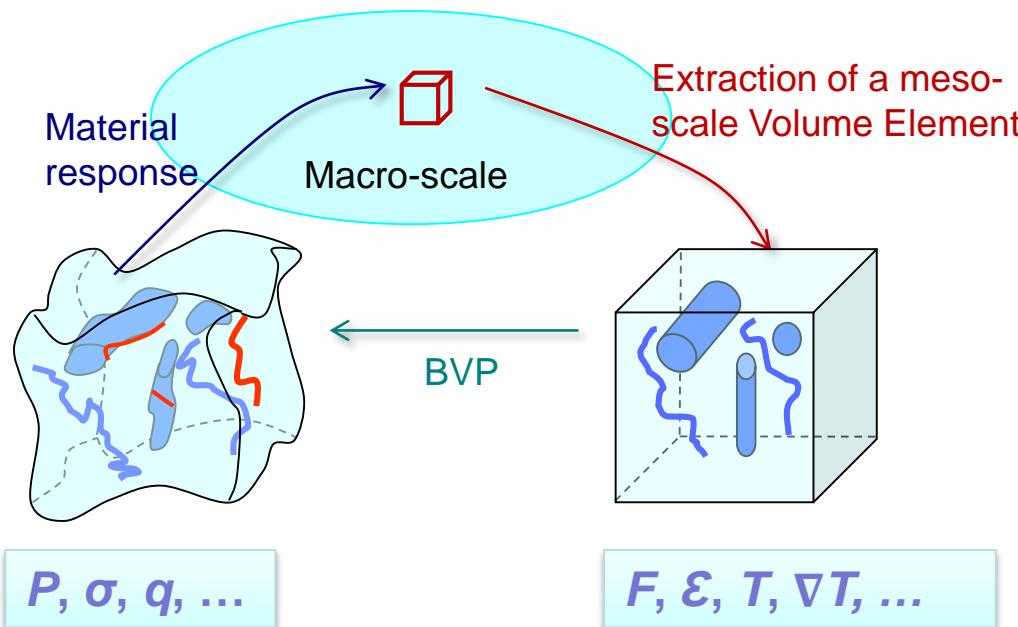
A stochastic Mean-Field Reduced Order Model of Unidirectional Composites

Wu Ling, Noels Ludovic



The research has been funded by the Walloon Region under the agreement no 1410246-STOMMMAC (CT-INT 2013-03-28) in the context of the M-ERA.NET Joint Call 2014. SEM images by Major Zoltan, Nghia Chnug Chi, JKU, Austria

- Two-scale modelling
 - One method: homogenization
 - 2 problems are solved (concurrently)
 - The macro-scale problem
 - The meso-scale problem (on a meso-scale Volume Element)



The problem

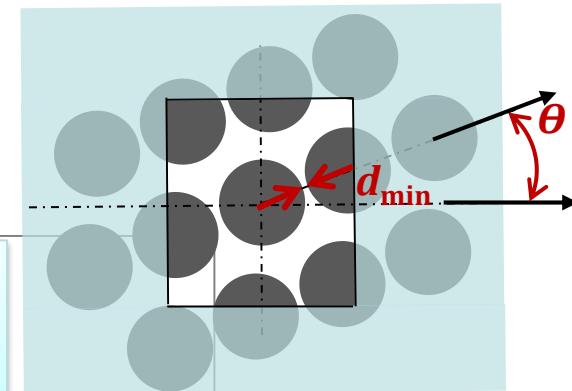
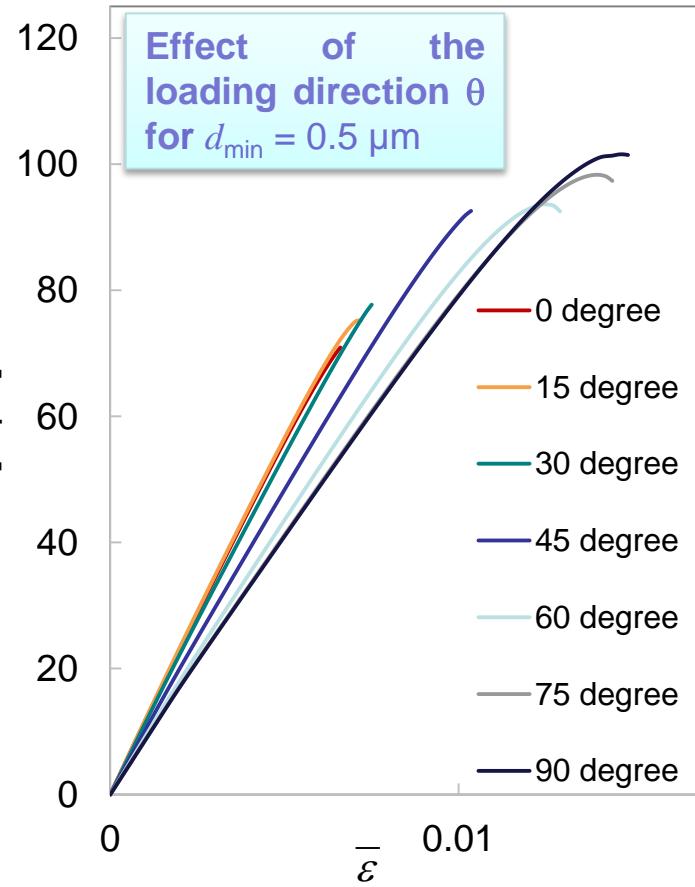
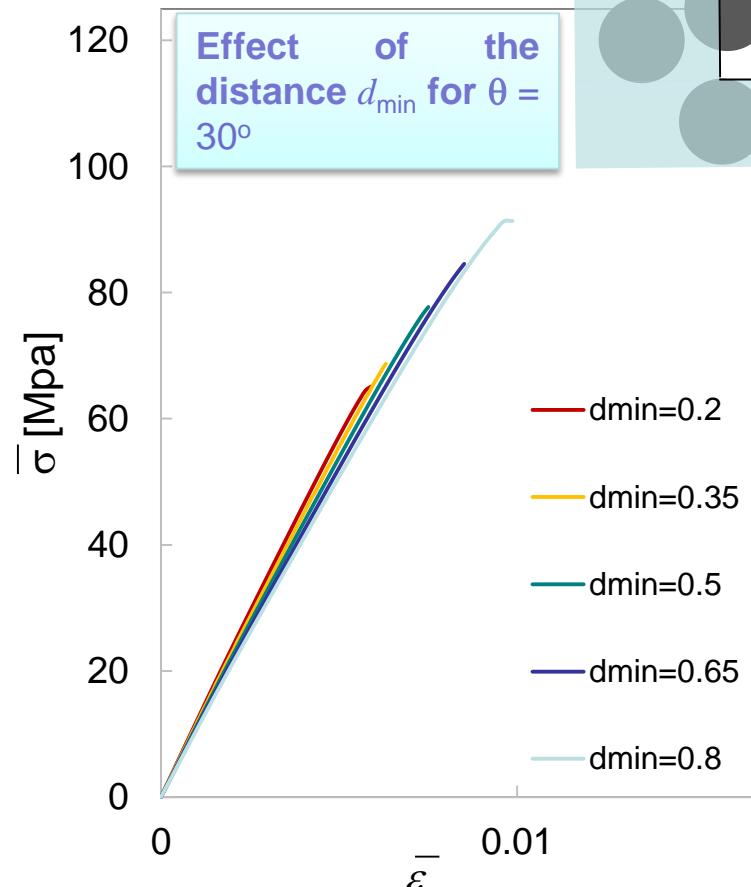
- Material uncertainties affect structural behaviors



The problem

- Illustration assuming a regular stacking

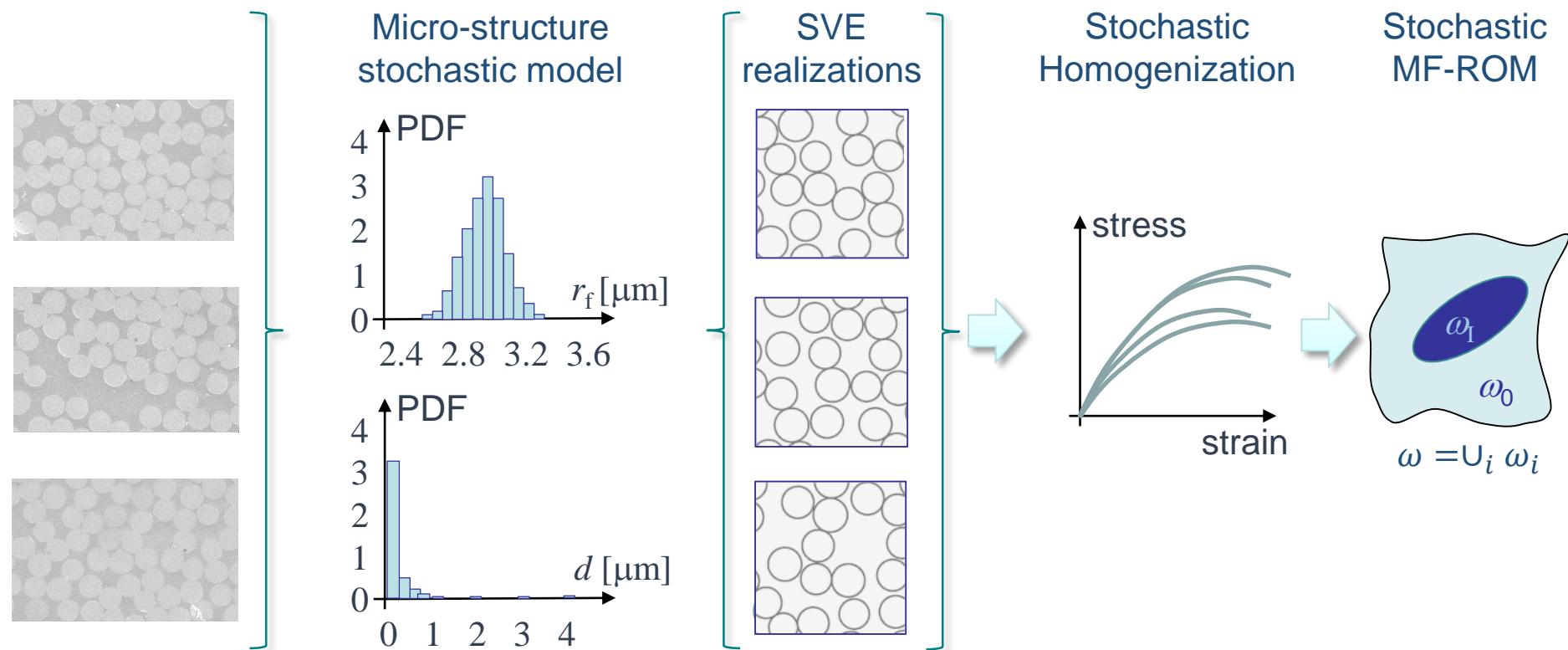
- 60%-UD fibers
 - Damage-enhanced matrix behavior



- Question: what does happen for a realistic fiber stacking?

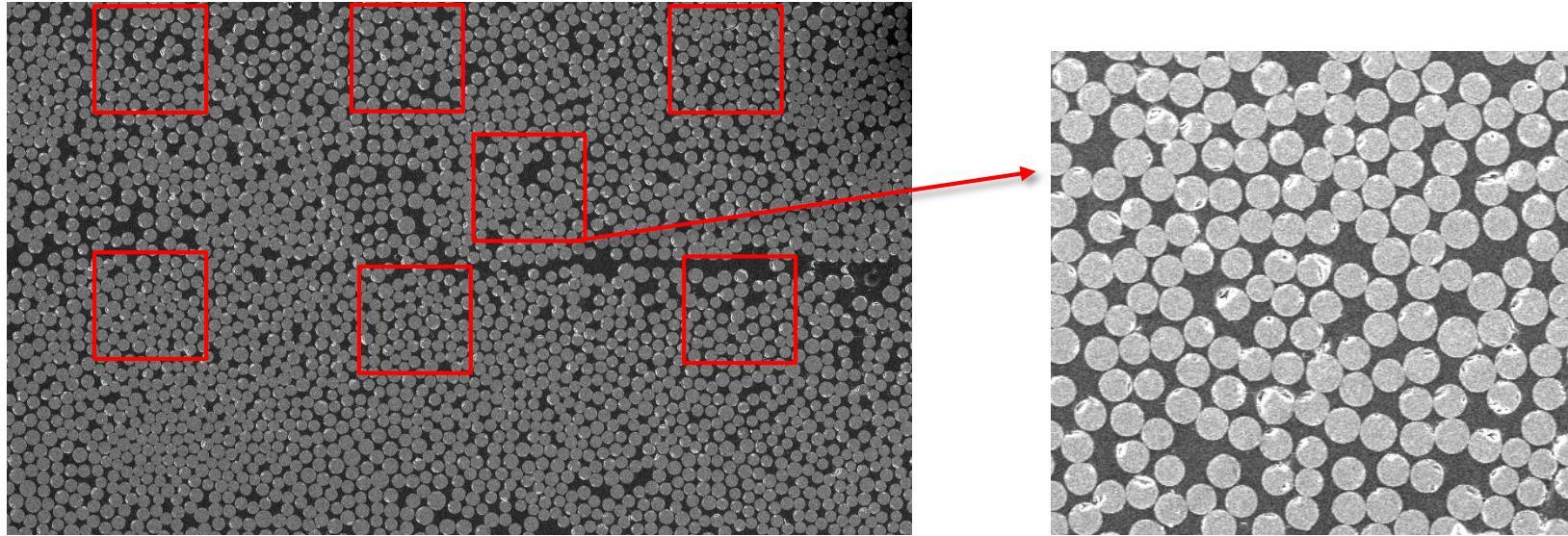
The problem

- Proposed methodology:

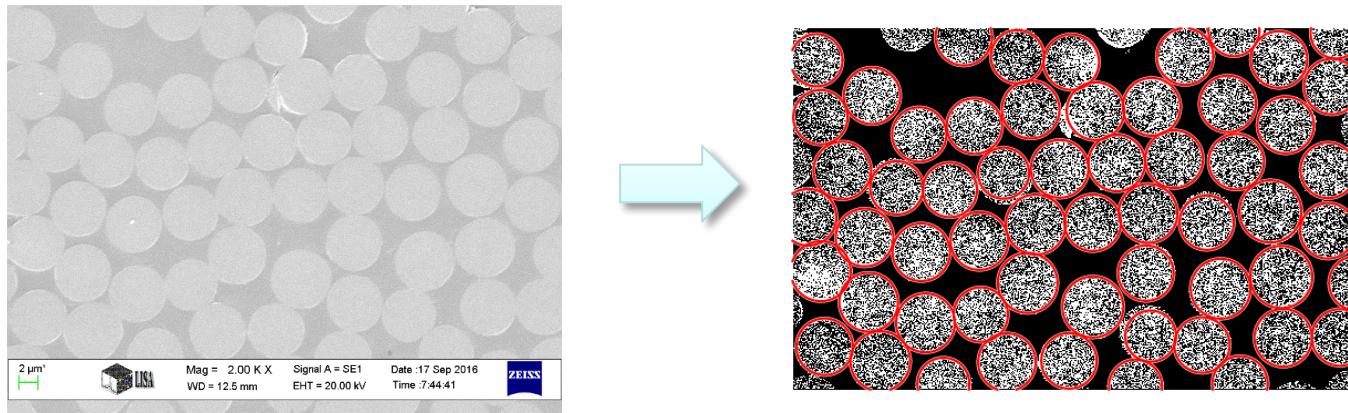


Experimental measurements

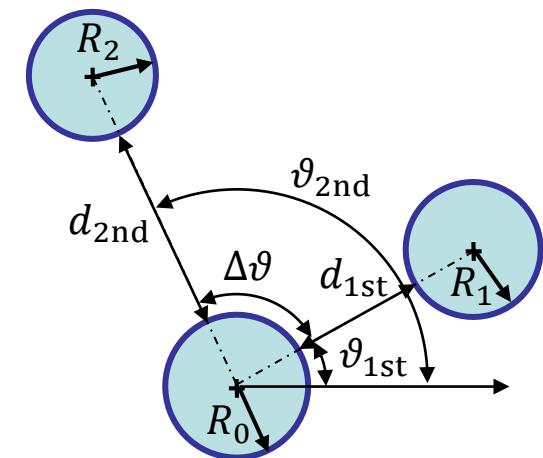
- 2000x and 3000x SEM images



- Fibers detection

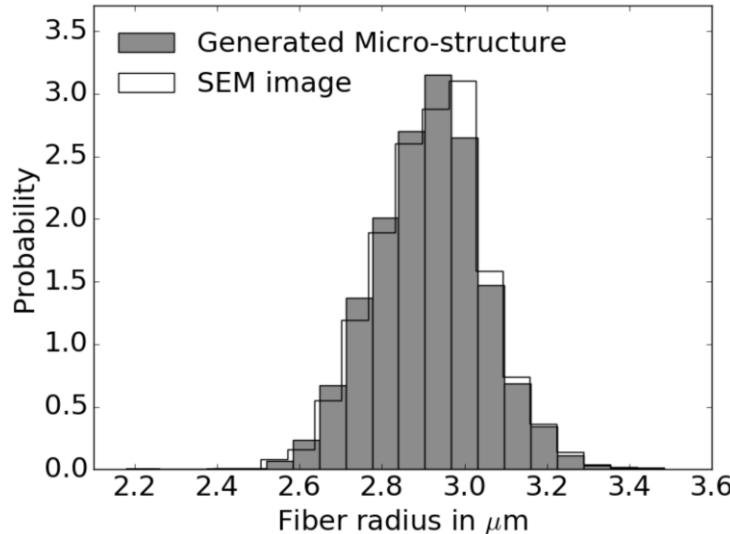
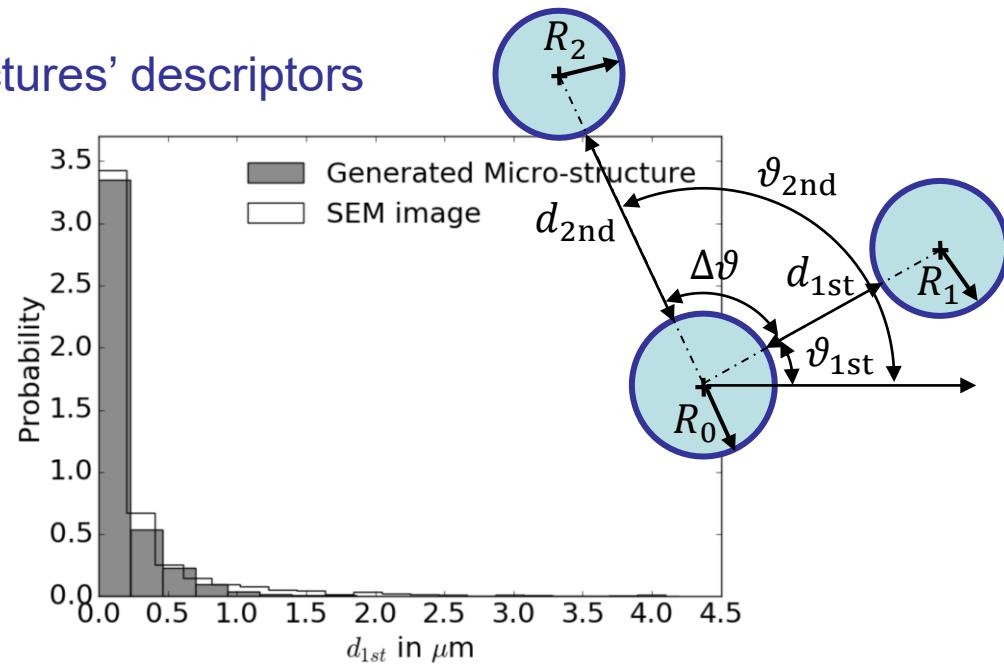
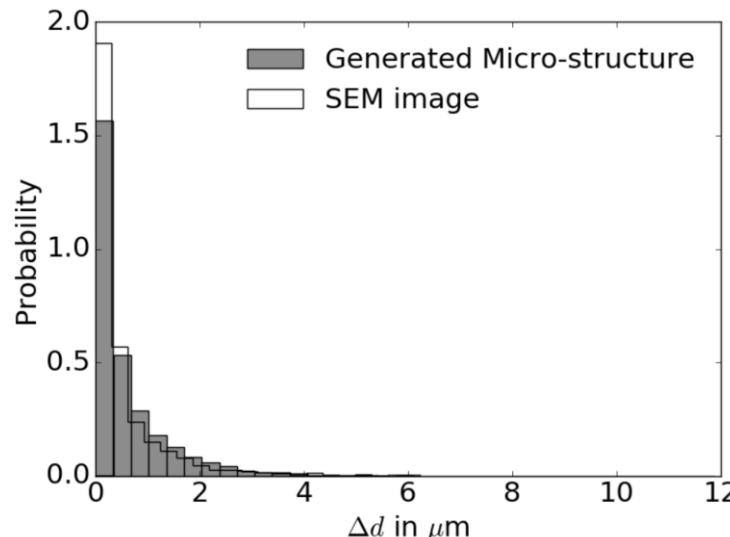
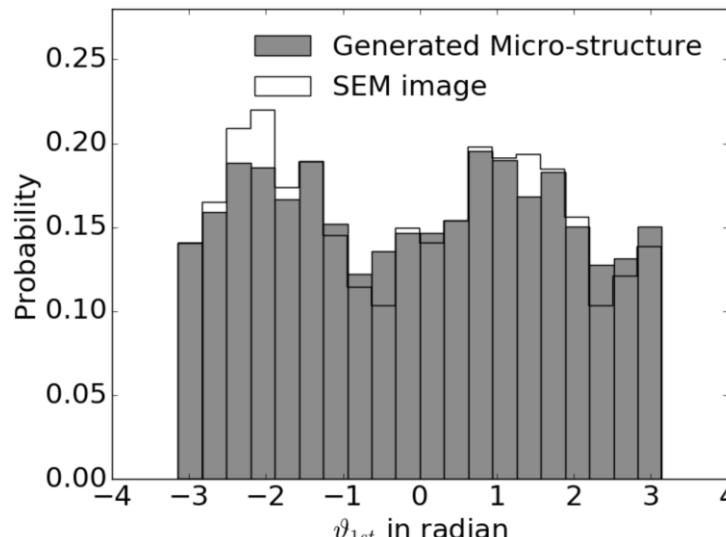


- Basic geometric information of fibers' cross sections
 - Fiber radius distribution $p_R(r)$
- Basic spatial information of fibers
 - The distribution of the nearest-neighbor net distance function $p_{d_{1st}}(d)$
 - The distribution of the orientation of the undirected line connecting the center points of a fiber to its nearest neighbor $p_{\vartheta_{1st}}(\theta)$
 - The distribution of the difference between the net distance to the second and the first nearest-neighbor $p_{\Delta d}(d)$ with $\Delta d = d_{2nd} - d_{1st}$
 - The distribution of the second nearest-neighbor's location referring to the first nearest-neighbor $p_{\Delta \vartheta}(\theta)$ with $\Delta \vartheta = \vartheta_{2nd} - \vartheta_{1st}$

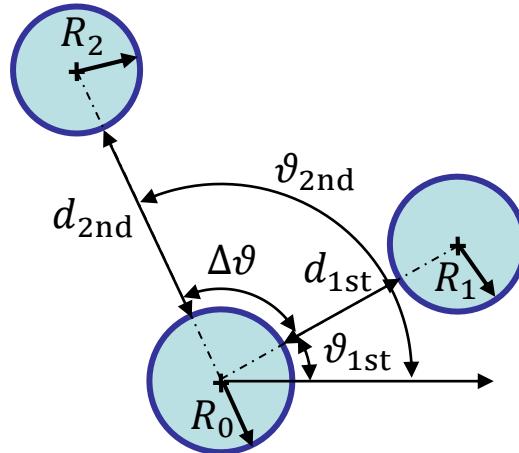


Micro-structure stochastic model

- Histograms of random micro-structures' descriptors



- Dependency of the four random variables $d_{1st}, \Delta d, \vartheta_{1st}, \Delta \vartheta$
- Correlation matrix



	d_{1st}	Δd	ϑ_{1st}	$\Delta \vartheta$
d_{1st}	1.0	0.21	0.01	0.02
Δd		1.0	0.002	-0.005
ϑ_{1st}			1.0	0.02
$\Delta \vartheta$				1.0

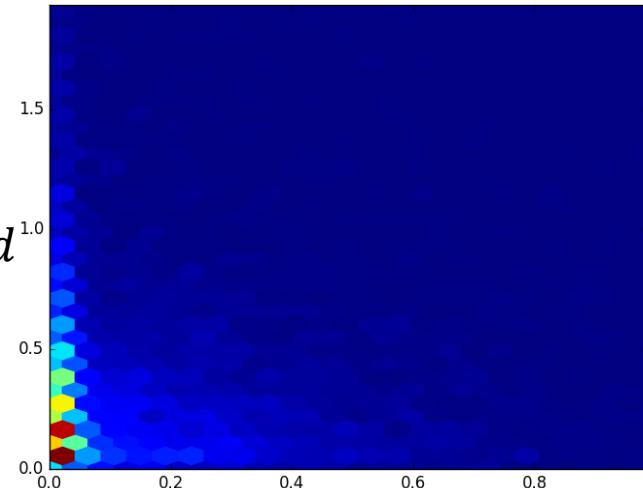
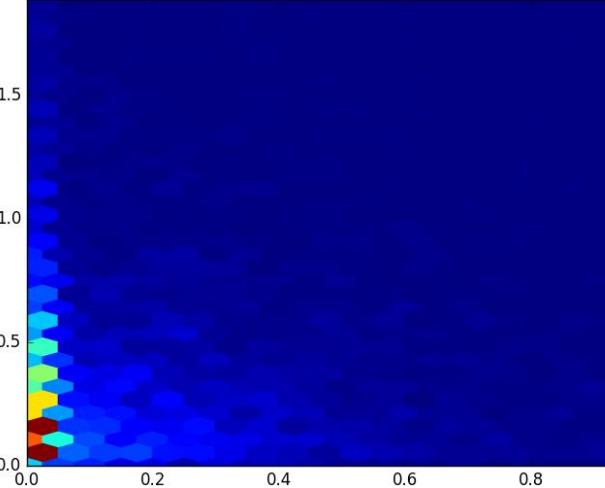
- Distances correlation matrix

d_{1st} and Δd are dependent
→ they will have to be generated
 from their empirical copula

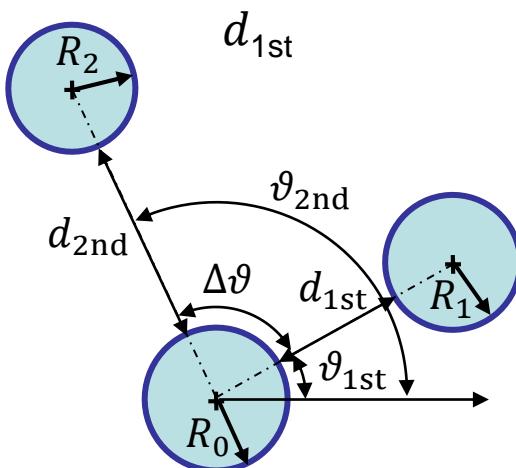
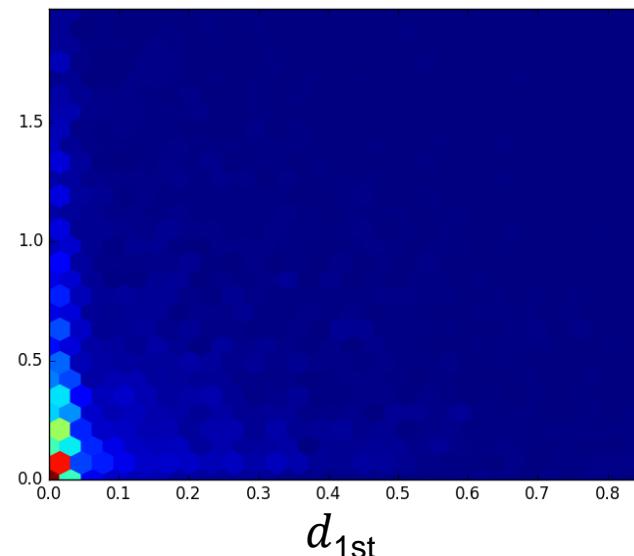
	d_{1st}	Δd	ϑ_{1st}	$\Delta \vartheta$
d_{1st}	1.0	0.27	0.04	0.08
Δd		1.0	0.05	0.06
ϑ_{1st}			1.0	0.05
$\Delta \vartheta$				1.0

- $d_{1\text{st}}$ and Δd should be generated using their empirical copula SEM sample

Generated sample

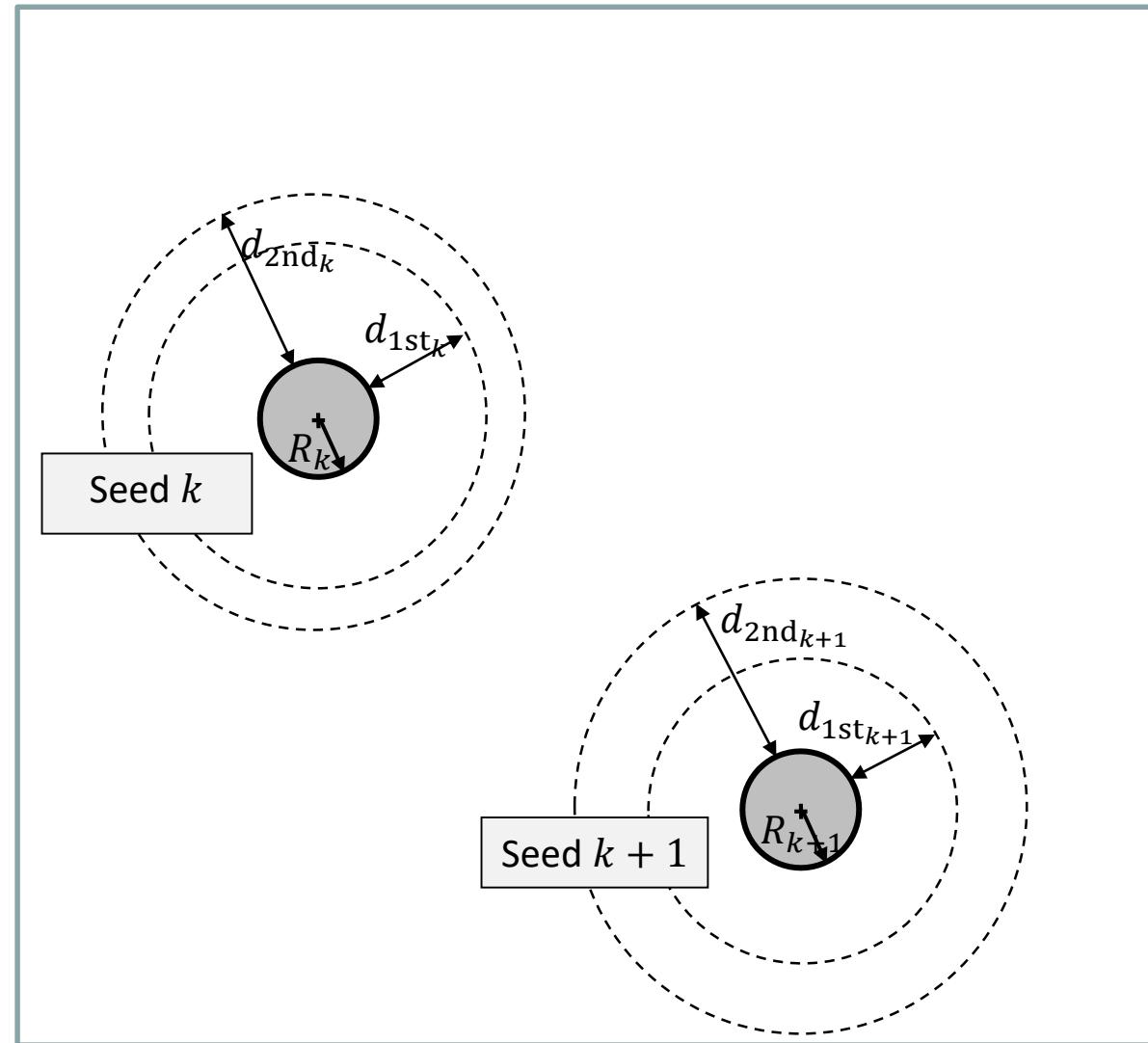


Directly from copula generator

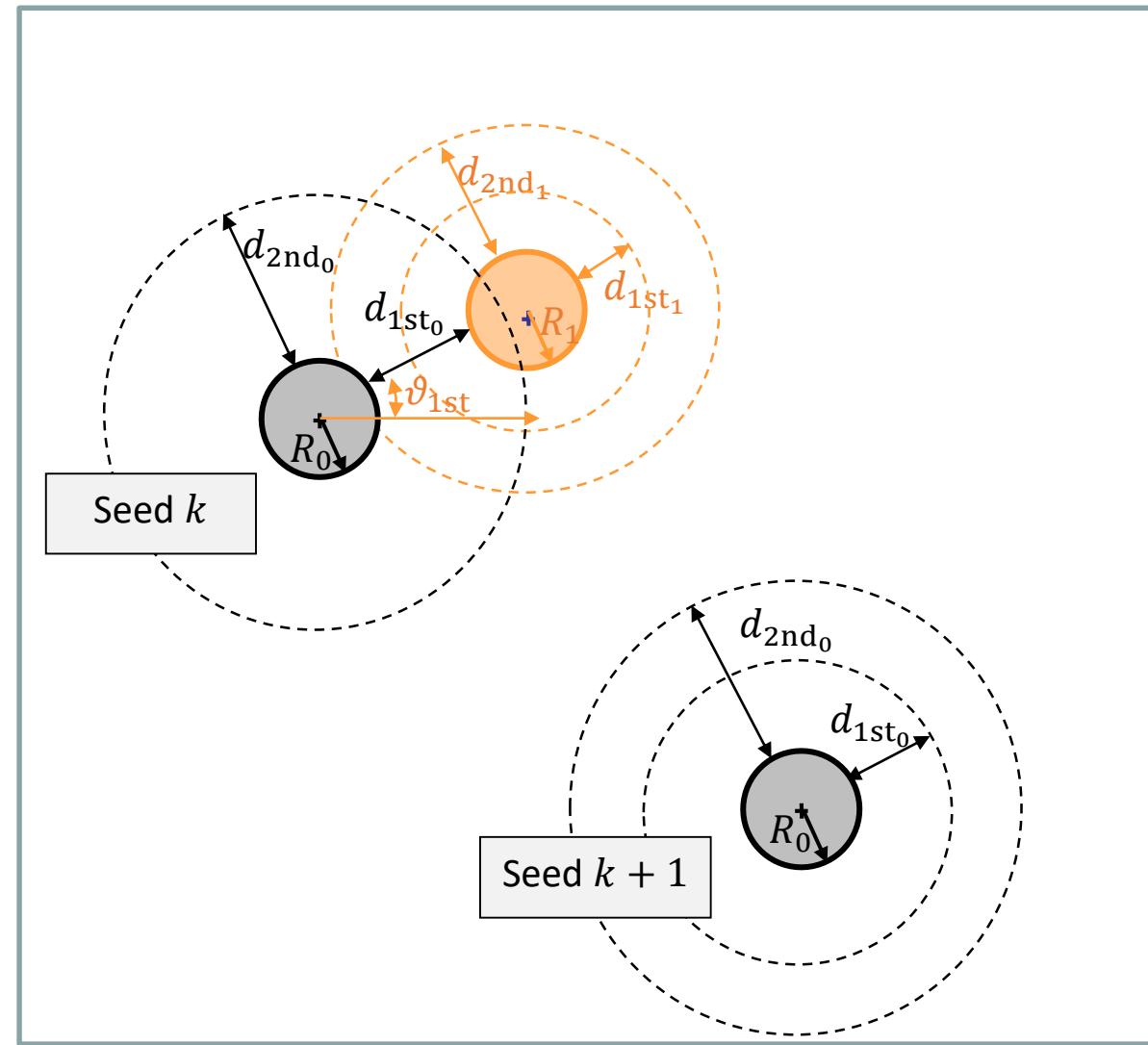


Statistic result from generated SVE

- The numerical micro-structure is generated by a fiber additive process
 - 1) Define N seeds with first and second neighbors distances

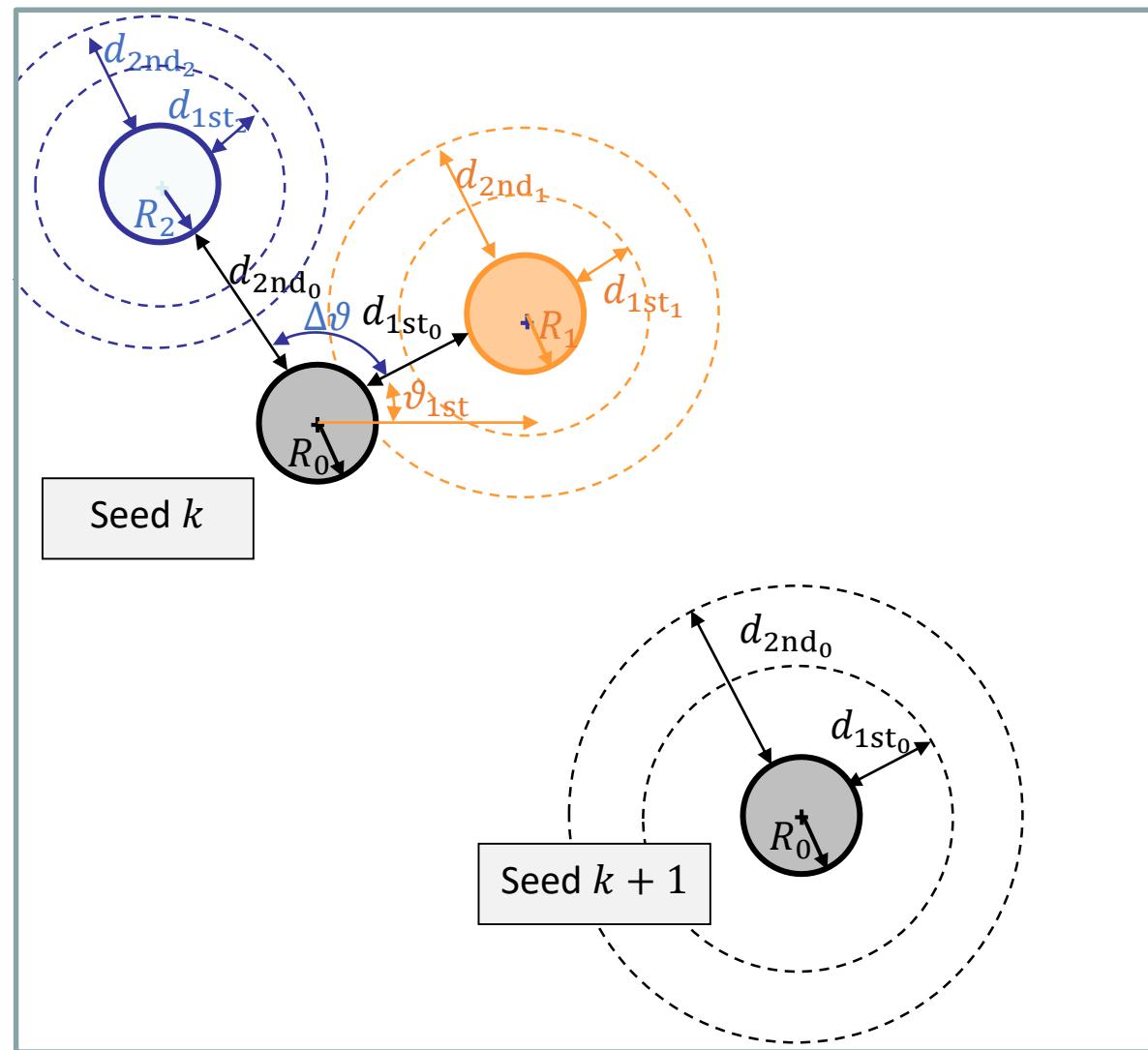


- The numerical micro-structure is generated by a fiber additive process
 - 1) Define N seeds with first and second neighbors distances
 - 2) Generate first neighbor with its own first and second neighbors distances



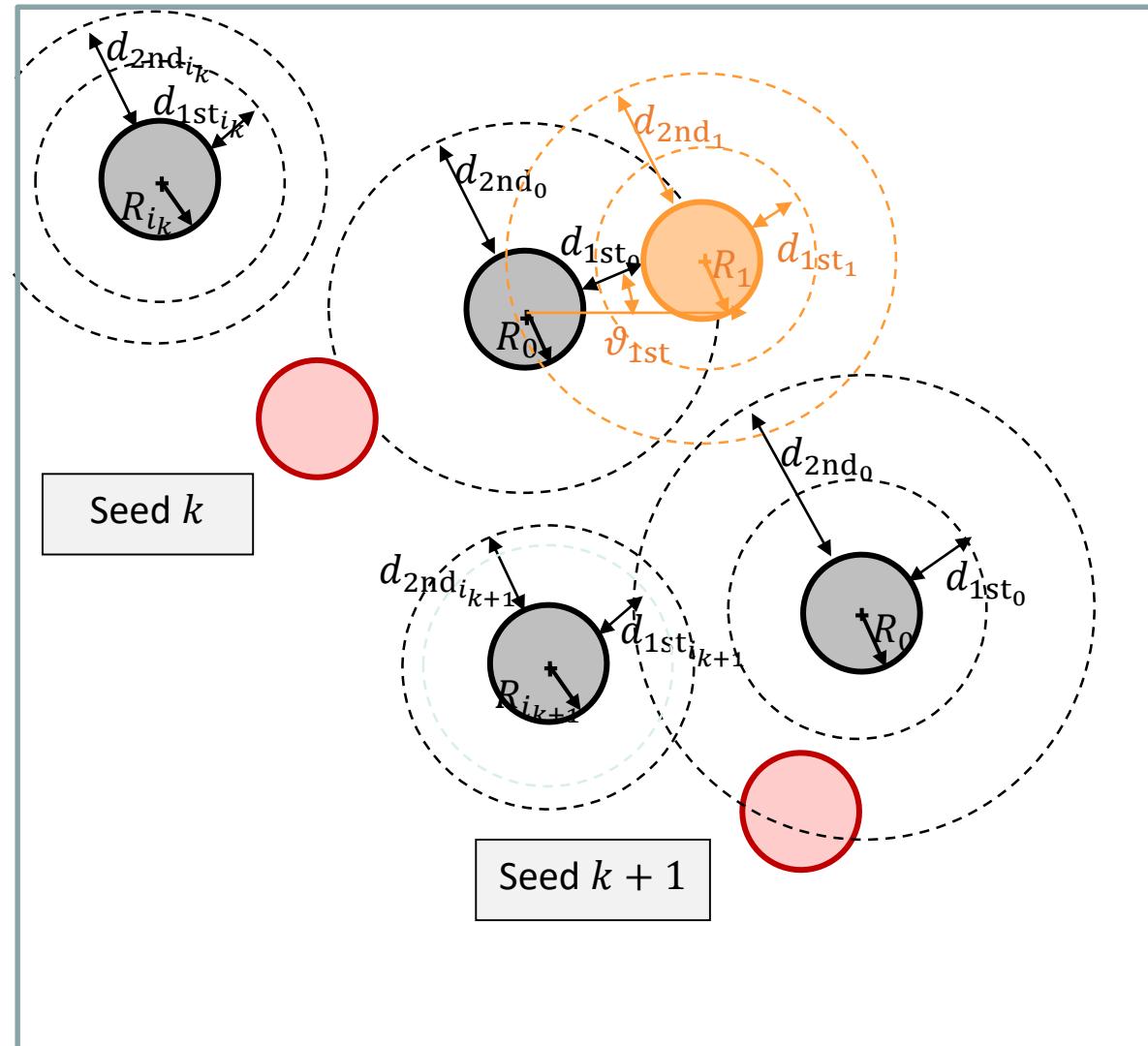
- The numerical micro-structure is generated by a fiber additive process

- 1) Define N seeds with first and second neighbors distances
- 2) Generate first neighbor with its own first and second neighbors distances
- 3) Generate second neighbor with its own first and second neighbors distances



- The numerical micro-structure is generated by a fiber additive process

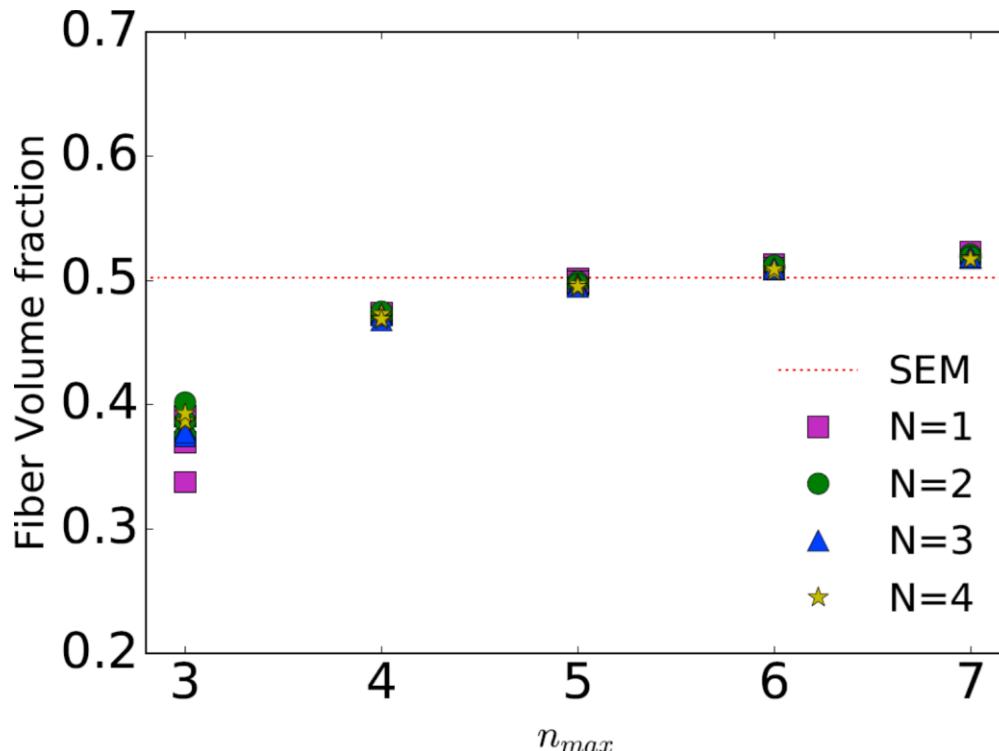
- 1) Define N seeds with first and second neighbors distances
- 2) Generate first neighbor with its own first and second neighbors distances
- 3) Generate second neighbor with its own first and second neighbors distances
- 4) Change seeds & then change central fiber of the seeds



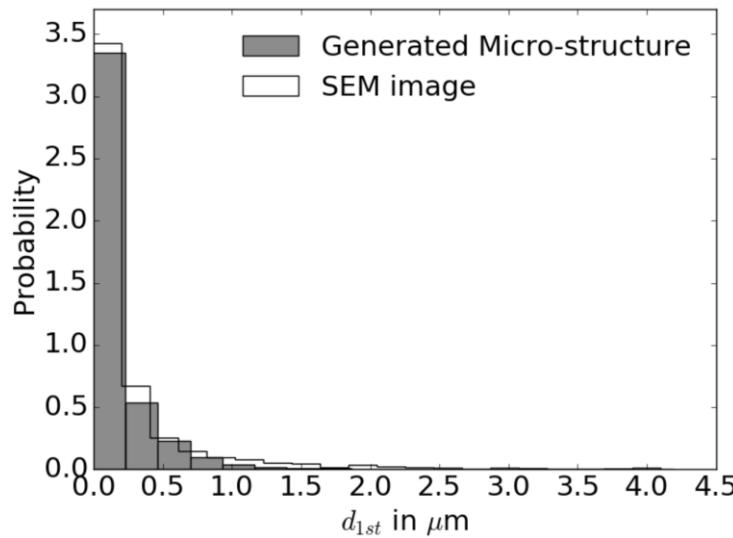
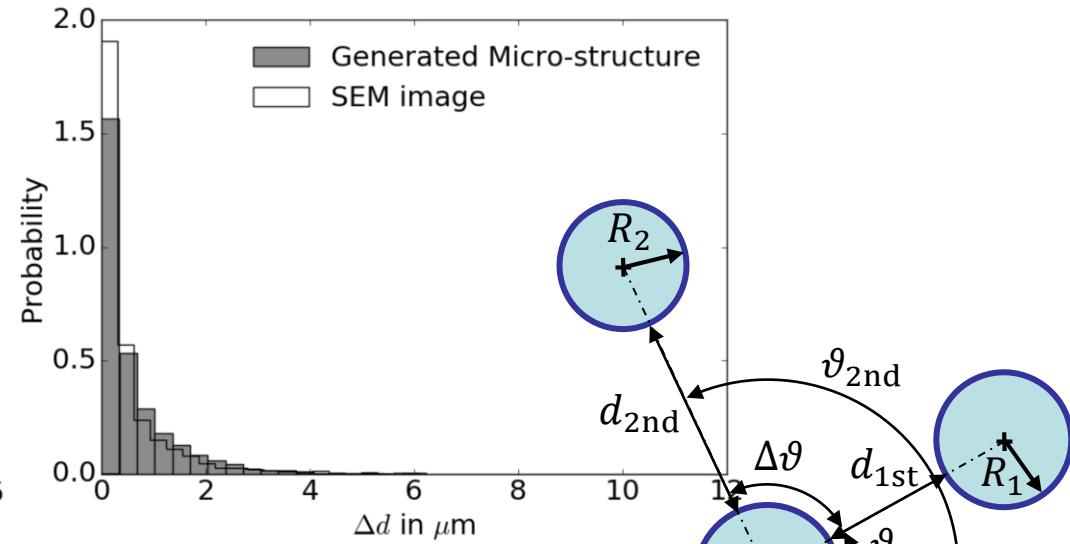
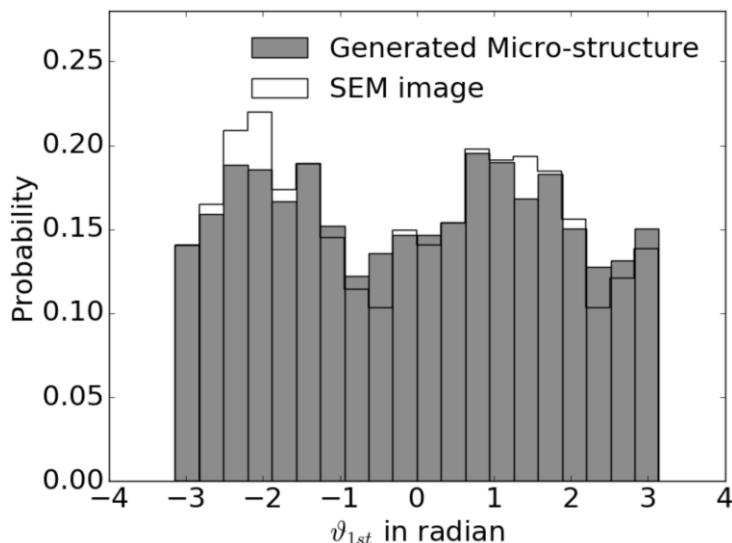
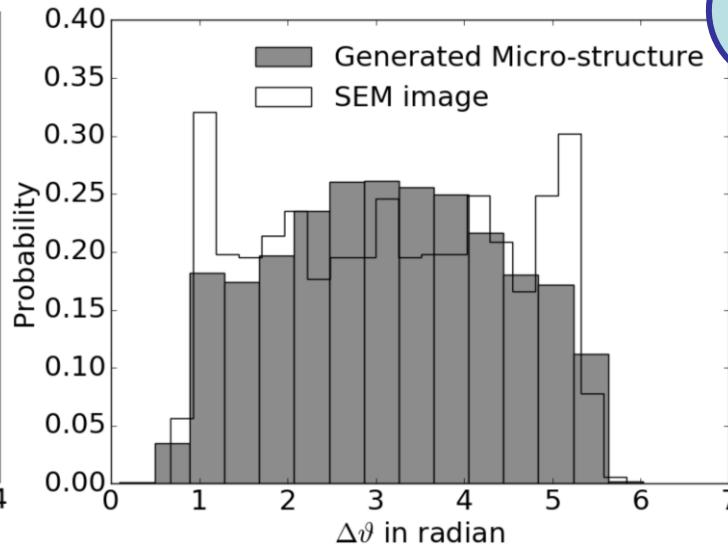
- The numerical micro-structure is generated by a fiber additive process
 - The effect of the initial number of seeds N and
 - The effect of the maximum regenerating times n_{\max} after rejecting a fiber due to overlap

SEM: Average V_f of 103 windows;

Numerical micro-structures: Average V_f of 104 windows.

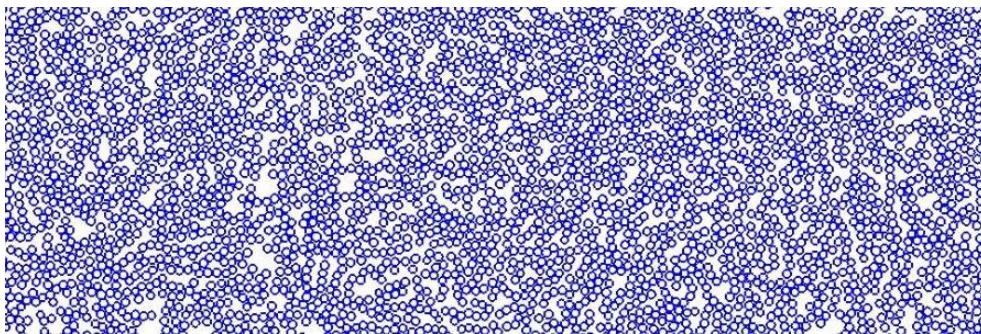
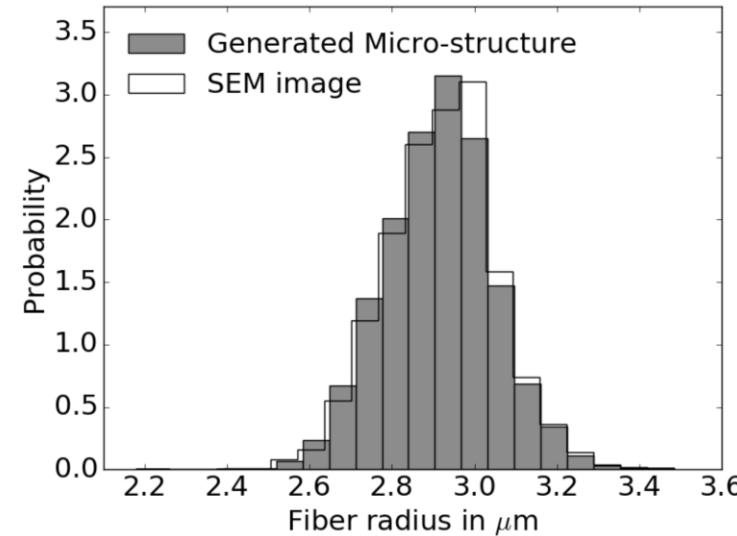


- Comparisons of fibers spatial information

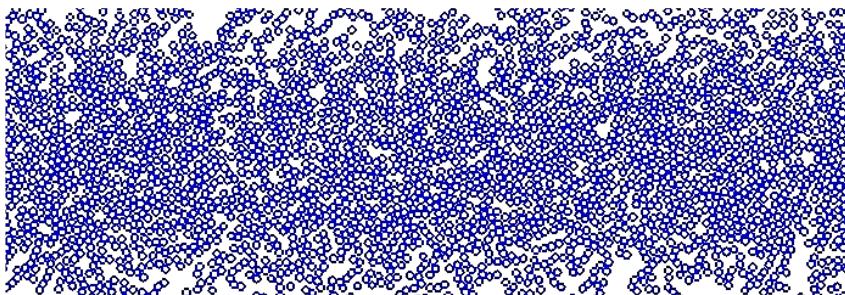
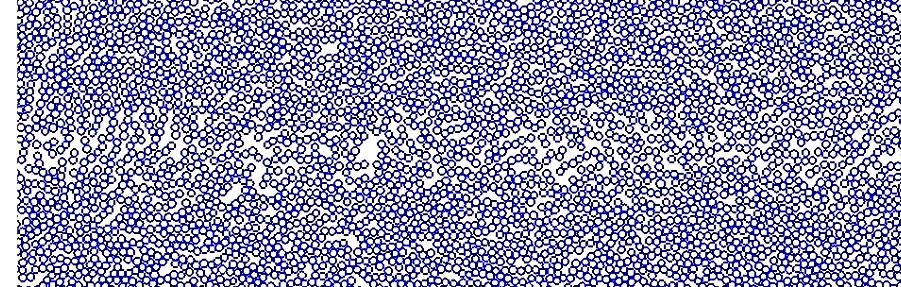


Micro-structure stochastic model

- Numerical micro-structures are generated by a fiber additive process
 - Arbitrary size
 - Arbitrary number



- Possibility to generate non-homogenous distributions



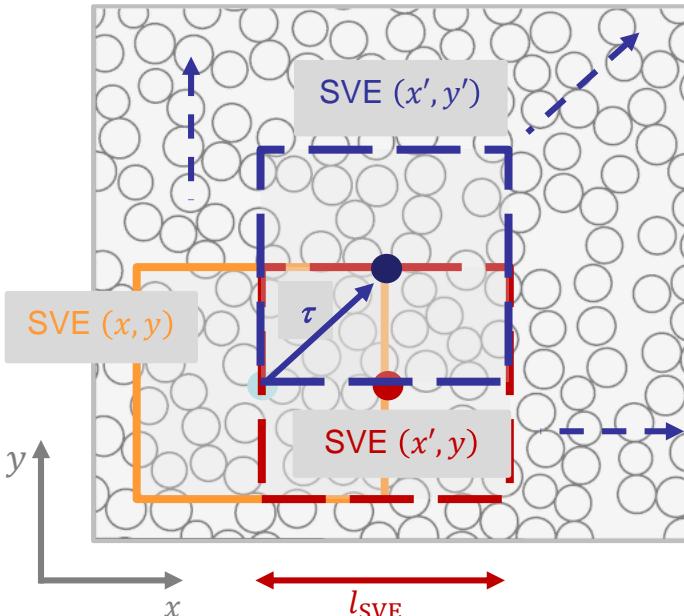
- Stochastic homogenization
 - Extraction of Stochastic Volume Elements
 - 2 sizes considered: $l_{\text{SVE}} = 10 \mu\text{m}$ & $l_{\text{SVE}} = 25 \mu\text{m}$
 - Window technique to capture correlation

$$R_{rs}(\tau) = \frac{\mathbb{E}[(r(x) - \mathbb{E}(r))(s(x + \tau) - \mathbb{E}(s))]}{\sqrt{\mathbb{E}[(r - \mathbb{E}(r))^2]}\sqrt{\mathbb{E}[(s - \mathbb{E}(s))^2]}}$$

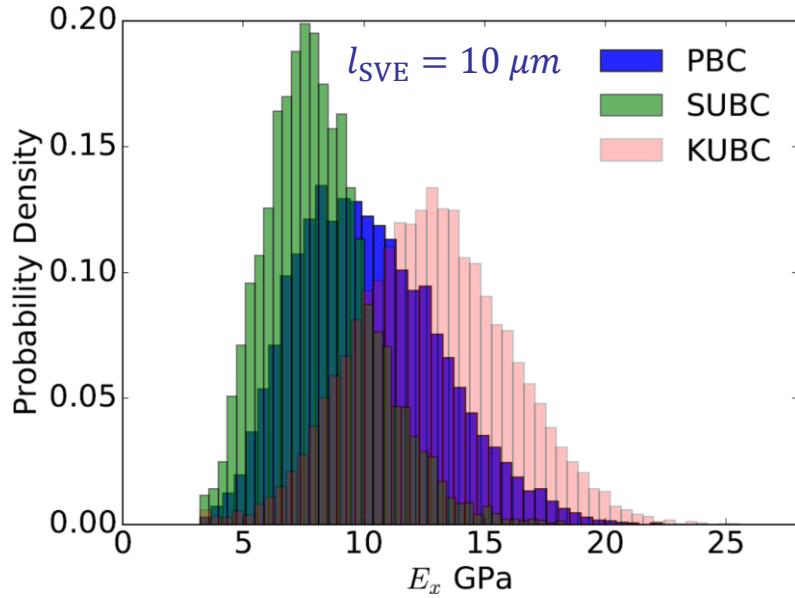
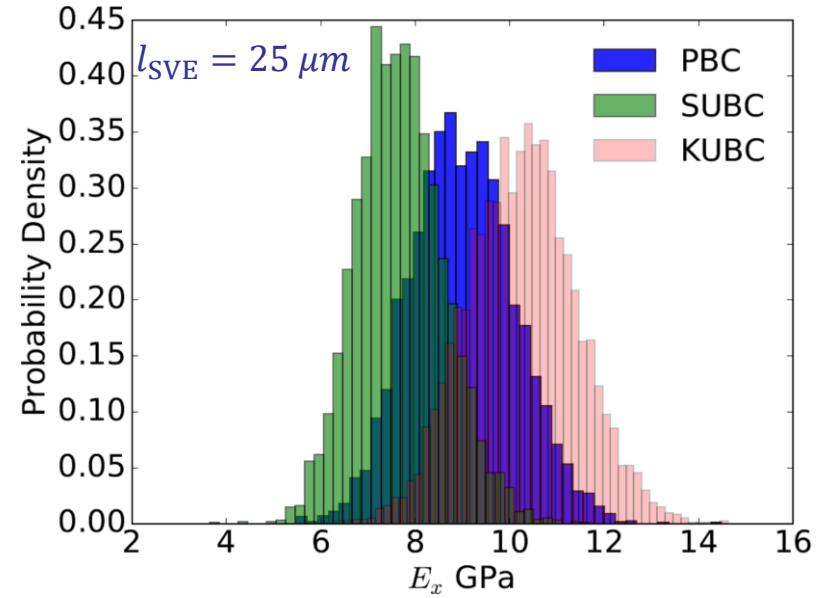
- For each SVE
 - Extract apparent homogenized material tensor \mathbb{C}_M

$$\left\{ \begin{array}{l} \boldsymbol{\varepsilon}_M = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\varepsilon}_m d\omega \\ \boldsymbol{\sigma}_M = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\sigma}_m d\omega \\ \mathbb{C}_M = \frac{\partial \boldsymbol{\sigma}_M}{\partial \boldsymbol{u}_M \otimes \nabla_M} \end{array} \right.$$

- Consistent boundary conditions:
 - Periodic (PBC)
 - Minimum kinematics (SUBC)
 - Kinematic (KUBC)



- Apparent properties



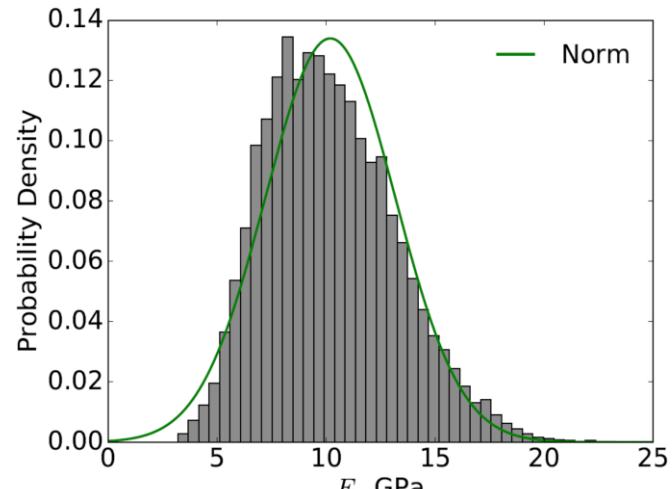
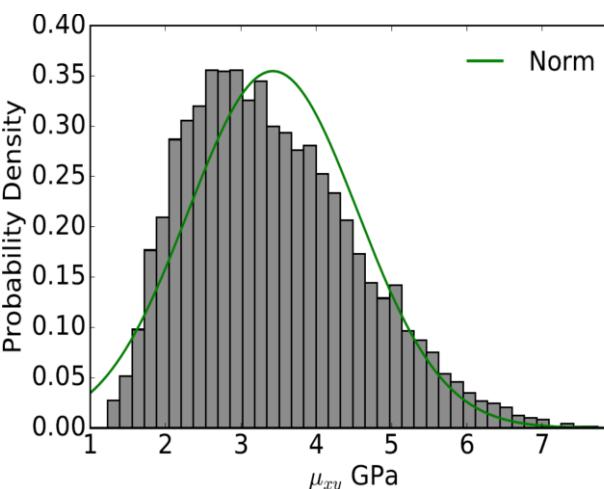
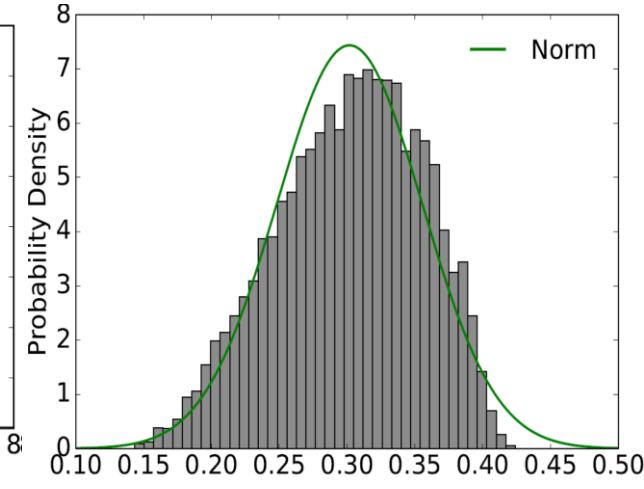
Increasing l_{SVE}

When l_{SVE} increases

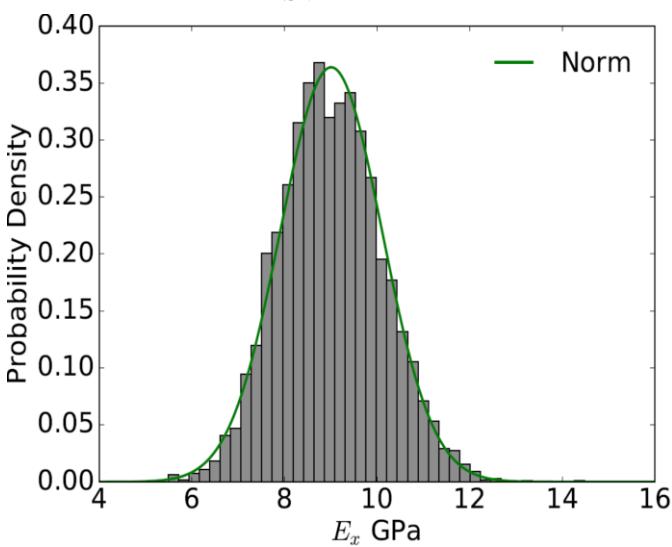
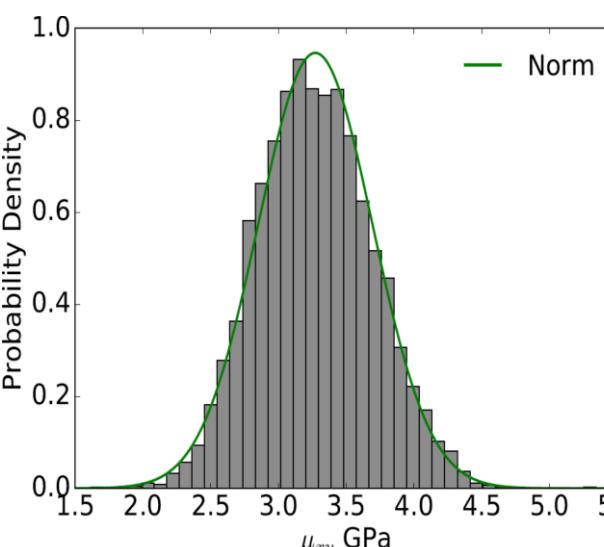
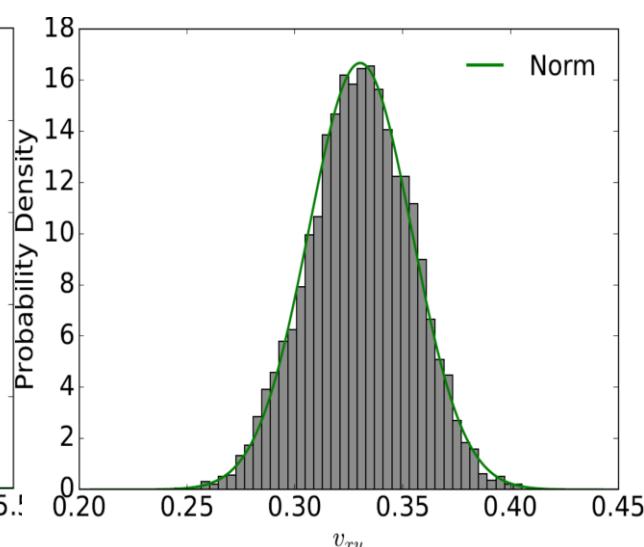
- Average values for different BCs get closer (to PBC one)
- Distributions narrow
- Distributions get closer to normal

Stochastic homogenization on the SVEs

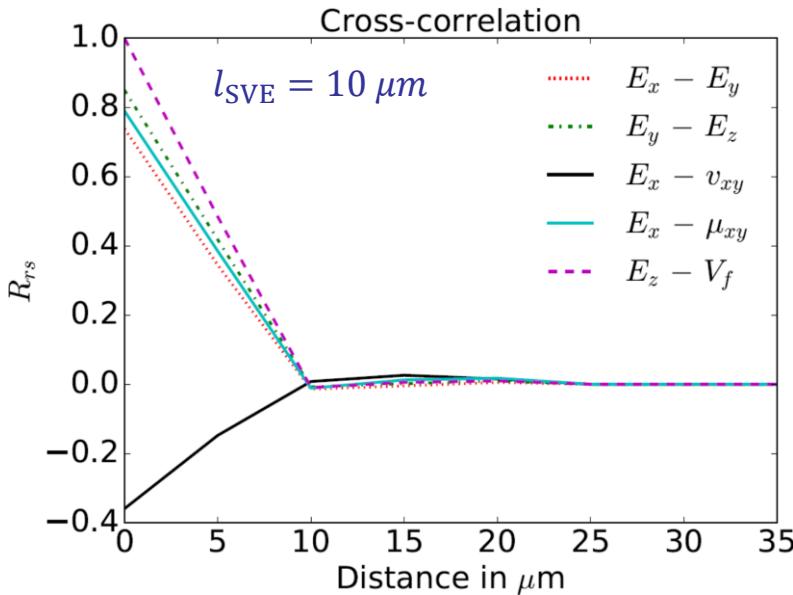
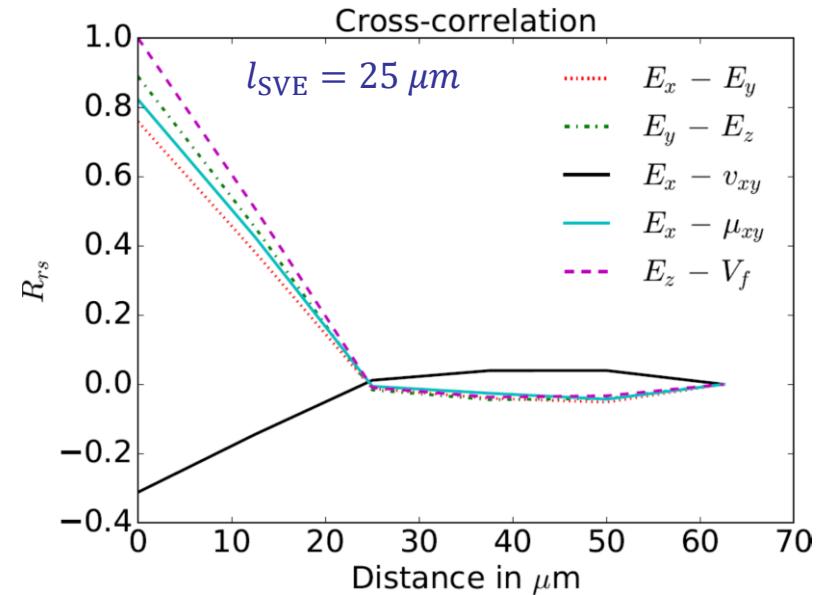
- When l_{SVE} increases: marginal distributions of random properties closer to normal
 - $l_{\text{SVE}} = 10 \mu\text{m}$



$l_{\text{SVE}} = 25 \mu\text{m}$



- Correlation



Increasing l_{SVE}

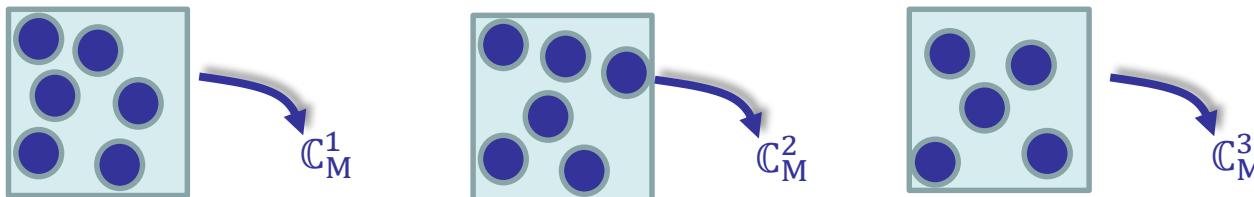
- (1) Auto/cross correlation vanishes at $\tau = l_{\text{SVE}}$
- (2) When l_{SVE} increases, distributions get closer to normal

(1)+(2) Apparent properties are independent random variables
 However the distribution depend on

- l_{SVE}
- The boundary conditions

- Stochastic model of the anisotropic elasticity tensor

- Extract (uncorrelated) tensor realizations \mathbb{C}_M^i

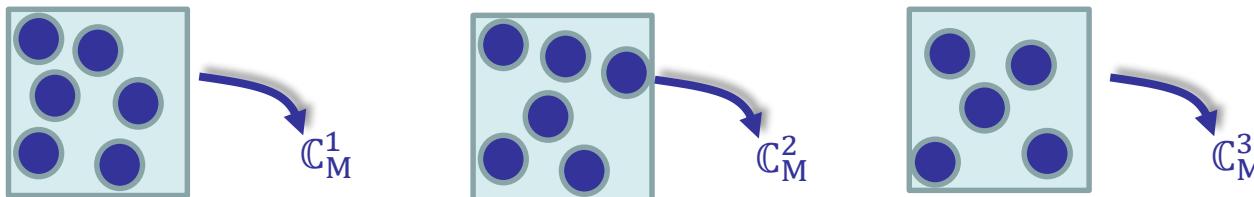


- Represent each realization \mathbb{C}_M^i by a vector \mathcal{V} of 9 (dependent) $\mathcal{V}^{(r)}$ variables
 - Generate random vectors \mathcal{V} using the Copula method

Stochastic reduced order model

- Stochastic model of the anisotropic elasticity tensor

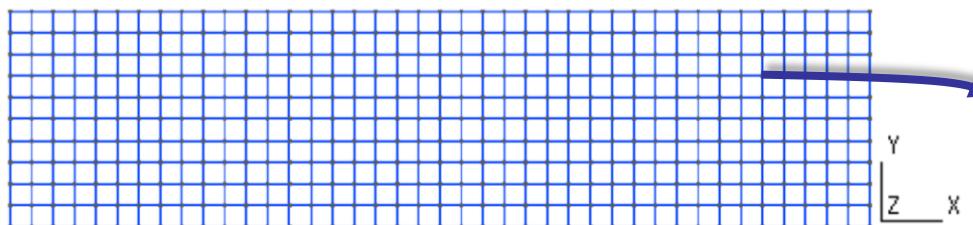
- Extract (uncorrelated) tensor realizations \mathbb{C}_M^i



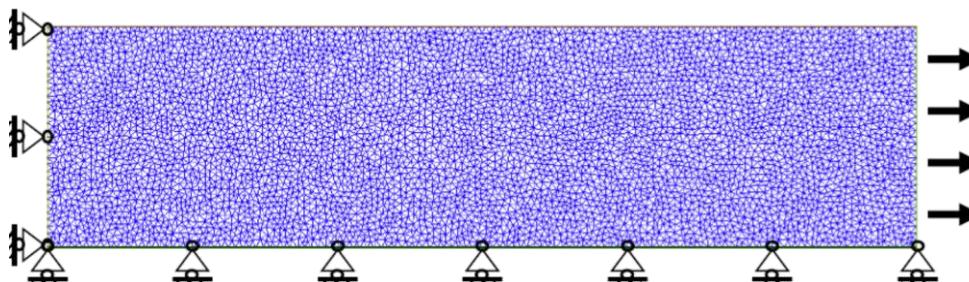
- Represent each realization \mathbb{C}_M^i by a vector \mathcal{V} of 9 (dependent) $\mathcal{V}^{(r)}$ variables
 - Generate random vectors \mathcal{V} using the Copula method

- Simulations require two discretizations

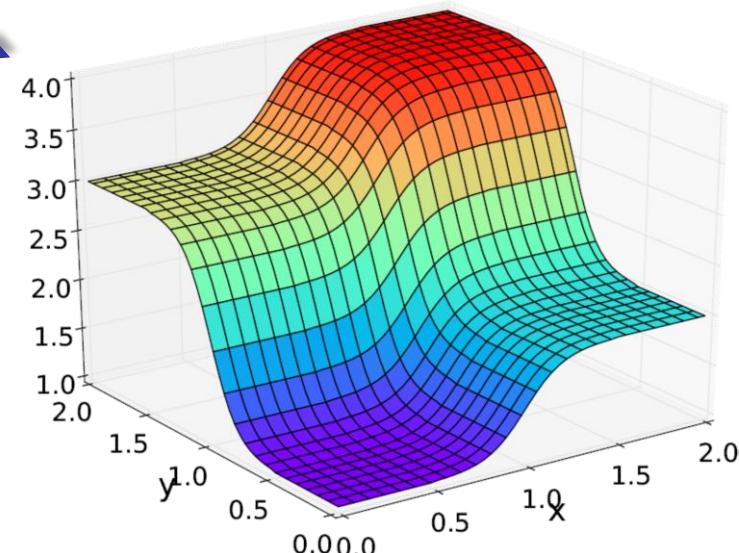
- Random vector field discretization



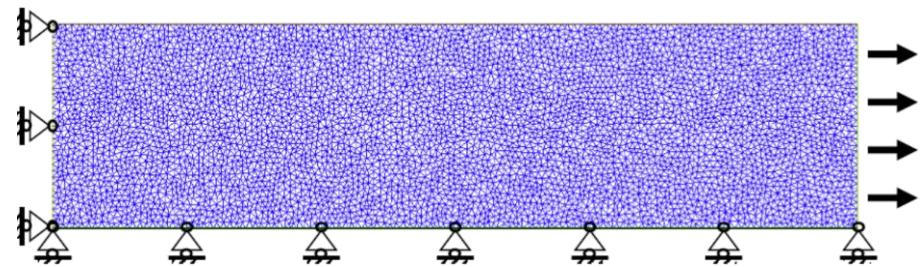
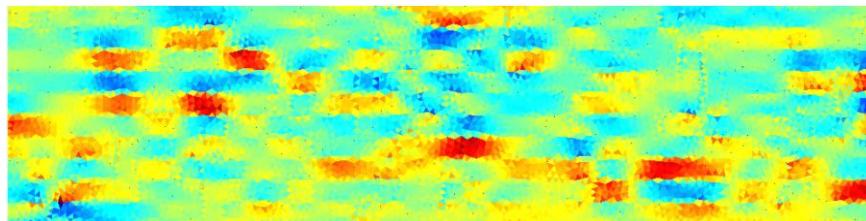
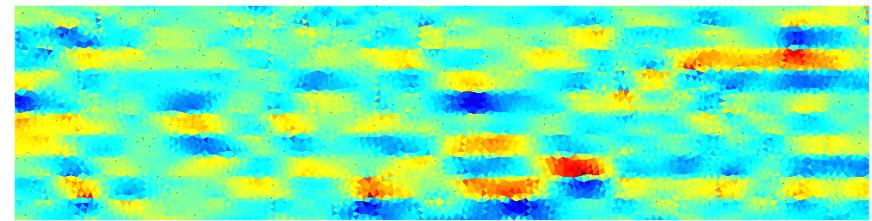
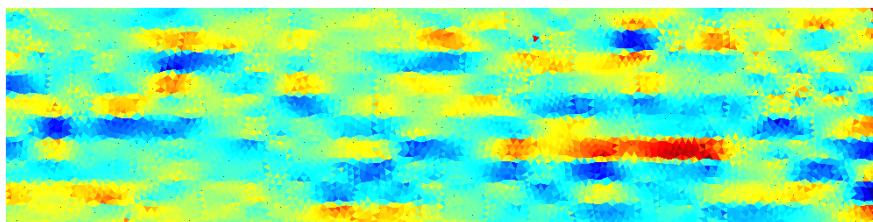
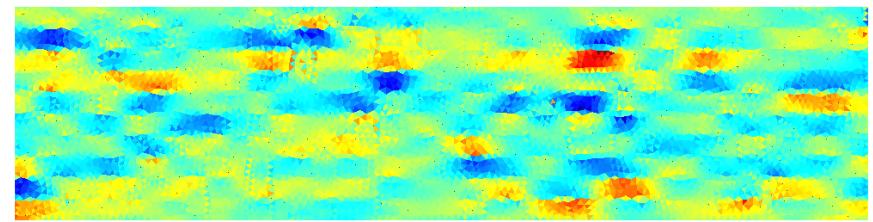
- Finite element discretization



Material Property



- Ply loading realizations
 - Non-uniform homogenized stress distributions
 - Different realizations yield different solutions



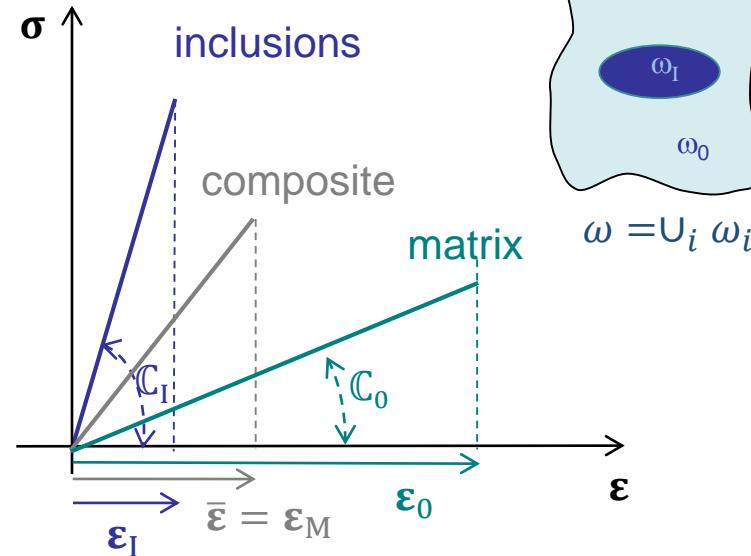
Stochastic Mean-Field Homogenization

- Mean-Field-homogenization (MFH)

- Linear composites

$$\left\{ \begin{array}{l} \boldsymbol{\sigma}_M = \bar{\boldsymbol{\sigma}} = \nu_0 \boldsymbol{\sigma}_0 + \nu_I \boldsymbol{\sigma}_I \\ \boldsymbol{\varepsilon}_M = \bar{\boldsymbol{\varepsilon}} = \nu_0 \boldsymbol{\varepsilon}_0 + \nu_I \boldsymbol{\varepsilon}_I \\ \boldsymbol{\varepsilon}_I = \mathbf{B}^{\varepsilon}(I, \mathbb{C}_0, \mathbb{C}_I) : \boldsymbol{\varepsilon}_0 \end{array} \right.$$

➡ $\hat{\mathbb{C}}_M = \hat{\mathbb{C}}_M(I, \mathbb{C}_0, \mathbb{C}_I, \nu_I)$



- We use Mori-Tanaka assumption for $\mathbf{B}^{\varepsilon}(I, \mathbb{C}_0, \mathbb{C}_I)$

- Stochastic MFH

- How to define random vectors \mathcal{V}_{MT} of $I, \mathbb{C}_0, \mathbb{C}_I, \nu_I$?

Stochastic Mean-Field Homogenization

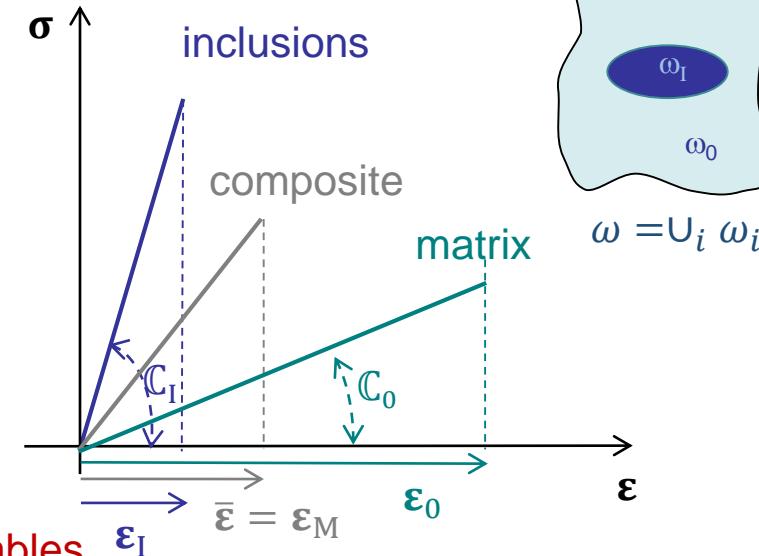
- Mean-Field-homogenization (MFH)

- Linear composites

$$\left\{ \begin{array}{l} \boldsymbol{\sigma}_M = \bar{\boldsymbol{\sigma}} = \nu_0 \boldsymbol{\sigma}_0 + \nu_I \boldsymbol{\sigma}_I \\ \boldsymbol{\varepsilon}_M = \bar{\boldsymbol{\varepsilon}} = \nu_0 \boldsymbol{\varepsilon}_0 + \nu_I \boldsymbol{\varepsilon}_I \\ \boldsymbol{\varepsilon}_I = \mathbf{B}^{\boldsymbol{\varepsilon}}(I, \mathbb{C}_0, \mathbb{C}_I) : \boldsymbol{\varepsilon}_0 \end{array} \right.$$

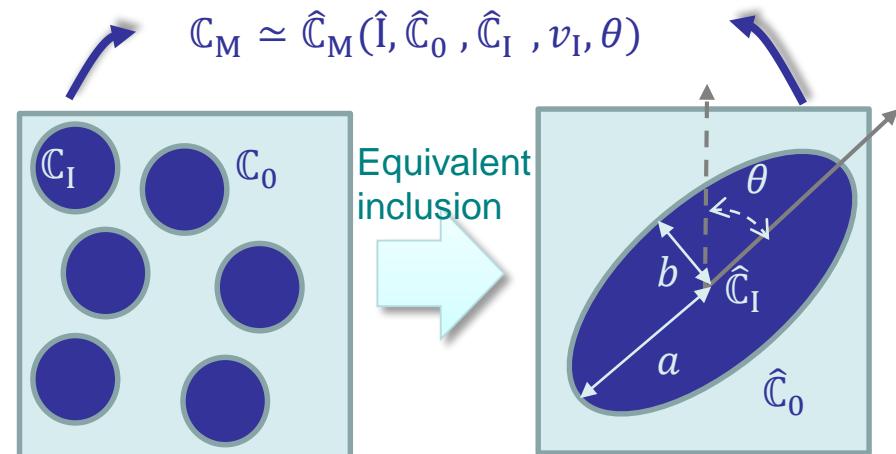
→ $\hat{\mathbb{C}}_M = \hat{\mathbb{C}}_M(I, \mathbb{C}_0, \mathbb{C}_I, \nu_I)$

Defined as random variables



- Consider an equivalent system

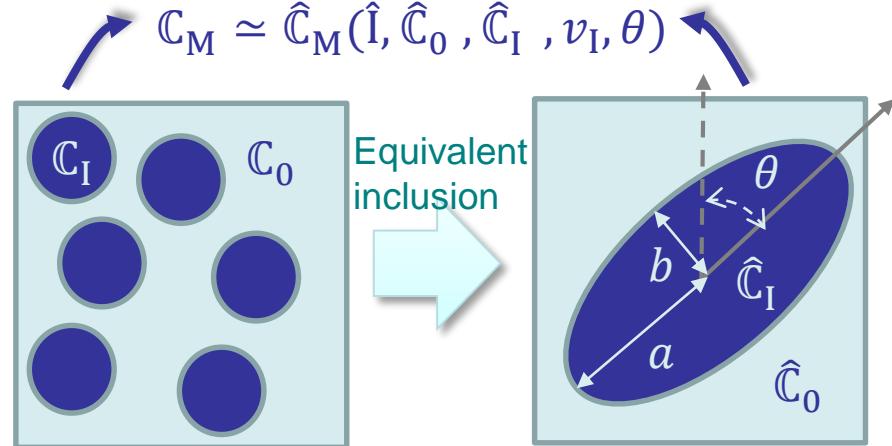
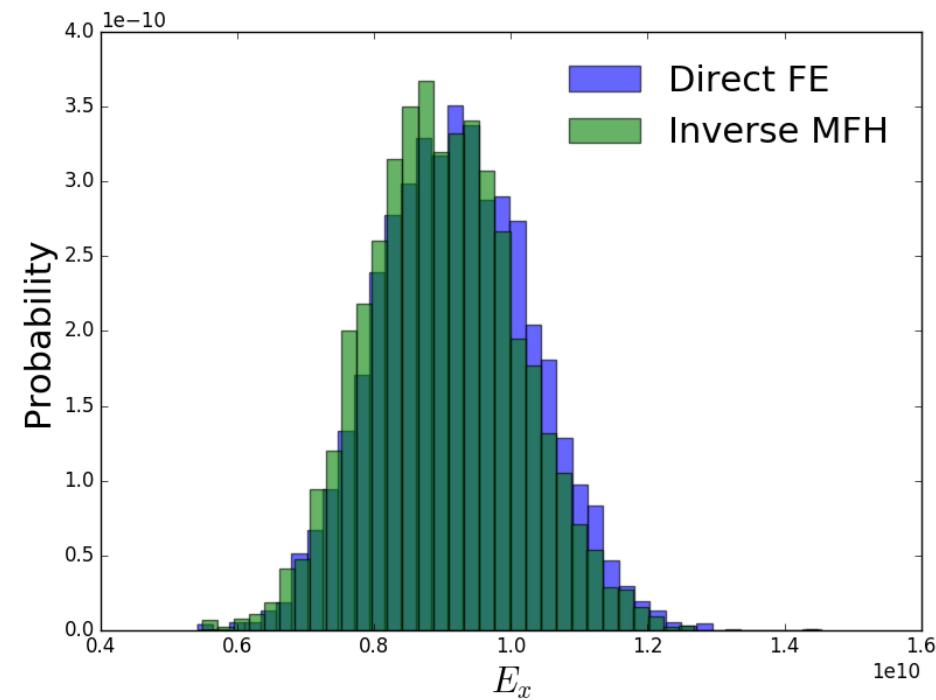
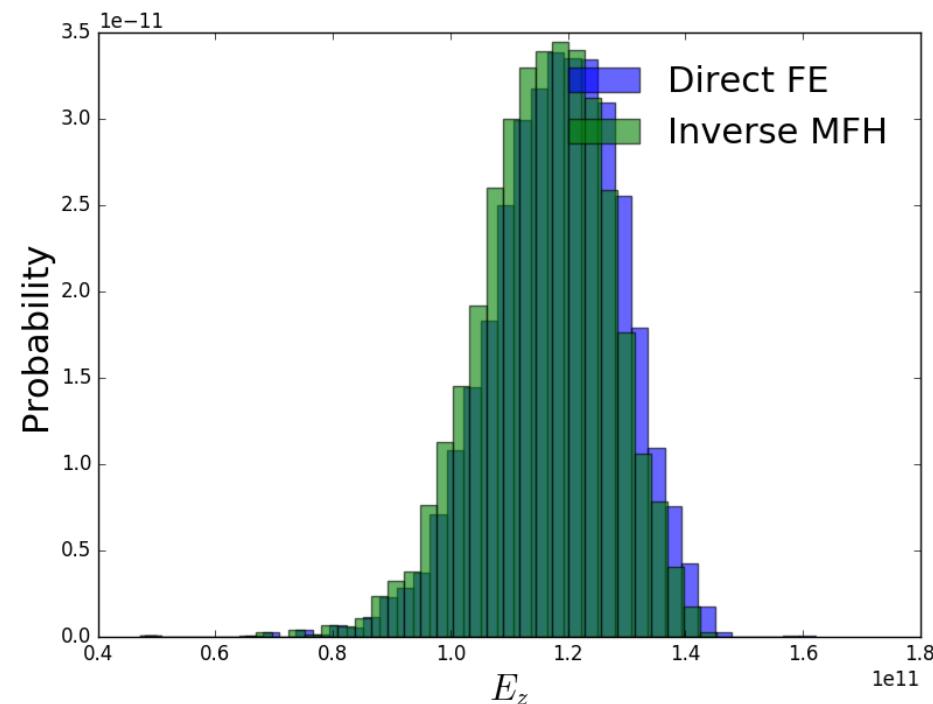
- For each SVE realization i :
 - \mathbb{C}_M and ν_I known
 - Anisotropy from \mathbb{C}_M^i
 - θ is evaluated
 - Fiber behavior uniform
 - $\hat{\mathbb{C}}_I$ for one SVE
- Remaining optimization problem:



$$\min_{a, \hat{E}_0, \hat{\nu}_0} \left\| \mathbb{C}_M - \hat{\mathbb{C}}_M \left(\frac{a}{b}, \hat{E}_0, \hat{\nu}_0 ; \nu_I, \theta, \hat{\mathbb{C}}_I \right) \right\|$$

Stochastic Mean-Field Homogenization

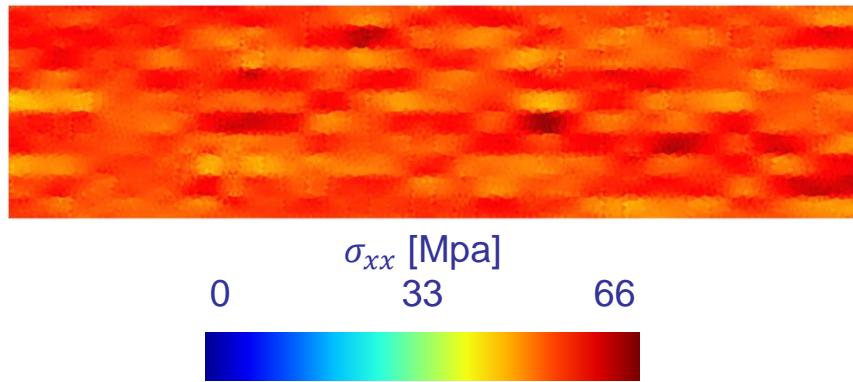
- Inverse stochastic identification
 - Comparison of homogenized properties from SVE realizations and stochastic MFH



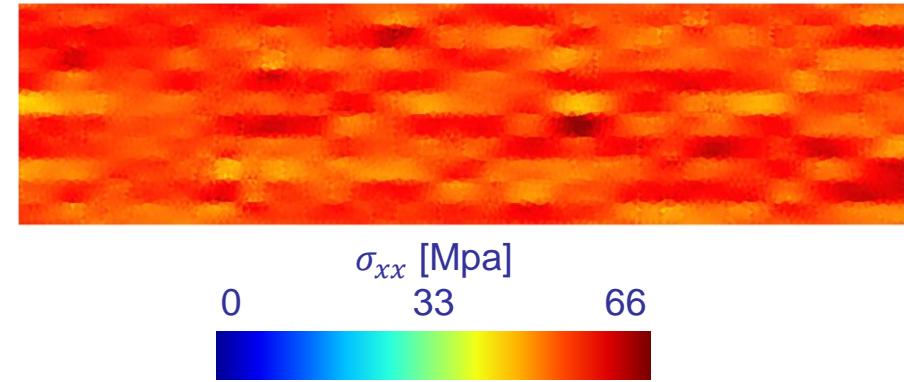
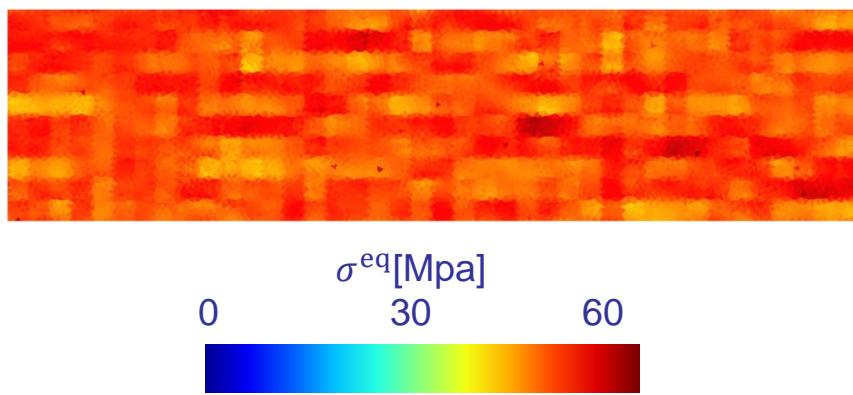
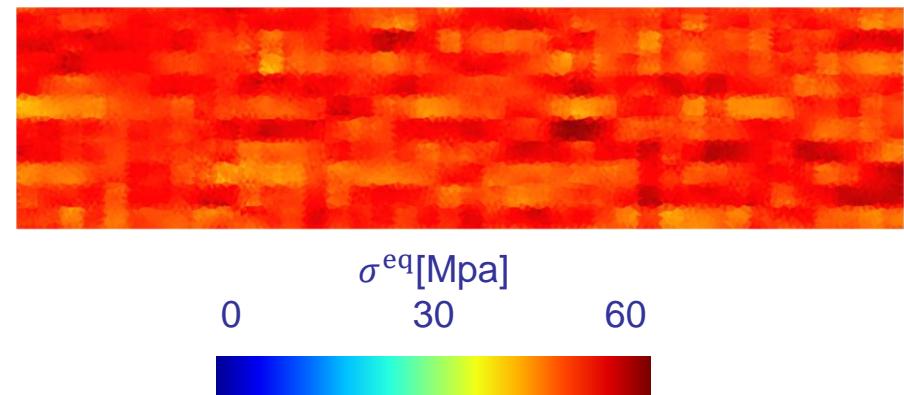
Stochastic Mean-Field Homogenization

- Comparison Random fields vs. Stochastic elastic MFH

Random anisotropic material tensor



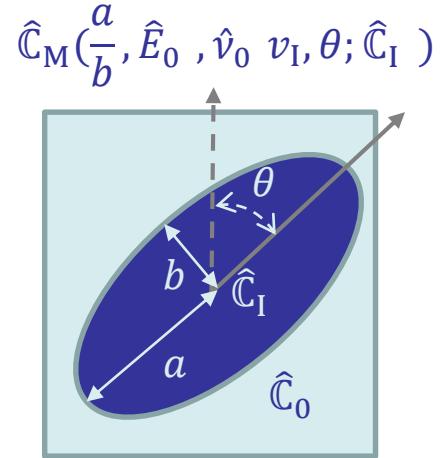
Stochastic MFH



Stochastic Mean-Field Homogenization

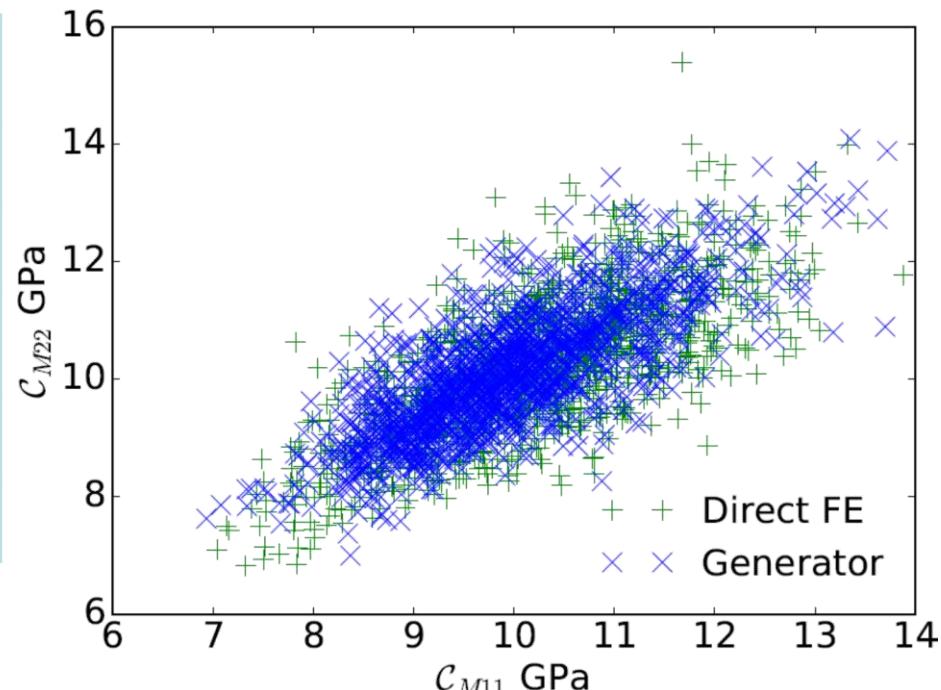
- Stochastic MFH model:

- Homogenized properties $\hat{\mathbb{C}}_M\left(\frac{a}{b}, \hat{E}_0, \hat{v}_0, v_I, \theta; \hat{\mathbb{C}}_I\right)$
- Random vectors \mathcal{V}_{MT}
 - Realizations $v_{MT} = \left\{ \frac{a}{b}, \hat{E}_0, \hat{v}_0, v_I, \theta \right\}$
 - Characterized by the distance correlation matrix
 - Generator using the copula method



	v_I	θ	$\frac{a}{b}$	\hat{E}_0	\hat{v}_0
v_I	1.0	0.015	0.114	0.523	0.499
θ		1.0	0.092	0.016	0.014
$\frac{a}{b}$			1.0	0.080	0.076
\hat{E}_0				1.0	0.661
\hat{v}_0					1.0

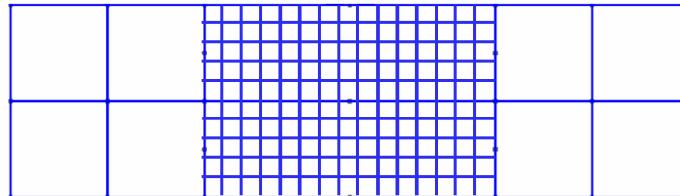
Distances correlation matrix



Stochastic Mean-Field Homogenization

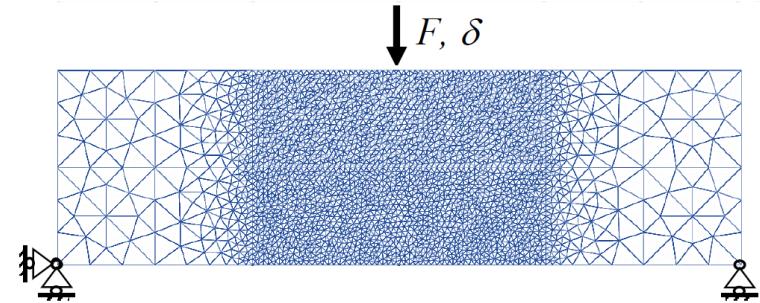
- Stochastic simulations

- 2 discretization: Random field \mathcal{V}_{MT}

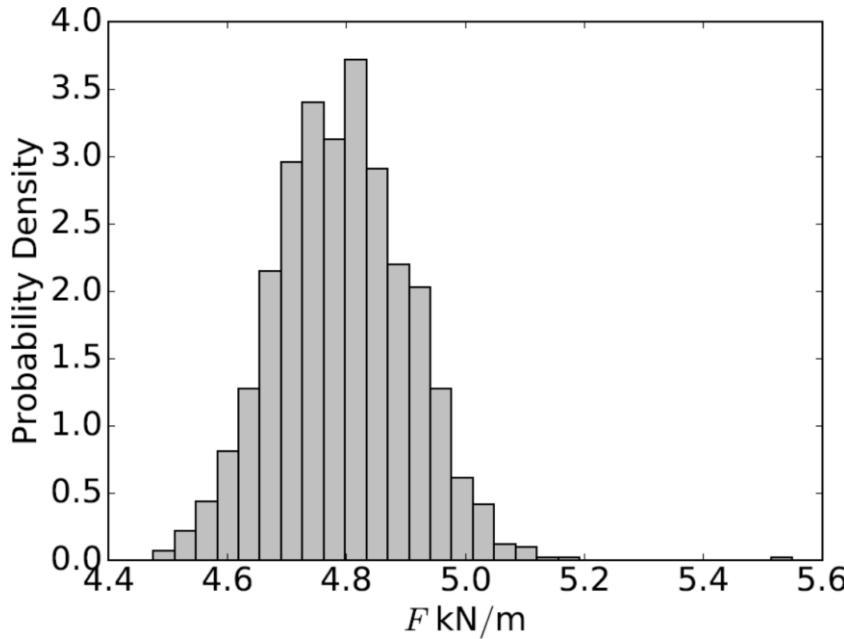
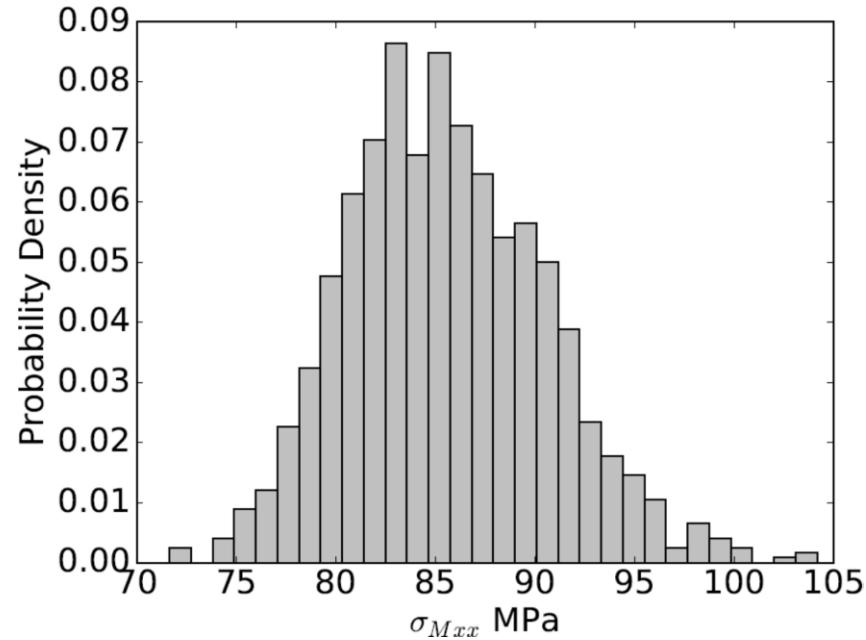


&

Stochastic finite-elements

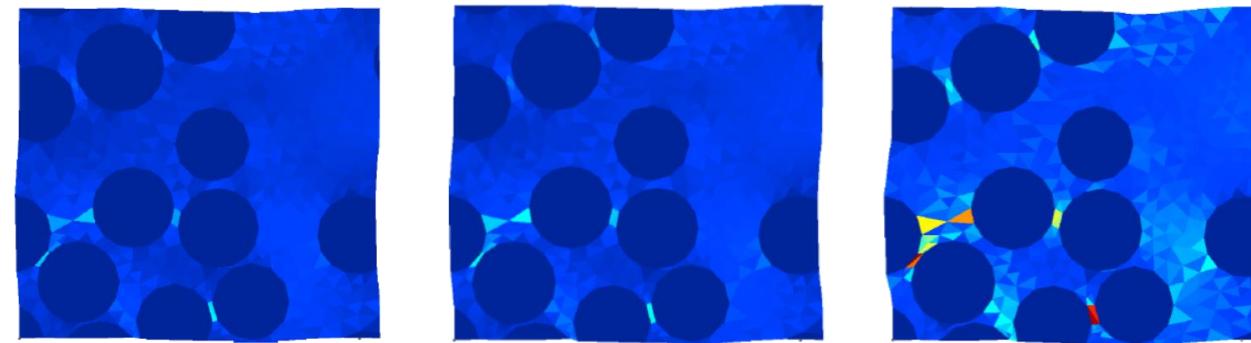
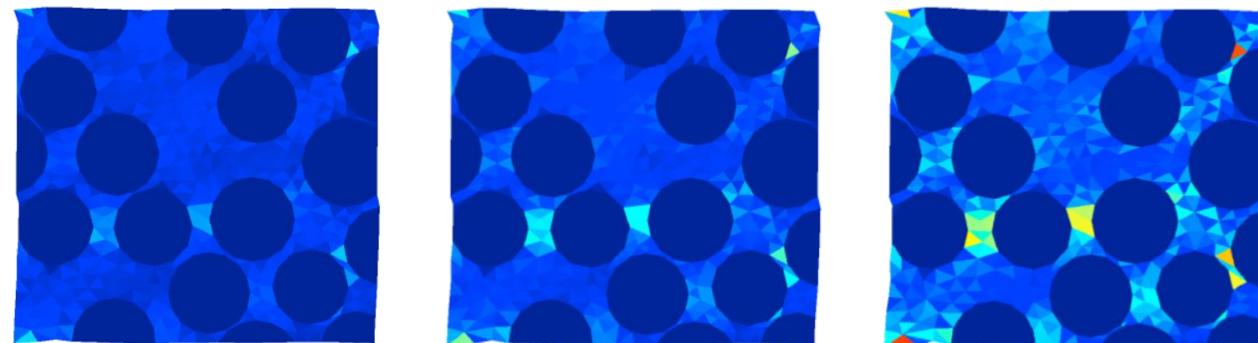


- Realizations to reach a given deflection δ



Non-linearity

- Non-linear SVE simulations



Non-linear stochastic Mean-Field Homogenization

- Non-linear Mean-Field-homogenization

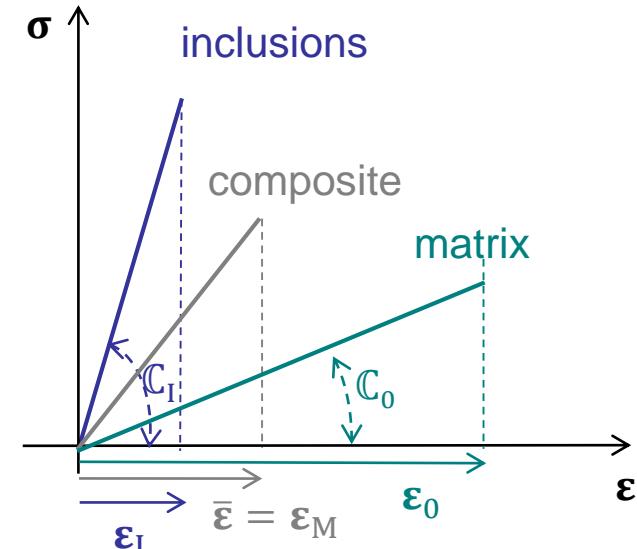
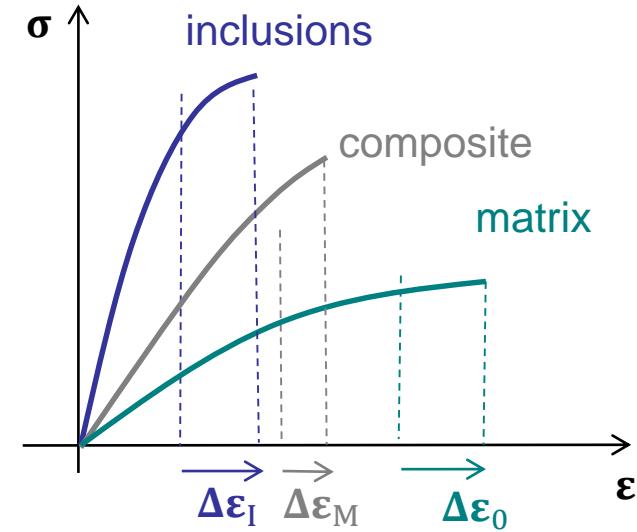
- Linear composites

$$\left\{ \begin{array}{l} \sigma_M = \bar{\sigma} = v_0 \sigma_0 + v_I \sigma_I \\ \epsilon_M = \bar{\epsilon} = v_0 \epsilon_0 + v_I \epsilon_I \\ \epsilon_I = B^\epsilon(I, C_0, C_I) : \epsilon_0 \end{array} \right.$$

- Non-linear composites

$$\left\{ \begin{array}{l} \sigma_M = \bar{\sigma} = v_0 \sigma_0 + v_I \sigma_I \\ \Delta \epsilon_M = \bar{\Delta \epsilon} = v_0 \Delta \epsilon_0 + v_I \Delta \epsilon_I \\ \Delta \epsilon_I = B^\epsilon(I, C_0^{LCC}, C_I^{LCC}) : \Delta \epsilon_0 \end{array} \right.$$

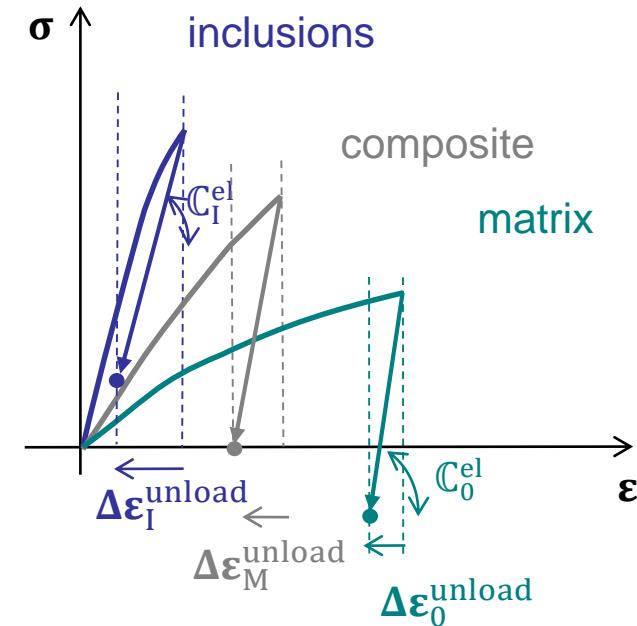
Define a linear comparison composite material



Non-linear stochastic Mean-Field Homogenization

- Incremental-secant Mean-Field-homogenization

- Virtual elastic unloading from previous state
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components



Non-linear stochastic Mean-Field Homogenization

- Incremental-secant Mean-Field-homogenization

- Virtual elastic unloading from previous state
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components

- Define Linear Comparison Composite
 - From unloaded state

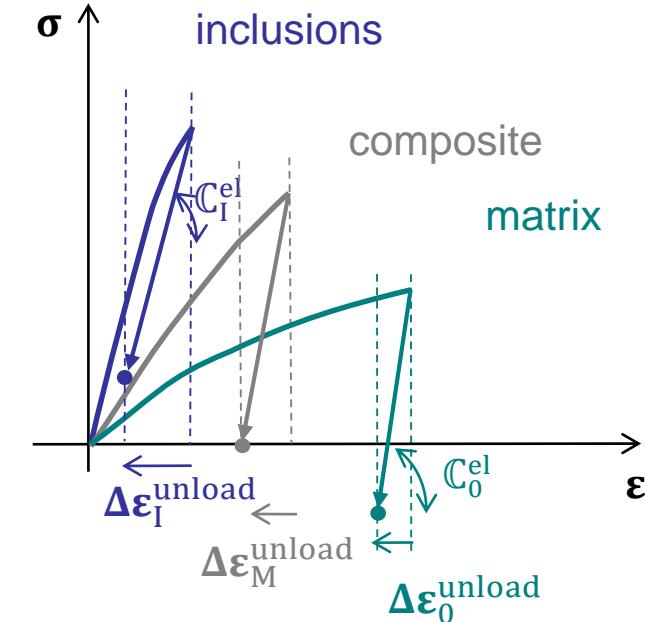
$$\Delta\boldsymbol{\varepsilon}_{I/0}^r = \Delta\boldsymbol{\varepsilon}_{I/0} + \Delta\boldsymbol{\varepsilon}_{I/0}^{\text{unload}}$$

- Incremental-secant loading

$$\left\{ \begin{array}{l} \boldsymbol{\sigma}_M = \bar{\boldsymbol{\sigma}} = \nu_0 \boldsymbol{\sigma}_0 + \nu_I \boldsymbol{\sigma}_I \\ \Delta\boldsymbol{\varepsilon}_M^r = \bar{\Delta\boldsymbol{\varepsilon}} = \nu_0 \Delta\boldsymbol{\varepsilon}_0^r + \nu_I \Delta\boldsymbol{\varepsilon}_I^r \\ \Delta\boldsymbol{\varepsilon}_I^r = \mathbf{B}^{\boldsymbol{\varepsilon}}(I, \mathbb{C}_0^S, \mathbb{C}_I^S) : \Delta\boldsymbol{\varepsilon}_0^r \end{array} \right.$$

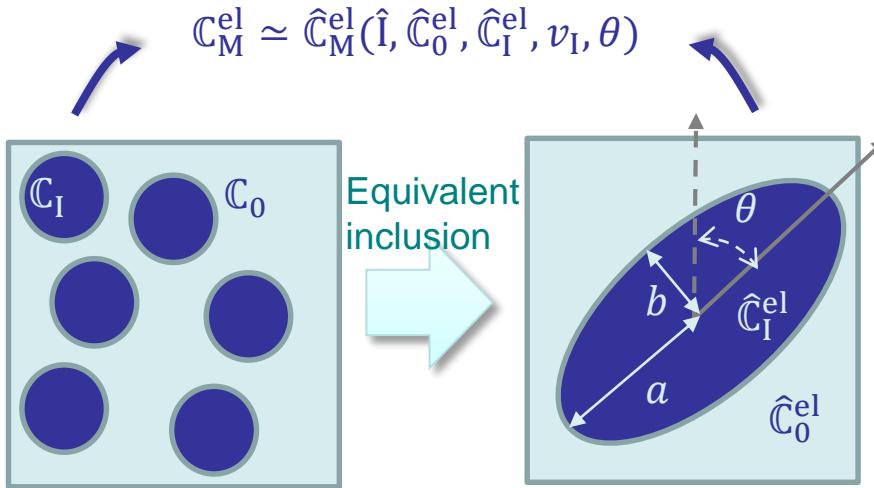
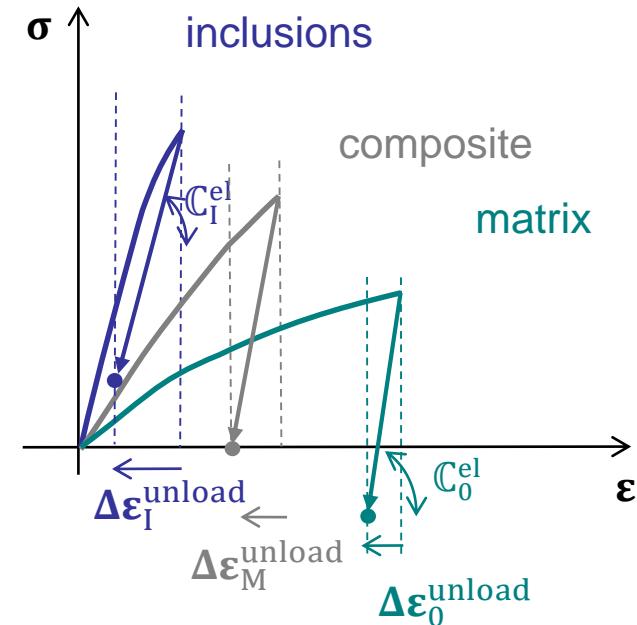
- Incremental secant operator

$$\rightarrow \Delta\boldsymbol{\sigma}_M = \mathbb{C}_M^S(I, \mathbb{C}_0^S, \mathbb{C}_I^S, \nu_I) : \Delta\boldsymbol{\varepsilon}_M^r$$



Non-linear stochastic Mean-Field Homogenization

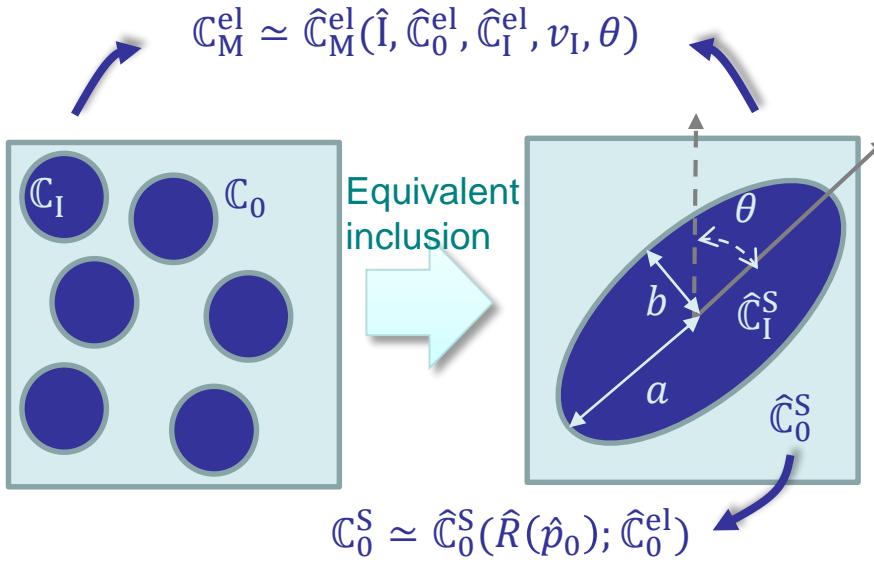
- Non-linear inverse identification
 - First step from elastic response



Non-linear stochastic Mean-Field Homogenization

- Non-linear inverse identification

- First step from elastic response



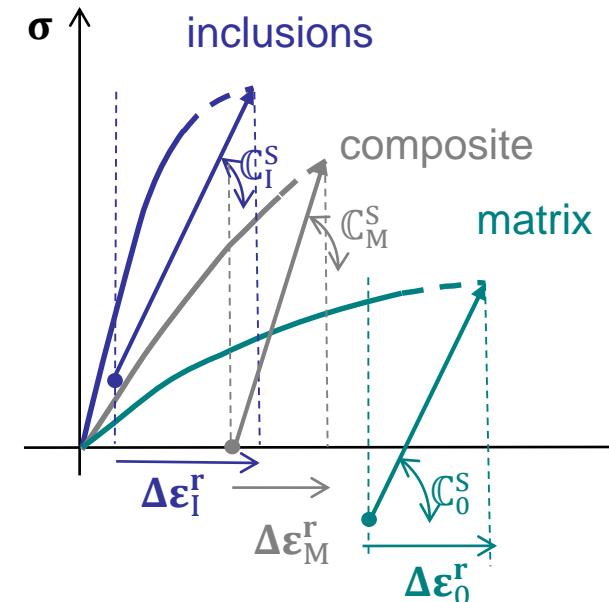
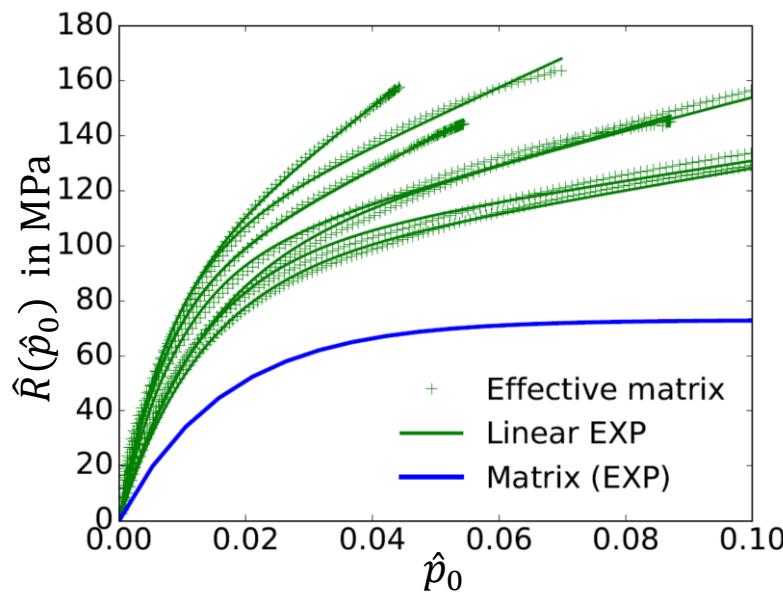
- Second step from the LCC

- New optimization problem

$$\Delta\sigma_M \approx \hat{C}_M^S(\hat{I}, \hat{C}_0^S, C_I^S, v_I, \theta) : \Delta\varepsilon_M^r$$

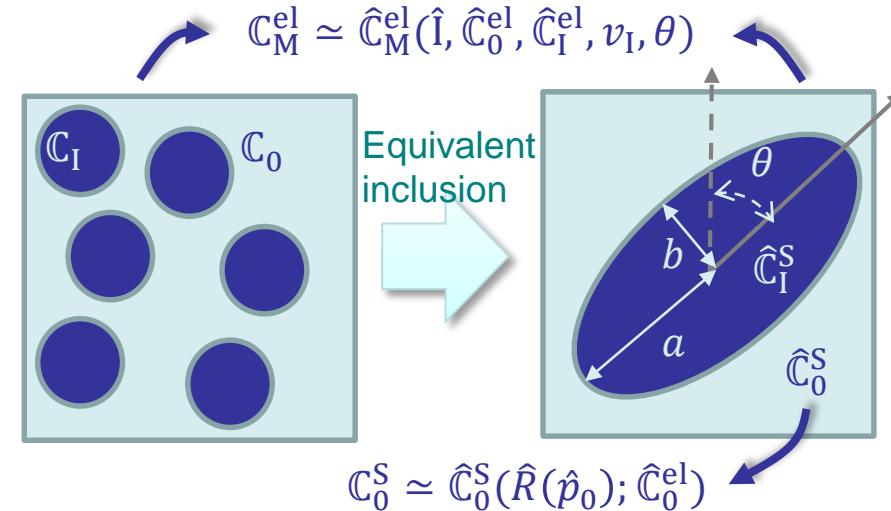
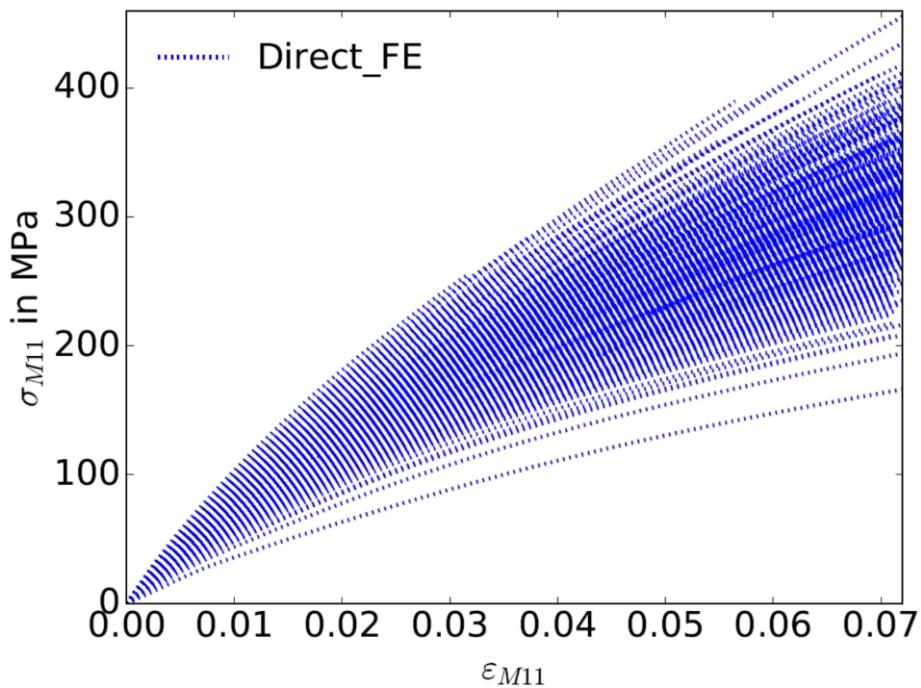
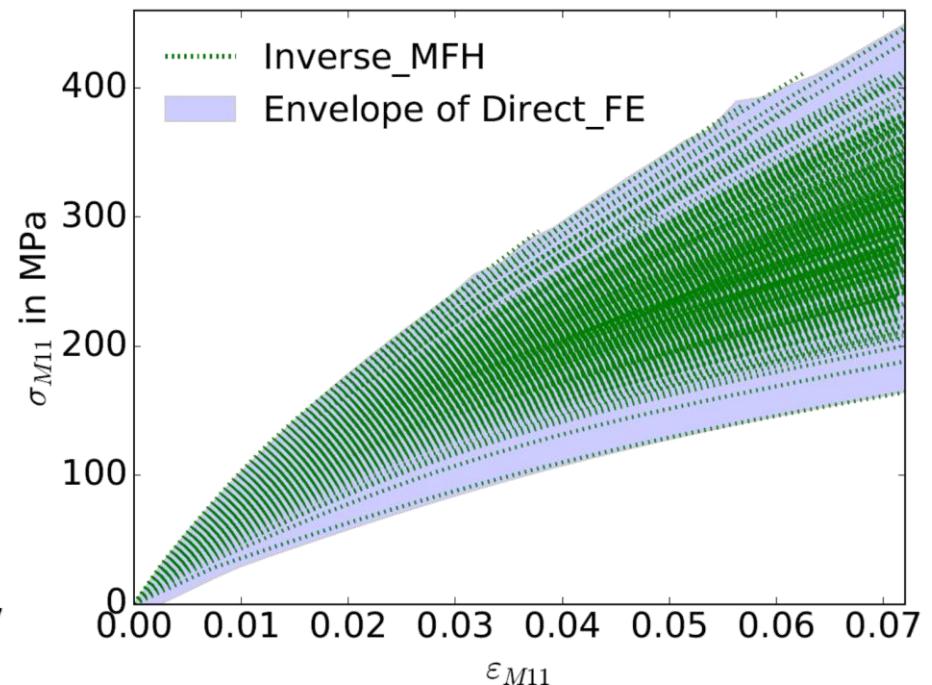
- Extract the equivalent hardening $\hat{R}(\hat{p}_0)$ from the incremental secant tensor

$$C_0^S \approx \hat{C}_0^S(\hat{R}(\hat{p}_0); \hat{C}_0^el)$$



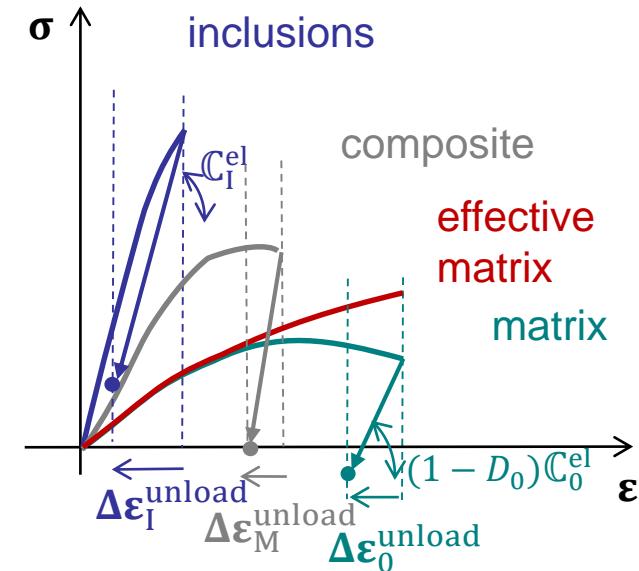
Non-linear stochastic Mean-Field Homogenization

- Non-linear inverse identification
 - Comparison SVE vs. MFH



- Damage-enhanced Mean-Field-homogenization

- Virtual elastic unloading from previous state
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components



Non-linear stochastic Mean-Field Homogenization

- Damage-enhanced Mean-Field-homogenization

- Virtual elastic unloading from previous state
 - Composite material unloaded to reach the stress-free state
 - Residual stress in components

- Define Linear Comparison Composite

- From elastic state

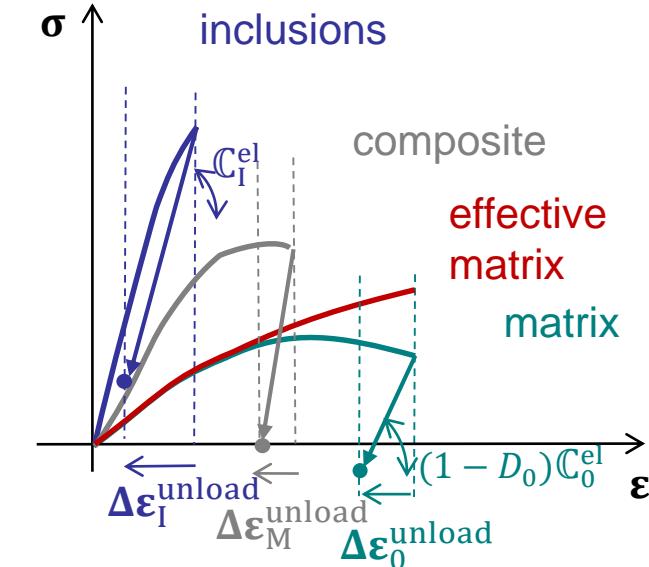
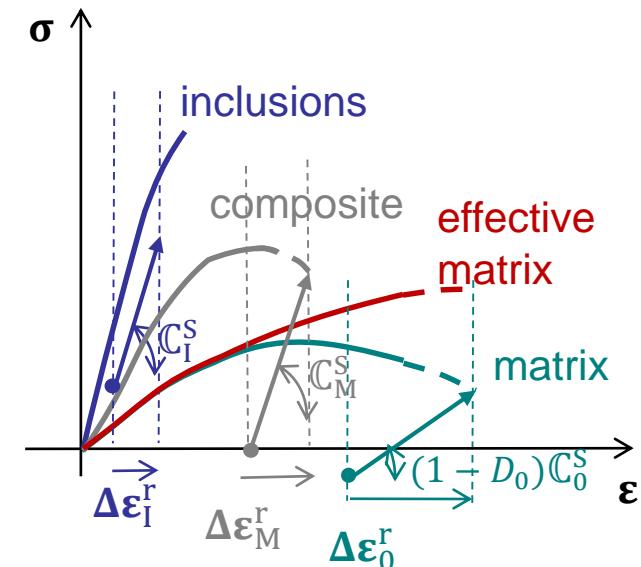
$$\Delta\boldsymbol{\varepsilon}_{I/0}^r = \Delta\boldsymbol{\varepsilon}_{I/0} + \Delta\boldsymbol{\varepsilon}_{I/0}^{\text{unload}}$$

- Incremental-secant loading

$$\left. \begin{array}{l} \boldsymbol{\sigma}_M = \bar{\boldsymbol{\sigma}} = v_0 \boldsymbol{\sigma}_0 + v_I \boldsymbol{\sigma}_I \\ \Delta\boldsymbol{\varepsilon}_M^r = \bar{\Delta\boldsymbol{\varepsilon}} = v_0 \Delta\boldsymbol{\varepsilon}_0^r + v_I \Delta\boldsymbol{\varepsilon}_I^r \\ \Delta\boldsymbol{\varepsilon}_I^r = \mathbf{B}^{\boldsymbol{\varepsilon}}(I, (1 - D_0) \mathbb{C}_0^S, \mathbb{C}_I^S) : \Delta\boldsymbol{\varepsilon}_0^r \end{array} \right\}$$

- Incremental secant operator

$$\Rightarrow \Delta\boldsymbol{\sigma}_M = \mathbb{C}_M^S(I, (1 - D_0) \mathbb{C}_0^S, \mathbb{C}_I^S, v_I) : \Delta\boldsymbol{\varepsilon}_M^r$$

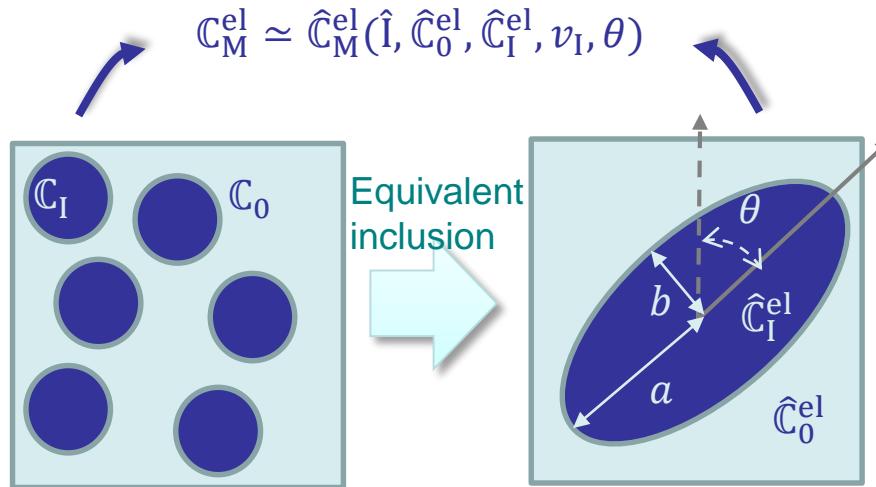
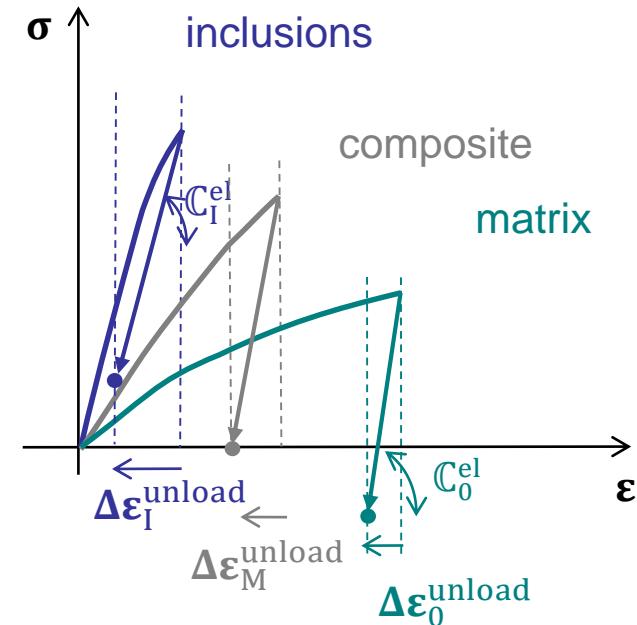


Non-linear stochastic Mean-Field Homogenization

- Damage-enhanced inverse identification

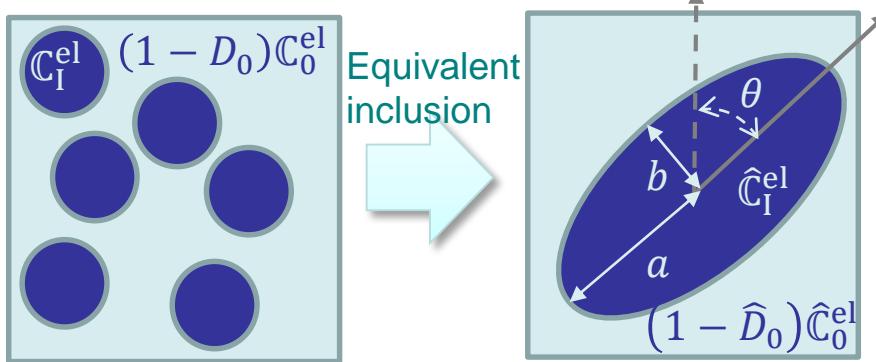
- First step from elastic response

- Before damage occurs



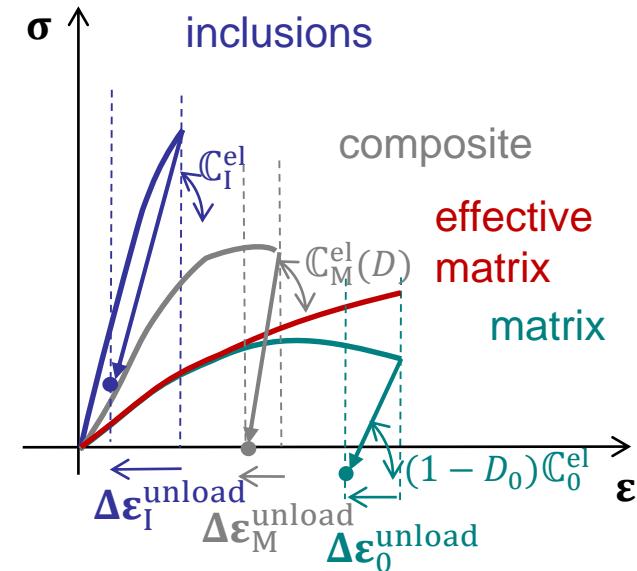
Non-linear stochastic Mean-Field Homogenization

- Damage-enhanced inverse identification
 - Second step: elastic unloading



- Identify damage evolution \hat{D}_0

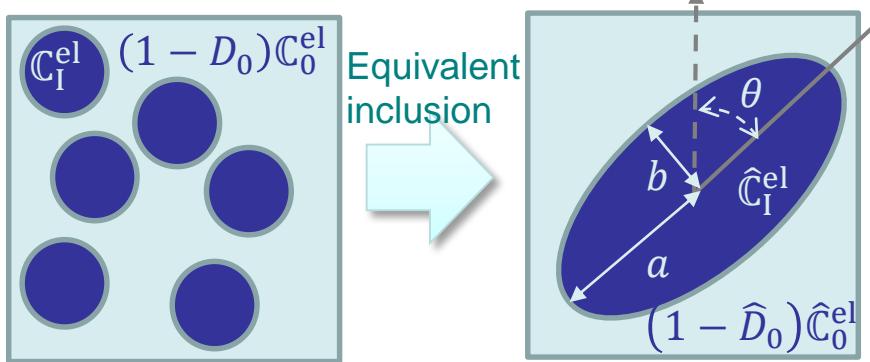
$$\mathbb{C}_M^el(D) \simeq \hat{\mathbb{C}}_M^el(\hat{I}, (1 - \hat{D}_0)\hat{\mathbb{C}}_0^el, \hat{\mathbb{C}}_I^el, v_I, \theta)$$



Non-linear stochastic Mean-Field Homogenization

- Damage-enhanced inverse identification

- Second step: elastic unloading



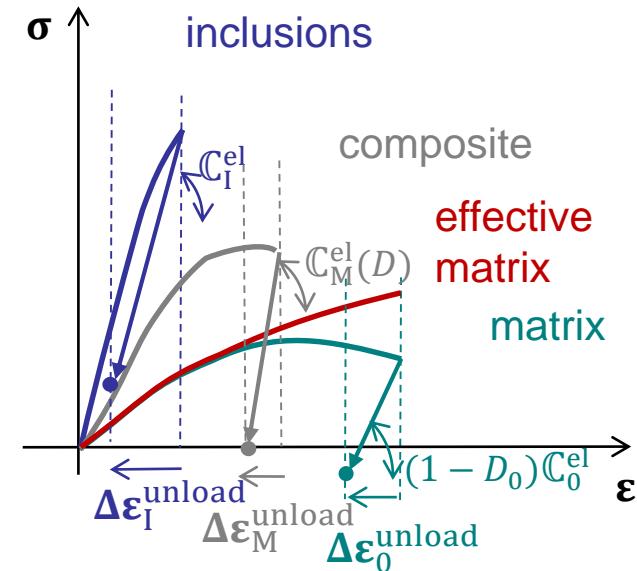
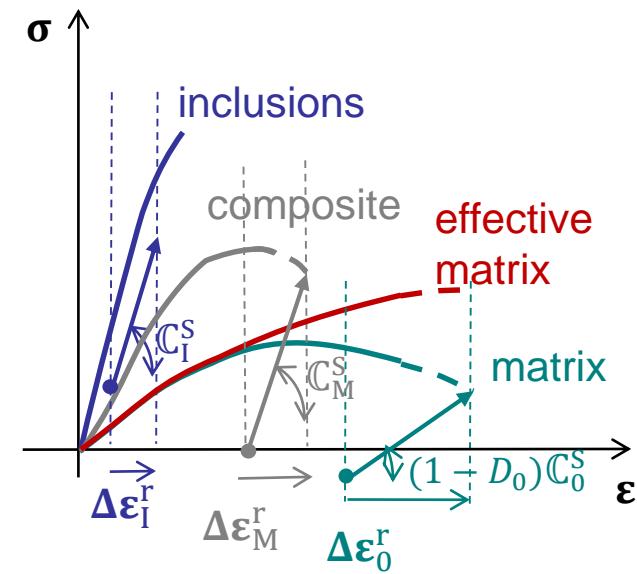
- Identify damage evolution \hat{D}_0

$$\mathbb{C}_M^e(D) \simeq \hat{\mathbb{C}}_M^e(\hat{I}, (1 - \hat{D}_0)\hat{\mathbb{C}}_0^e, \hat{\mathbb{C}}_I^e, v_I, \theta)$$

- Third step from the LCC

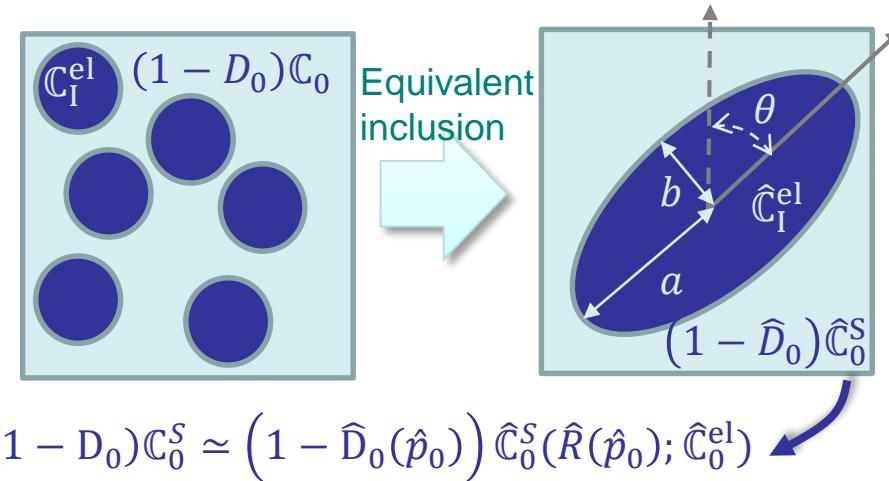
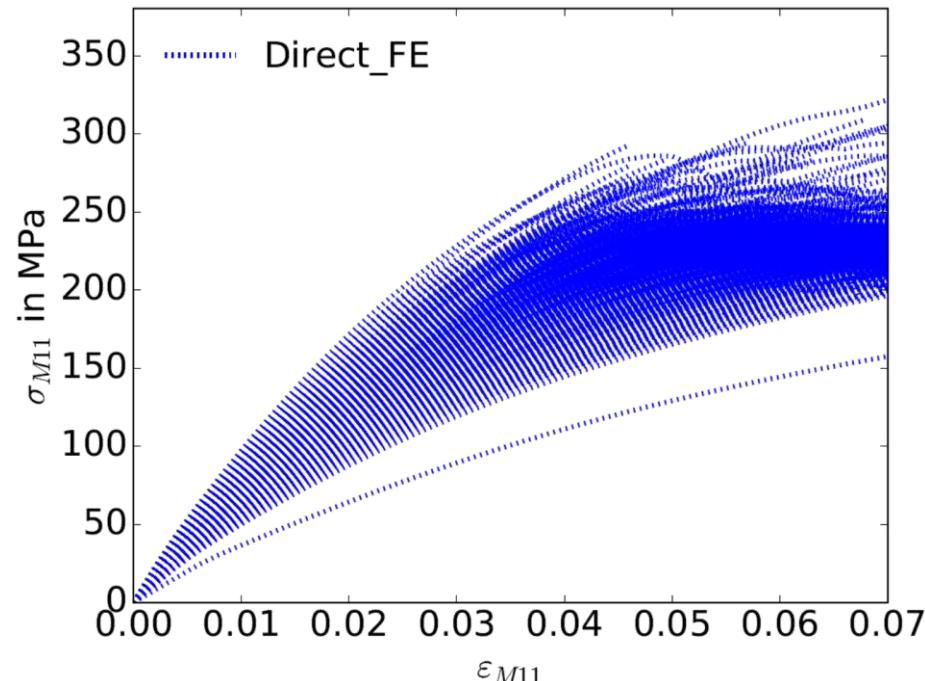
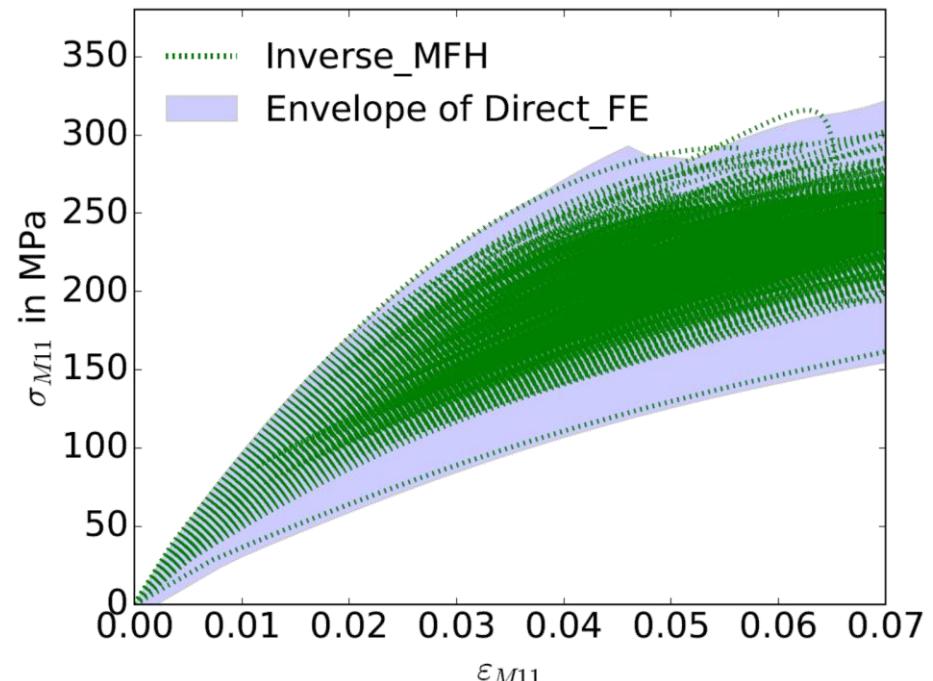
- $\Delta\sigma_M = \mathbb{C}_M^S(I, (1 - D_0)\mathbb{C}_0^S, \mathbb{C}_I^S, v_I) : \Delta\epsilon_M^r$
- Extract the equivalent hardening $\hat{R}(\hat{p}_0)$ & damage evolution $\hat{D}_0(\hat{p}_0)$ from incremental secant tensor:

$$(1 - D_0)\mathbb{C}_0^S \simeq (1 - \hat{D}_0(\hat{p}_0))\hat{\mathbb{C}}_0^S(\hat{R}(\hat{p}_0); \hat{\mathbb{C}}_0^e)$$



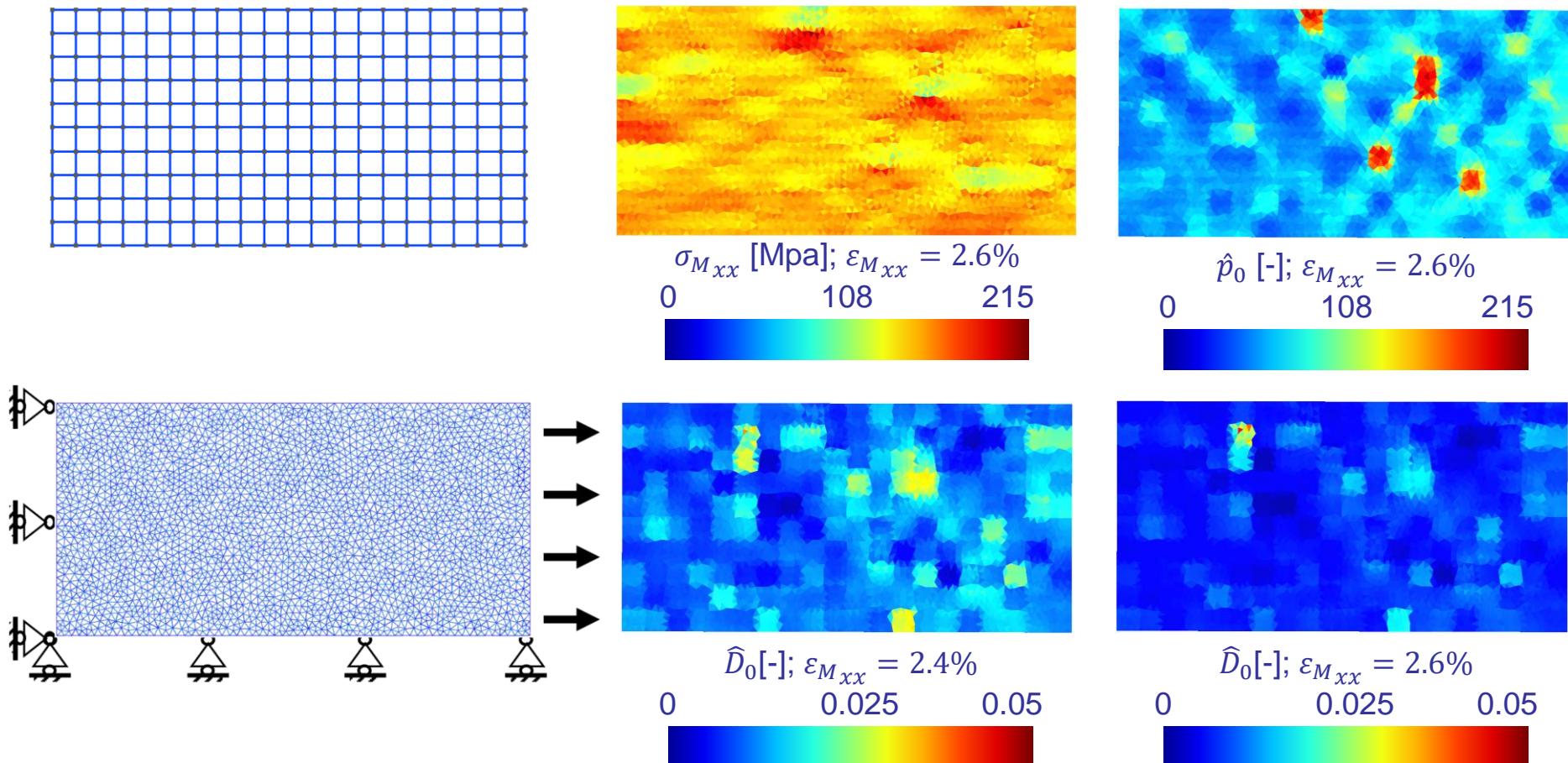
Non-linear stochastic Mean-Field Homogenization

- Damage-enhanced inverse identification
 - Comparison SVE vs. MFH

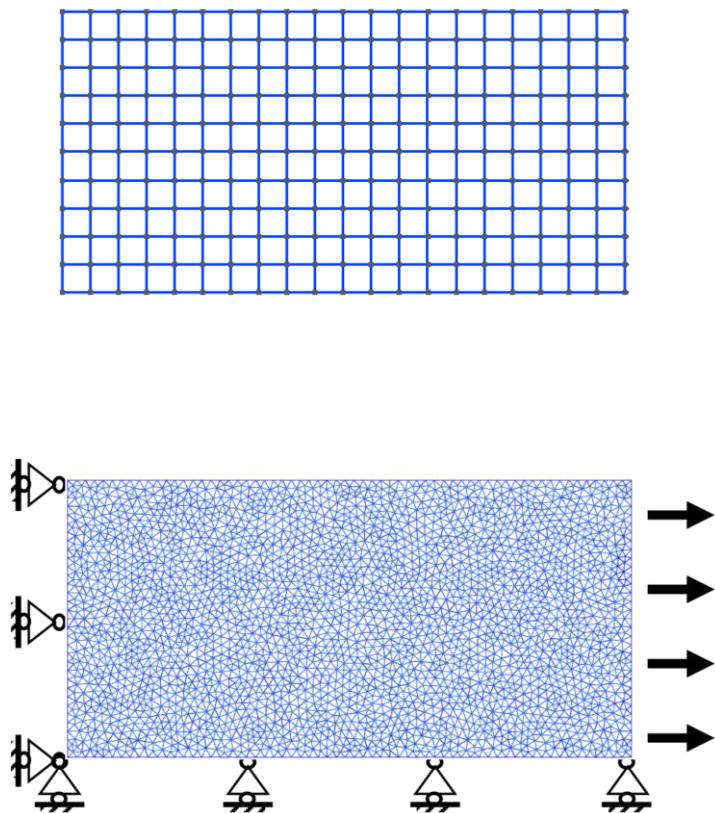
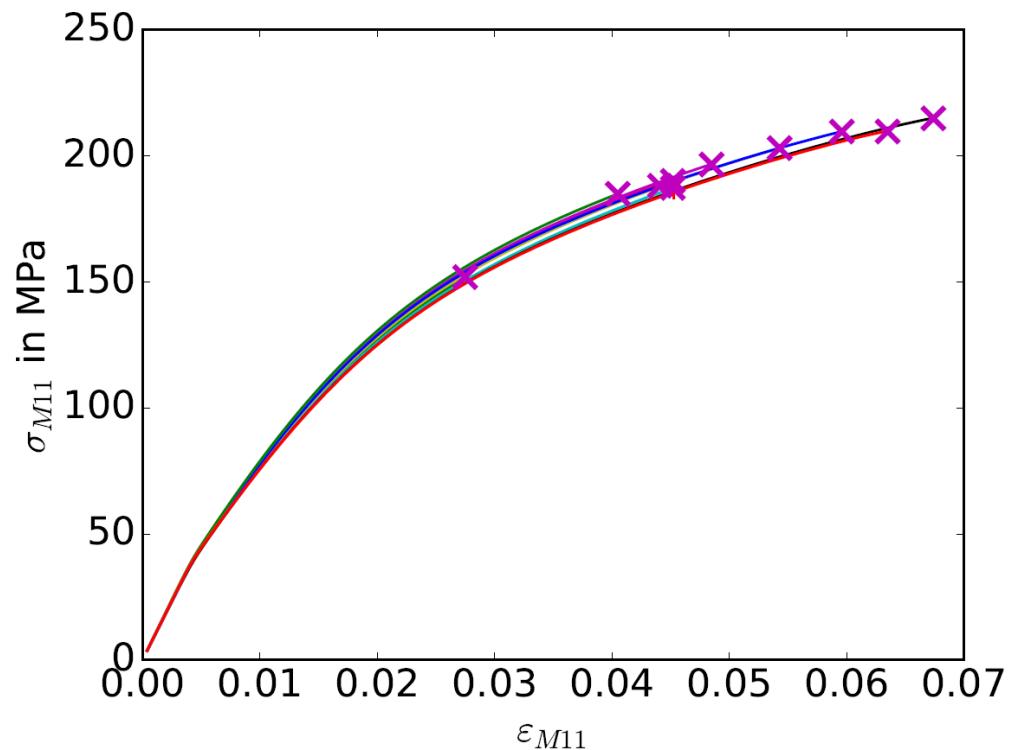


Non-linear stochastic Mean-Field Homogenization

- One single ply loading realization
 - Random field and finite elements discretizations
 - Non-uniform homogenized stress distributions
 - Creates damage localization



- Ply loading realizations
 - (Simple) Failure criterion at (homogenized stress) loss of ellipticity
 - Discrepancy in failure point



- Stochastic generator based on SEM measurements of unidirectional fibers-reinforced composites
- Computational homogenization on SVEs
- Definition of a Stochastic MFH method
- In progress: nonlinear and failure analyzes

Thank you for your attention !