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Abstract

We provide a bound on a distance between finitely supported elements and general
elements of the unit sphere of `2(N∗). We use this bound to estimate the 2-Wasserstein
distance between random variables represented by linear combinations of independent
random variables. Our results are expressed in terms of a discrepancy measure related
to Nourdin-Peccati’s Malliavin-Stein method. The main application is towards the com-
putation of quantitative rates of convergence to elements of the second Wiener chaos. In
particular, we explicit these rates for non-central asymptotic of sequences of quadratic
forms and the behavior of the generalized Rosenblatt process at extreme critical exponent.
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1 Introduction

In this paper, we provide bounds on the Wasserstein-2 distance (see Definition 1.1)
W2(Fn, F∞) between random variables Fn and a target F∞ which satisfy the following
assumption.

Assumption: There exist q non-zero and pairwise distinct real numbers {α∞,k}1≤k≤q as
well as sequences {αn,k}n,k≥1 ⊂ IR such that

∑q
k=1 α

2
∞,k =

∑
k α

2
n,k = 1 for all n ≥ 1 and

Fn =
∑
k≥1

αn,kWk for all n ≥ 1 and F∞ :=

q∑
k=1

α∞,kWk (1.1)
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where the {Wk}k≥1 is a sequence of i.i.d. random variables with mean 0, variance 1, finite
moments of orders 2q + 2 and non-zero rth cumulant for all r = 2, · · · , 2q + 2.

In light of the coupling imposed by our Assumption it seems intuitively evident that
W2(Fn, F∞) ought to be governed solely by the convergence rate of the approximating
sequence of coefficients {αn,k}n,k≥1 towards {α∞,k}1≤k≤q. The main difficulty is to identify
the correct norm for this convergence and, following on [2], we consider the quantity

∆(Fn, F∞) =
∑
k≥1

α2
n,k

q∏
r=1

(αn,k − α∞,r)2 . (1.2)

The main theoretical contribution of the paper is Theorem 2.4, where we prove, in essence,
that under technical conditions on the limiting coefficients we have the bound

W2(Fn, F∞) ≤ C
√

∆(Fn, F∞), (1.3)

with C > 0 is a constant depending only on F∞.
We comment briefly on the general strategy we adopt in order to obtain a bound

such as (1.3). Due to the structure imposed by our Assumption on the random variables
we consider, it is natural to bound the 2-Wasserstein metric by a quantity based on
re-indexing couplings. This leads us to considering a taylor-made norm dσ (see (2.1)) in a
purely Hilbertian context. Then, based on the careful analysis of minimization problems
associated with dσ, we are able to identify bounding quantities which depend polynomially
on the coordinates of the sequences we want to compare (see Theorems 2.1 and 2.3).
Recasting these quantities in the probabilistic context we are interested in, we are able to
link them to the cumulants of the random variables Fn and F∞ and finally to obtain our
main result.

The most important application of a bound such as (1.3) is that it provides quantitative
rates of convergence towards elements of the second Wiener chaos. Indeed it is a classical
result that all such random variables can be written as a linear combination of centered
chi-squared random variables, i.e. satisfy (1.1) for Wk = Z2

k −1 and {Zk}k≥1 i.i.d. standard
normal random variables. In Section 2.3 we particularize our general bounds to this
setting and obtain the first rates of convergence in Wasserstein-2 distance of sequences of
elements belonging to the second Wiener chaos, hereby complementing recent contributions
[25, 2] (see also [17] whose results are posterior to a first version of this paper). Moreover,
in Section 2.4, we obtain a general lower bound on the Wasserstein-2 distance between
elements in the second Wiener chaos using the quantity ∆(Fn, F∞). The rate exponent for
this lower bound is 1 leaving open the question of optimality of our bounds. We provide as
well example where this lower bound can be refined (tightening the gap towards optimality).
More importantly, these results emphasize the fact that the quantity ∆(Fn, F∞) is the
right one to study quantitative convergence results in 2-Wasserstein distance on the second
Wiener chaos. Since the intersection between the second chaos and the class of variance-
gamma distributed random variables is not empty it is also relevant to detail our bounds
in these cases. We perform this in Section 2.5; this permits also direct comparison with [8]
where a similar setting was tackled - by entirely different means.

Finally, in Section 3, we apply our bounds to three illustrative and relevant examples.
First we consider chi-squared approximation for second order U-statistics. We obtain
among other results the bound

W2(nUn(h), a(Z2
1 − 1)) = O(

1√
n

),

for Un a second order U-statistics which has a degeneracy of order 1 (see Section 3.1).
Next we consider the problem of obtaining quantitative asymptotic results for sequences

of quadratic forms. Letting Q̃n(Z) =
∑n

i,j=1 ãi,j(n)ZiZj and Q̃∞ =
∑q

m=1 λ̃m(Z2
m − 1)
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we deduce a general bound for W2(Q̃n(Z) − E[Q̃n(Z)], Q̃∞). In particular, for specific
instances of the n× n real-valued symmetric matrix (ãi,j(n)), we obtain explicit rates of
convergence:

W2(Q̃n(Z)− E[Q̃n(Z)], Q̃∞) = O(
1

n
α
2

)

where α ∈ (0, 1] (see Section 3.2, Corollary 3.2). Moreover, combining Corollary 3.2 and
an approximation rate in Kolmogorov distance (Corollary 3.3) we are able to derive a
quantitative universality type result for quadratic forms defined by:

Q̃n(X) =
n∑

i,j=1

ãi,j(n)XiXj

with (Xi) a sequence of i.i.d. random variables centered with unit variance and finite fourth
moment (see Theorem 3.1).

Finally, inspired by [3], we consider the generalized Rosenblatt process at extreme
critical exponent. Letting

Zγ1,γ2 =

∫
R2

(∫ 1

0
(s− x1)γ1+ (s− x2)γ2+ ds

)
dBx1dBx2 ,

with γi ∈ (−1,−1/2) and γ1 + γ2 > −3/2 and

Yρ =
aρ√

2
(Z2

1 − 1) +
bρ√

2
(Z2

2 − 1), 0 < ρ < 1

we prove that

W2(Zγ1,γ2 , Yρ) ≤ Cρ

√
−γ1 −

1

2
,

(see Lemma 3.2).
In order to understand the significance of our general bounds and also to contextualize

the crucial quantity ∆(Fn, F∞), it is necessary at this stage to make a short digression
into Malliavin-Stein (a.k.a. Nourdin-Peccati) analysis. Let F∞ be standard Gaussian and
consider a sequence of normalized random variables Fn with sufficiently regular density
with respect to the Lebesgue measure. The Stein kernel of Fn is the random variable
τn(Fn) uniquely defined through the probabilistic integration by parts formula

E[τn(Fn)φ′(Fn)] = E[Fnφ(Fn)] (1.4)

which is supposed to hold for all smooth test functions φ : IR → IR. The classical
Stein identity, according to which E[φ′(F∞)] = E[F∞φ(F∞)] for all smooth φ, implies in
particular that the standard Gaussian distribution as a Stein kernel which is constant and
equal to 1. Hence

S(Fn, F∞) := E
[
(τn(Fn)− 1)2

]
= E

[
τn(Fn)2

]
− 1 (1.5)

necessarily captures some aspect of non-Gaussianity of Fn. As it turns out this quantity –
called the Stein (kernel) discrepancy – plays a crucial role in Gaussian analysis. In particular,
it has long been known that S(Fn, F∞) measures non-Gaussianity quite precisely. First,
see e.g. [31, Lesson VI] or [4, 16, 5], it is equal to zero if and only if L(Fn) = L(F∞)
(equality in distribution). Second, Stein’s method also implies that S(Fn, F∞) metrizes
convergence in distribution, i.e.

dH(Fn, F∞) = sup
h∈H

E |h(Fn)− h(F∞)| ≤ κH
√
S(Fn, F∞) (1.6)
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for H any class of sufficiently regular test functions and κH a finite constant depending
only on H; see [22, Chapter 3] or [19] for more detail. The breakthrough from [23] is the
discovery that S(Fn, F∞) is the linchpin of the entire theory of “fourth moment theorems”
ensuing from the seminal paper [26]. More precisely, Nourdin and Peccati were the first to
realize that the integration by parts formula for Malliavin calculus could be used to prove

S(Fn, F∞) ≤ q − 1

3q
(E
[
F 4
n

]
− 3) (1.7)

whenever Fn is an element of the qth Wiener chaos. Combining (1.7) and (1.6) thus
provides quantitative fourth moment theorems for chaotic random variables in integral
probability metrics including Total Variation, Kolmogorov and Wasserstein-1. We refer
to [23] and the monograph [22] for a detailed account; see also [24] for an optimal-order
bound (without a square root), and [18] for a general abstract version.

Stein kernels are not inherently Gaussian objects and are well identified and tractable
for a wide family of target distributions, see e.g. [31, Lesson VI]. It is therefore not un-
reasonable to study, for F∞ having kernel τ∞(F∞) and satisfying general assumptions,
the kernel discrepancy S(Fn, F∞) := E

[
(τn(Fn)− τ∞(F∞))2

]
in order to reap the cor-

responding estimates from (1.6). This plan was already carried out in [23] for F∞ a
centered gamma random variable and pursued in [7] and [32] for targets F∞ which were
invariant distributions of diffusions. Many useful target distributions do not, however,
bear a tractable Stein kernel and in this case the kernel discrepancy S(Fn, F∞) no longer
captures relevant information on the discrepancy between L(Fn) and L(F∞). There is, for
instance, an enlightening discussion on this issue in [8, pp 8-9] about the “correct” identity
for the Laplace distribution which turns out to be

E [F∞φ(F∞)] = E
[
2φ′(F∞) + F∞φ

′′(F∞)
]

(1.8)

for smooth φ. Identities involving second (or higher) order derivatives of the test functions
lead to considering higher order versions of the Stein kernel, namely Γ1(Fn) defined
through E [Fnφ(Fn)] = E [φ′(Fn)Γ1(Fn)] and Γ2(Fn) defined through E [Fnφ(Fn)] =
E [φ′(Fn)]E [Γ1(Fn)] + E [φ′′(Fn)Γ2(Fn)] where both identities are expected to hold for
all smooth test functions (higher order gamma’s are defined iteratively). Applying the
intuition from Nourdin-Peccati analysis for Gaussian convergence then leads to a version
of (1.6) of the form

dH(Fn, F∞) = sup
h∈H

E |h(Fn)− h(F∞)| ≤ κ1,HS1(Fn, F∞) + κ2,HS2(Fn, F∞) (1.9)

where the constants κi,H, i = 1, 2 depend only on H and Si(Fn, F∞), i = 1, 2 provide
a comparison of the Γi with the coefficients of the derivatives appearing in the second
order identities (e.g. (1.8) in the case of a Laplace target). Good bounds on the constants
κi,H, i = 1, 2 are crucial for (1.9) to be of use; such bounds require being able to solve
specific (second order) differential equations (called Stein equations) and providing uniform
bounds on these solutions and their derivatives. This is exactly the plan carried out in
[8] for variance-gamma distributed random variables, and their approach rests on the
preliminary work of [9] who provides unified bounds on the solutions to the variance-gamma
Stein equations.

Aside from the variance-gamma case discussed in [12, 9], there are several other recent
references where versions of (1.4) and (1.8) are proposed for complicated probability
distributions such as the Kummer-U distribution [27], or the distribution of products
of independent random variables [11, 10, 13]. The common trait of all these is that the
resulting identities all involve second or higher order derivatives of the test functions. In
[1] – which is essentially based on the first part of a previous version of this work – we use
Fourier analysis to obtain identities for random variables of the form (1.1) when {Wk}k is a
sequence of gamma distributed random variables. The resulting identities involve as many
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derivatives of the test functions as there are different coefficients in the decomposition (1.1).
Applying the intuition outlined in the previous paragraph leads to the realization that the
quantity that shall play the role of a Stein discrepancy S(Fn, F∞) in the context of random
variables of the form (1.1) is exactly ∆(Fn, F∞) defined in (1.2). We are therefore, in
principle, in a position to use a bound such as (1.6) or (1.9) to obtain rates of convergence
in integral probability metrics dH. The problem with this roadmap for as general a family
as that described by our Assumption is that the corresponding constants κH are elusive
save on a case-by-case basis for specific choices of F∞. This means in particular that
Nourdin and Peccati’s version of Stein’s method shall not provide relevant bounds, at least
at the present state of our knowledge on the constants κH, in one sweep for such a large
family as that concerned by our assumption (1.1).

In this paper we propose to only keep the relevant quantity ∆(Fn, F∞) whose importance
to the problem was identified thanks to the Nourdin-Peccati intuition, but then bypass the
difficulties inherited from the Stein methodology entirely. To this end we choose to study
the problem of providing bounds in terms of an important and natural distance which is
moreover better adapted to our Assumption: the Wasserstein-2 distance which we now
define.

Definition 1.1. Fix p ≥ 1. The Wasserstein metric is defined by

Wp(Fn, F∞) = ( inf IE‖X − Y ‖pd)
1/p

where the infimum is taken over all joint distributions of the random variables X and Y
with respective marginals Fn and F∞, and ‖ ‖d stands for the Euclidean norm on IRd.

Relevant information about Wasserstein distances can be found, e.g. in [34]. We
conclude this introduction by noting that, as is well-known, convergence with respect to
Wp is equivalent to the usual weak convergence of measures plus convergence of the first
pth moments. Also, a direct application of Hölder inequality implies that if 1 ≤ p ≤ q
then Wp ≤Wq. Finally, we mention that the 2-Wasserstein distance is not of the family of
integral probability metrics dH (recall (1.6) for a definition).

2 Wasserstein-2 distance between linear combina-

tions

2.1 A general result on Hilbert spaces

We denote by `2(IN?) the space of real valued sequences u = (un)n≥1 such that
∑∞

n=1 u
2
n <

∞. It is a Hilbert space endowed with the natural inner product and induced Euclidean
norm ‖·‖2. We aim to measure distances between elements x, y of the unit sphere of
`2(IN?) where x is a finitely supported sequence x = (x1, · · · , xq, 0, 0, · · ·) and y = (yi)i≥1
is arbitrary. Denoting σ(IN?) the set of permutations of IN?, we introduce the following
distance between x and y:

dσ(x, y) = min
π∈σ(IN?)

‖x− yπ‖2= min
π∈σ(IN?)

( ∞∑
i=1

(xi − yπ(i))2
) 1

2

. (2.1)

Now we define the polynomial Qx(t) = t2
∏q
i=1(t − xi)2. Then, we have the following

Theorem.

Theorem 2.1. Suppose that
(
x21, · · · , x2q

)
are rationally independent. Then there exists a

constant Cx which only depends on x such that for any y in the unit sphere of `2(IN?) we
get

dσ(x, y) ≤ Cx

√√√√ ∞∑
i=1

Qx(yi). (2.2)
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Proof. We first notice that

min
t∈IR

(
1

t2
Qx(t) +

q∑
i=1

Qx(t)

(t− xi)2

)
:= δx > 0.

As a result, for any real number t, at least one of the following inequalities is true.

ineq0 : t2 ≤ q + 1

δx
Qx(t),

ineq1 : (t− x21) ≤ q + 1

δx
Qx(t),

...

ineqq : (t− xq)2 ≤ q + 1

δx
Qx(t).

Although several of the aforementionned inequalities can hold simultaneously, one may
always associate to any integer i ≥ 1 some index l in {0, 1, · · · , q} such that ineql holds for
t = yi. Hence, one may build a partition of IN? = I0 ∪ I1 ∪ · · · ∪ Iq such that{

∀i ∈ I0, y2i ≤
q+1
δx
Qx(yi)

∀j ∈ {1, · · · , q}, ∀i ∈ Ij , (yi − xj)2 ≤ q+1
δx
Qx(yi).

Note that for j ∈ {1, ..., q} we have #Ij <∞. Indeed, if one assumes, for example, that
#I1 = +∞, then one necessarily has that x1 = 0 (which is a contradiction). This entails
the following bound

∑
i∈I0

y2i +

q∑
j=1

∑
i∈Ij

(yi − xj)2 ≤
q + 1

δx

∞∑
i=1

Qx(yi). (2.3)

For any integer i ≥ 1, we set zi = xj if i ∈ Ij for j ∈ {1, · · · , q} and we set zi = 0 when
i ∈ I0. Using triangle inequality and (2.3) we may infer that

|‖z‖2−1| =

∣∣∣∣∣∣
√√√√ q∑

j=1

#Ijx2j − ‖y‖2

∣∣∣∣∣∣ ≤
√√√√∑

i∈I0

y2i +

q∑
j=1

∑
i∈Ij

(yi − xj)2 ≤

√√√√q + 1

δx

∞∑
i=1

Qx(yi).

(2.4)
We need to introduce the following quantity

η := min


∣∣∣∣∣∣
√√√√ q∑

j=1

njx2j − 1

∣∣∣∣∣∣ ; (n1, · · · , nq) ∈ (IN?)q/{(1, 1, · · · , 1)}

 . (2.5)

Since we do not let (n1, · · · , nq) = (1, · · · , 1) in the above minimization, and owing to the
assumption of rational independence of (x21, · · · , x2q), it follows that η > 0. Relying on the
bound (2.4), one has the following implication√√√√q + 1

δx

∞∑
i=1

Qx(yi) < η ⇒ #I1 = #I2 = #I3 = · · · = #Iq = 1

⇒ ‖x− yπ‖2≤

√√√√q + 1

δx

∞∑
i=1

Qx(yi),

for π being any permutation of IN? satisfying

I1 = {π(1)}, · · · , Iq = {π(q)}, I0 = π
(
{q + 1, q + 2, · · ·}

)
.
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Finally, it holds√√√√q + 1

δx

∞∑
i=1

Qx(yi) < η ⇒ dσ(x, y) ≤

√√√√q + 1

δx

∞∑
i=1

Qx(yi), (2.6)

which implies that (given the trivial bound dσ(x, y) ≤ 2)

dσ(x, y) ≤ (1 +
2

η
)

√√√√q + 1

δx

∞∑
i=1

Qx(yi). (2.7)

The proof is then achieved with the constant Cx = (1 + 2
η )
√

q+1
δx
.

Let us now deal with the case when (x21, · · · , x2d) are not anymore rationally independent. In
this situation, one might write 1 =

∑q
j=1 njx

2
j for several choices of vectors (n1, · · · , nq) ∈

(IN?)q. We must introduce the set of all these choices, namely:

E =

n := (n1, · · · , nq) ∈ (IN?)q

∣∣∣∣∣∣
q∑
j=1

njx
2
j = 1

 .

Besides, for any n = (n1, · · · , nq) ∈ E we define the following element of the unit sphere of
`2(IN?):

xn = (x1, . . . , x1︸ ︷︷ ︸
n1times

, . . . , xq, . . . , xq︸ ︷︷ ︸
nqtimes

, 0, 0, · · ·).

We then have the following Theorem.

Theorem 2.2. There exists a constant Cx only depending on x such that for any y in the
unit sphere of `2(IN?) we get:

min {dσ(xn, y) ; n ∈ E} ≤ Cx

√√√√ ∞∑
i=1

Qx(yi).

Proof. We proceed as in the proof of Theorem 2.1, from its begining until the bound (2.5).
The only difference is that we must now consider

κ := min


∣∣∣∣∣∣
√√√√ q∑

j=1

njx2j − 1

∣∣∣∣∣∣ ; (n1, · · · , nq) ∈ (IN?)q/E

 . (2.8)

Similarly, since we removed E from the above minimization problem, it follows that κ > 0.
Relying on the bound (2.4), one has the following implication√√√√q + 1

δx

∞∑
i=1

Qx(yi) < κ ⇒ (#I1,#I2,#I3, · · · ,#Iq) ∈ E

⇒ ∃n ∈ E, ‖xn − yπ‖2≤

√√√√q + 1

δx

∞∑
i=1

Qx(yi),

for π being any permutation of IN? satisfying

I1 = π({1, · · · , n1}),
I2 = π({n1 + 1, · · · , n1 + n2}),
... =

...
Iq = π({n1 + · · ·+ nq−1 + 1, · · · , n1 + · · ·+ nq}),
I0 = π

(
{n1 + · · ·+ nq + 1, n1 + · · ·+ nq + 2, · · ·}

)
.
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Finally, it holds√√√√q + 1

δx

∞∑
i=1

Qx(yi) < κ ⇒ min {dσ(xn, y) ; n ∈ E} ≤

√√√√q + 1

δx

∞∑
i=1

Qx(yi), (2.9)

which can also be written

min {dσ(xn, y) ; n ∈ E} ≤ (1 +
2

κ
)

√√√√q + 1

δx

∞∑
i=1

Qx(yi). (2.10)

The proof is then achieved with the constant Cx = (1 + 2
κ)
√

q+1
δx
.

In the above situation, the quantity
∑∞

i=1Qx(yi) is not sufficient anymore to ensure the
uniqueness of the limit for the convergence for the metric dσ(·, ·). There may be several
adherence values and some additional information is then required. Set

∆p,x(y) = |
∞∑
i=1

(ypi − x
p
i )|.

We have the following Theorem.

Theorem 2.3. There exists a constant C̃x which only depends on x such that, for any y
with ‖y‖2= 1, we get

dσ(x, y) ≤ C̃x

√√√√ ∞∑
i=1

Qx(yi) + max
3≤s≤q+1

∆s,x(y)

 .

Proof. Relying on Theorem 2.2, it holds that

min {dσ(xn, y) ; n ∈ E} ≤ Cx

√√√√ ∞∑
i=1

Qx(yi).

Note that it is not assumed that the real numbers (x1, · · · , xq) are pairwise distinct. We
can extract a subsequence (u1, · · · , us) with s ≤ q by removing the possible repetitions.
For any n ∈ E, let us also denote by mi(n) the number of repetitions of ui among the
sequence xn and by mi the number of repetitions in the sequence x. Thus, we have

∀p ∈ {3, · · · , q + 1},
∞∑
i=1

xn(i)p =

s∑
i=1

mi(n)upi .

Suppose that n = argmin {dσ(xn, y) ; n ∈ E}, by the triangle inequality get for all p ∈
{3, · · · , q + 1},∣∣∣∣∣

s∑
i=1

(mi(n)−mi)u
p
i

∣∣∣∣∣ ≤

∣∣∣∣∣
s∑
i=1

mi(n)upi −
∞∑
i=1

ypi

∣∣∣∣∣+ ∆p,x(y)

=

∣∣∣∣∣∣
∞∑
i=1

(xn(i)− yi)

p−1∑
j=0

xn(i)jyp−1−ji

∣∣∣∣∣∣+ ∆p,x(y)

≤ p

∞∑
i=1

|xn(i)− yi| (|xn(i)|+|yi|) + ∆p,x(y)

≤
Cauchy-Schwarz 2p dσ(xn, y) + ∆p,x(y)

≤ 2pCx

√√√√ ∞∑
i=1

Qx(yi) + ∆p,x(y).

8



Finally, set V := V (u1, · · · , us) = mat
(
uji

)
1≤i≤s,0≤j≤s−1

the Vandermonde matrix associ-

ated to the pairwise distinct real numbers (u1, · · · , us) and ~m =
(
(mi(n)−mi)u

2
i

)
1≤i≤s.

The above inequality reads as

‖t ~mV‖∞≤ 2(q + 1)Cx

√√√√ ∞∑
i=1

Qx(yi) + sup
3≤p≤q+1

∆p,x(y).

Now, we set

αx = min
(
‖tkV‖∞ | k = (k1u

2
1, · · · , ksu2s) and (k1, · · · , ks) ∈ Zs/{(0, · · · , 0)}

)
,

since V is invertible we must have αx > 0. That is why,

2(q + 1)Cx

√√√√ ∞∑
i=1

Qx(yi) + sup
3≤p≤r+1

∆p,x(y) < αx ⇒ ~m = 0.

In the latter situation we also get mi(n) = mi, xn = x and of course the desired bound

2(q + 1)Cx

√√√√ ∞∑
i=1

Qx(yi) + sup
3≤p≤r+1

∆p,x(y) < αx ⇒ dσ(x, y) ≤ Cx

√√√√ ∞∑
i=1

Qx(yi).

The proof is now achieved with C̃x = 2(q + 1)Cx(1 + 2
αx

).

2.2 A probabilistic interpretation

Let us give {Wk}k≥1 an i.i.d. sequence of random variables admitting moments of orders
r = 2, · · · , 2q + 2 and which satisfies IE(W1) = 0, IE(W 2

1 ) = 1. We shall further assume
that all cumulants of orders r = 2, · · · , 2q + 2 are not zero. We set

Fn =

∞∑
k=1

αn,kWk , F∞ =

q∑
k=1

α∞,kWk, (2.11)

for (αn,k)k≥1 and (α∞,k)k≥1 two sequences of real numbers. We also assume that:

∞∑
k=1

α2
n,k =

q∑
k=1

α2
∞,k = 1.

Using standard properties of cumulants one has for any r = 2, · · · , 2q + 2:

κr(Fn) = κr(W1)

∞∑
k=1

αrn,k , κr(F∞) = κr(W1)

q∑
k=1

αr∞,k.

Lemma 2.1. For any n ∈ IN we have

∆(Fn, F∞) = ∆(Fn) : =
∑
k≥1

α2
n,k

q∏
r=1

(αn,k − α∞,r)2 ,

=

2q+2∑
r=2

Θr

∑
k≥1

αrn,k,

=

2q+2∑
r=2

Θr
κr(Fn)

κr(W1)
.

(2.12)

where the coefficients Θr are the coefficients of the polynomial

Qα∞(x) = (P (x))2 = (x

q∏
i=1

(x− α∞,i))2. (2.13)
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From a probabilistic point of view, Theorems 2.1 and 2.3 take the following form:

Theorem 2.4. If the real numbers {α2
∞,r}0≤r≤q are rationnally independent then

W2(Fn, F∞) ≤ C
√

∆(Fn) ∀n ≥ 1, (2.14)

if they are not, one instead gets

W2(Fn, F∞) ≤ C

(√
∆(Fn) +

q+1∑
r=2

|κr(Fn)− κr(F∞)|

)
∀n ≥ 1 (2.15)

where the constant C depends only, in both cases, of the target F∞.

Proof. The proof is a direct consequence of Theorems 2.1 and 2.3. Indeed, set αn =
{αn,k}k≥1 and α∞ = {α∞,k}k≥1, by definition of the 2-Wasserstein distance, we get
W2(Fn, F∞) ≤ dσ (αn, α∞). As before, we set Qα∞(x) = x2

∏q
k=1(x − α∞,k)

2. Finally,
recalling that

∑∞
k=1Qα∞(αn,k) = ∆(Fn), the result follows.

Remark 2.1. An important question concerning the sharpness of the estimate (2.14)
was raised by referees on a previous version of this paper. We first notice that for some
appropriate constant C > 0 and for all x ∈ [−1, 1], one gets Qα∞(x) ≤ Cx2 and for all
k = 1, · · · , q, Qα∞(x) ≤ C(x− α∞,k)2. Hence, we may deduce that

∆(Fn) =

∞∑
k=1

Qα∞(αn,k) ≤ Cdσ(αn, α∞)2,

and the result follows since one gets, for appropriate constants A,B > 0 that

Adσ(αn, α∞) ≤
√

∆(Fn) ≤ B dσ(αn, α∞).

Unfortunately, at present, we are unable to say whether distance dσ is equivalent to the
2-Wasserstein distance. Nonetheless, in the context of second Wiener chaos, we provide
a general lower bound on the 2-Wasserstein distance in Section 2.4 as well as a simple
example which refines this lower bound.

2.3 Specializing to the second Wiener chaos

In this section, we apply our main results in a desirable framework when the approximating
sequence Fn are elements of the second Wiener chaos of the isonormal process X =
{X(h); h ∈ H} over a separable Hilbert space H. We refer the reader to [22] Chapter 2 for
a detailed discussion on this topic. Recall that the elements in the second Wiener chaos
are random variables having the general form F = I2(f), with f ∈ H�2. Notice that, if
f = h⊗ h, where h ∈ H is such that ‖h‖H= 1, then using the multiplication formula one
has I2(f) = X(h)2 − 1 = N2 − 1 (equality in distribution), where N ∼ N (0, 1). To any
kernel f ∈ H�2, we associate the following Hilbert-Schmidt operator

Af : H 7→ H; g 7→ f ⊗1 g.

We also write {αf,j}j≥1 and {ef,j}j≥1, respectively, to indicate the (not necessarily distinct)
eigenvalues of Af and the corresponding eigenvectors. We remind that F∞ is defined by:

F∞ =

q∑
j=1

α∞,j(N
2
j − 1) (2.16)

where {Nj , j ∈ {1, ..., q}} is a collection of i.i.d. standard normal random variables. The
next proposition gathers some relevant properties of the elements of the second Wiener
chaos associated to X.

10



Proposition 2.1 (See Section 2.7.4 in [22] and Lemma 3.1 in [2] ). Let F = I2(f), f ∈ H�2,
be a generic element of the second Wiener chaos of X, and write {αf,k}k≥1 for the set of
the eigenvalues of the associated Hilbert-Schmidt operator Af .

1. The following equality holds: F =
∑

k≥1 αf,k(N
2
k − 1), where {Nk}k≥1 is a sequence

of i.i.d. N (0, 1) random variables that are elements of the isonormal process X, and
the series converges in L2 and almost surely.

2. For any r ≥ 2,

κr(F ) = 2r−1(r − 1)!
∑
k≥1

αrf,k.

3. For polynomial Qα∞ as in (2.13) we have ∆(F ) =
∑

k≥1Qα∞(αf,k). In particular
∆(F∞) = 0.

The next corollary is a direct application of our main finding, namely Theorem 2.4,
and provides quantitative bounds for the main results in [25, 2].

Corollary 2.1. Assume that the normalized sequence Fn =
∑

k≥1 αn,k(N
2
k − 1) belongs

to the second Wiener chaos associated to the isonormal process X, and the target random
variable F∞ as in (2.11) with Wk = N2

k − 1 where {Nk}k≥1 is a sequence of i.i.d. N (0, 1)
random variables. Then there exists a constant C > 0 depending only on the target random
variable F∞ (and hence independent of n) such that

(a)

W2(Fn, F∞) ≤ C

(√
∆(Fn) +

q+1∑
r=2

|κr(Fn)− κr(F∞)|
)
.

(b) if moreover dimQ span{α2
∞,1, · · · , α2

∞,q} = q, then W2(Fn, F∞) ≤ C
√

∆(Fn). This
implies that the sole convergence ∆(Fn)→ ∆(F∞) = 0 is sufficient for convergence
in distribution towards the target random variable F∞.

Remark 2.2. The upper bound in Corollary 2.1, part (a) requires the separate con-
vergences of the first q + 1 cumulants for the convergence in distribution towards the
target random variable F∞ as soon as dimQ span{α2

∞,1, · · · , α2
∞,q} < q. This is consis-

tent with a quantitative result in [8], see also Section 2.5 below. In fact, when q = 2
and α∞,1 = −α∞,2 = 1/2, then the target random variable F∞ (= N1 × N2, where
N1, N2 ∼ N (0, 1) are independent and equality holds in law) belongs to the class of
Variance–Gamma distributions V Gc(r, θ, σ) with parameters r = σ = 1 and θ = 0. Then,
[8, Corollary 5.10, part (a)] reads

W1(Fn, F∞) ≤ C
√

∆(Fn) + 1/4κ23(Fn). (2.17)

Therefore, for the convergence in distribution of the sequence Fn towards the target
random variable F∞ in addition to convergence ∆(Fn)→ ∆(F∞) = 0 one needs also the
convergence of the third cumulant κ3(Fn)→ κ3(F∞) = 0. Note that in this case we have
dimQ span{α2

∞,1, α
2
∞,2} = 1 < q = 2.

Example 2.1. The aim of this simple example is to show that the requirement of
separate convergences of the first q + 1 cumulants is essential in Theorem 2.4 as soon as
dimQ span{α2

∞,1, · · · , α2
∞,q} < q. Assume that q = 2 and α∞,1 = −α∞,2 = 1/2. Consider

the fixed sequence

Fn = α∞,1(N
2
1 − 1)− α∞,2(N2

2 − 1) n ≥ 1.

Then κ2r(Fn) = κ2r(F∞) for all r ≥ 1, in particular κ2(Fn) = κ2(F∞) = 1, and ∆(Fn) =
∆(F∞) = 0. However, it is easy to see that the sequence Fn does not converges in
distribution towards the target random variable F∞, because 2 = κ3(Fn) 9 κ3(F∞) = 0.
Note that in this example, we have dimQ span{α2

∞,1, α
2
∞,2} = 1 < q = 2.
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2.4 A lower bound on the 2-Wasserstein distance in the
second Wiener chaos

In this subsection, we detail how to upper bound the quantity ∆(Fn) with the 2-Wasserstein
distance between F∞ and Fn when Fn and F∞ belong to the second Wiener chaos. First
of all we recall some notations. The random variables Fn and F∞ are defined by:

Fn =
1√
2

∑
k≥1

αn,k(Z
2
k − 1), F∞ =

1√
2

q∑
k=1

α∞,k(Z
2
k − 1), (2.18)

where (Zk) is a sequence of iid standard normal random variables, {α∞,k} a collection of
non-zero real numbers such that:

q∑
k=1

α2
∞,k = 1. (2.19)

Similarly, we have: ∑
k≥1

α2
n,k = 1. (2.20)

From the previous assumptions, it is clear that κ2(Fn) = κ2(F∞) = 1. It is also standard
that the characteristic functions of Fn and F∞ are analytic in the strips of the complex
plane defined respectively by Dn := {z ∈ C : |Im(z)|< 1/(2 max|αn,k|)} and D∞ := {z ∈
C : |Im(z)|< 1/(2 max|α∞,k|)}. In particular, by (2.19) and (2.20), the characteristic
functions of Fn and F∞ are analytic in the strip {z ∈ C : |Im(z)|< 1/2}. Moreover, in this
strip of regularity, they admit the following integral representations:

φn(z) :=

∫
R
eizxµn(dx),

φ∞(z) :=

∫
R
eizxµ∞(dx).

where µn and µ∞ are the probability laws of Fn and F∞ respectively. First, we give two
technical lemmas.

Lemma 2.2. For any x, y ∈ R and z ∈ C such that |z|= ρ:

|eizx − eizy|≤ ρ|x− y|eρ(|x|+|y|). (2.21)

Proof. The proof is standard.

Lemma 2.3. Let X be a random variable belonging to the second Wiener chaos with unit
variance. Then, we have:

P(|X|> x) ≤ exp(−x/e), (2.22)

for all x > e.

Proof. Since X is in the second Wiener chaos, we have by hypercontractivity, for any
q > 2:

E[|X|q]
1
q ≤ (q − 1) (2.23)

Then, by Markov inequality, we have, for x > e:

P(|X|≥ x) ≤ 1

xq
E[|X|q] ≤ 1

xq
(q − 1)q (2.24)

We choose q = 1 + x/e and we obtain:

P(|X|≥ x) ≤ e−x/e. (2.25)
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We are now ready to the state the proposition linking the pointwise difference of the
characteristic functions and of their derivatives with the 2-Wasserstein distance of Fn and
F∞.

Proposition 2.2. For any ρ ∈ (0, 1/(4e)), there exists a strictly positive constant C1,ρ

such that, for all n ≥ 1 and for all z ∈ C with |z|= ρ, we have:

|φn(z)− φ∞(z)|+|φ′n(z)− φ′∞(z)|≤ ρC1,ρW2(Fn, F∞). (2.26)

Proof. By optimal transportation on the real line (Brenier Theorem), there exists a map
Tn such that we have:

W2(Fn, F∞) :=

(∫
R
|x− Tn(x)|2dµ∞(x)

) 1
2

Moreover, the push forward measure µ∞ ◦ T−1n is equal to µn so that, we have also:

φn(z) :=

∫
R
eizTn(x)µ∞(dx), (2.27)

for z such that |Im(z)|< 1/2. Let ρ ∈ (0, 1/(4e)) and z ∈ C such that |z|= ρ. We have:

|φn(z)− φ∞(z)|≤
∫
R
|eizx − eizTn(x)|µ∞(dx). (2.28)

Moreover, by Lemma 2.2, we have the following upper bound:

|φn(z)− φ∞(z)|≤ ρ
∫
R
|x− Tn(x)|eρ(|x|+|Tn(x)|)µ∞(dx). (2.29)

Using Cauchy-Schwarz inequality, we obtain:

|φn(z)− φ∞(z)| ≤ ρ
(∫

R
|x− Tn(x)|2µ∞(dx)

) 1
2
(∫

R
e2ρ(|x|+|Tn(x)|)µ∞(dx)

) 1
2

, (2.30)

≤ ρW2(Fn, F∞)

(∫
R
e2ρ(|x|+|Tn(x)|)µ∞(dx)

) 1
2

. (2.31)

Next, we need to prove that:

sup
n≥1

(∫
R
e2ρ(|x|+|Tn(x)|)µ∞(dx)

)
<∞. (2.32)

By Lemma 2.3, we have that:

sup
n≥1

(E[ec|Fn|]) <∞, (2.33)

as soon as c < 1/e. Since ρ ∈ (0, 1/(4e)), (2.32) follows. To conclude the proof of the
proposition, we need to bound similarly the pointwise difference of the derivatives of the
characteristic functions. Since Fn and F∞ are centered, we have:

|φ′n(z)− φ′∞(z)|≤
∫
R
|Tn(x)(eizTn(x) − 1)− x(eizx − 1)|dµ∞(x). (2.34)

Then, we have:

|φ′n(z)− φ′∞(z)|≤ (I) + (II), (2.35)
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with:

(I) :=

∫
R
|x||eizx − eizTn(x)|dµ∞(x), (2.36)

(II) :=

∫
R
|x− Tn(x)||eizTn(x) − 1|dµ∞(x). (2.37)

For the first term, using Lemma 2.2 and Cauchy-Schwarz inequality, we have the following
bound:

(I) ≤ ρW2(Fn, F∞)

(∫
R
|x|2e2ρ(|x|+|Tn(x)|)dµ∞(x)

) 1
2

(2.38)

Moreover, as previously, we have:

sup
n≥1

(∫
R
|x|2e2ρ(|x|+|Tn(x)|)dµ∞(x)

)
<∞,

for ρ ∈ (0, 1/(4e)). For the second term, we have:

(II) ≤
∫
R
|x− Tn(x)|ρ|Tn(x)|eρ|Tn(x)|dµ∞(x), (2.39)

≤ ρW2(Fn, F∞)

(∫
R
|Tn(x)|2e2ρ|Tn(x)|dµ∞(x)

) 1
2

. (2.40)

Finally, we note that for ρ ∈ (0, 1/(4e)):

sup
n≥1

(∫
R
|Tn(x)|2e2ρ|Tn(x)|dµ∞(x)

)
<∞. (2.41)

Taking

C1,ρ := sup
n≥1

(∫
R
|Tn(x)|2e2ρ|Tn(x)|dµ∞(x)

) 1
2

(2.42)

+ sup
n≥1

(∫
R
|x|2e2ρ(|x|+|Tn(x)|)dµ∞(x)

) 1
2

(2.43)

+ sup
n≥1

(∫
R
e2ρ(|x|+|Tn(x)|)µ∞(dx)

) 1
2

. (2.44)

We obtain:

|φn(z)− φ∞(z)|+|φ′n(z)− φ′∞(z)|≤ ρC1,ρW2(Fn, F∞). (2.45)

In order to upper bound the quantity ∆(Fn) with the 2-Wasserstein distance, we are going
to use complex analysis together with Proposition 2.2. First of all, recall the following
inequality for the cumulants of Fn and F∞:

∀r ≥ 2, | κr(Fn) | ≤ 2r−1(r − 1)!
+∞∑
j=1

| αn,j |r, (2.46)

≤ 2r−1(r − 1)! max | αn,j |r−2
+∞∑
j=1

α2
n,j , (2.47)

≤ 2r−1(r − 1)! (2.48)
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and similarly for κr(F∞). Therefore the following series are convergent as soon as |z|< 1/2:

∞∑
r=2

κr(Fn)

r!
(iz)r,

∞∑
r=2

κr(F∞)

r!
(iz)r (2.49)

We are now ready to link the quantity ∆(Fn) with a certain functional on the difference of
the characteristic functions.

Proposition 2.3. Let ρ ∈ (0, 1/2). There exists a strictly positive constant, C2,ρ > 0,
such that: ∫ 2π

0
|φ
′
∞(ρeiθ)

φ∞(ρeiθ)
− φ′n(ρeiθ)

φn(ρeiθ)
|2 dθ

2π
≥ C2,ρ∆(Fn)2. (2.50)

Proof. Let us fix ρ ∈ (0, 1/2). First of all, it is not difficult to see that we have the following
identity as soon as | z |< 1/2:

φ′∞(z)

φ∞(z)
− φ′n(z)

φn(z)
=

∞∑
r=2

κr(F∞)− κr(Fn)

(r − 1)!
(i)rzr−1. (2.51)

By orthogonality, we have the following identity:∫ 2π

0
| φ
′
∞(ρeiθ)

φ∞(ρeiθ)
− φ′n(ρeiθ)

φn(ρeiθ)
|2 dθ

2π
=

∞∑
r=2

| κr(F∞)− κr(Fn) |2

(r − 1)!2
ρ2(r−1). (2.52)

Then, we obtain the following lower bound:∫ 2π

0
| φ
′
∞(ρeiθ)

φ∞(ρeiθ)
− φ′n(ρeiθ)

φn(ρeiθ)
|2 dθ

2π
≥ Cρ

2q+2∑
r=2

| Θr |2

22(r−1)(r − 1)!2
| κr(F∞)− κr(Fn) |2 .

(2.53)

for some Cρ > 0. This concludes the proof of the proposition.

We are now ready to state the main the result of this sub-section.

Proposition 2.4. For any ρ ∈ (0, 1/(4e)), there exists a strictly positive constant C3,ρ > 0
such that for all n ≥ 1, we have:

W2(Fn, F∞) ≥ C3,ρ∆(Fn). (2.54)

Proof. First of all, we note that for any z ∈ C such that |z|= ρ, we have:

| φ
′
∞(z)

φ∞(z)
− φ′n(z)

φn(z)
|≤ 1

|φ∞(z)|
|φ′∞(z)− φ′n(z)|+|φ′n(z)|| 1

φn(z)
− 1

φ∞(z)
| (2.55)

Moreover, it is clear that the function φ∞(z) is bounded away from 0 on the disk centered
at the origin and with radius ρ. Regarding the function φn(z), we have the following
uniform bound (with z on the disk centered at the origin and with radius ρ):

| 1

φn(z)
| ≤ exp

( +∞∑
k=2

1

k!
|κk(Fn)||z|k

)
, (2.56)

≤ exp

( +∞∑
k=2

2k−1

k
ρk
)

:=
e−ρ√
1− 2ρ

. (2.57)

Therefore, it is clear that:

| φ
′
∞(z)

φ∞(z)
− φ′n(z)

φn(z)
|≤ C4,ρ|φ′∞(z)− φ′n(z)|+C5,ρ|φ∞(z)− φn(z)|,
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for some strictly positive constants C4,ρ and C5,ρ (independent of n). Thus, using Proposi-
tion 2.2, we obtain:

| φ
′
∞(z)

φ∞(z)
− φ′n(z)

φn(z)
|≤ ρC6,ρW2(Fn, F∞). (2.58)

Then, using Proposition 2.3 concludes the proof of the proposition.

Remark 2.3. • Combining Proposition 2.4 together with part (b) of Corollary 2.1, we
obtain the fact that the convergence of ∆(Fn) to 0 is equivalent to the convergence
of W2(Fn, F∞) to 0 when dimQ span{α2

∞,1, · · · , α2
∞,q} = q. This complements the

results contained in [25, 2] (see in particular Theorem 2 of [2]). Moreover, recall
that convergence of W2(Fn, F∞) to 0 is equivalent to convergence in distribution and
convergence of the second moments. Therefore, when dimQ span{α2

∞,1, · · · , α2
∞,q} = q

and Fn and F∞ have unit variances, convergence in distribution of Fn towards F∞ is
equivalent to convergence of ∆(Fn) to 0.

• This justifies why we choose to study quantitative convergence result with respect to
the 2-Wasserstein distance instead of other probability metrics such as Kolmogorov
distance or 1-Wasserstein distance.

In the sequel, we provide a simple example for which it is possible to refine the previous
lower bound. Let (an) be a sequence of positive real numbers strictly less than 1 which
converges to 0 when n tends to infinity and such that:

0 < a = sup
n≥0

(an) < 1. (2.59)

Then, we consider the following random variables:

Fn =

√
1− an

2
(Z2

1 − 1) +

√
an
2

(Z2
2 − 1), (2.60)

F∞ =
1√
2

(Z2 − 1). (2.61)

We note that:

κ2(Fn) = κ2(F∞) = 1. (2.62)

First of all, let us find an asymptotic equivalent for ∆(Fn, F∞). By definition, we have:

∆(Fn, F∞) =

4∑
k=3

Θk

κk(Z2 − 1)
(κk(Fn)− κk(F∞)). (2.63)

Since Θ3 = −
√

2 and Θ4 = 1, we obtain:

∆(Fn, F∞) = −
√

2

[
(
1− an

2
)
3
2 + (

an
2

)
3
2 − (

1√
2

)3
]

+

[
(
1− an

2
)2 + (

an
2

)2 − (
1

2
)2
]
. (2.64)

Then, one can prove that:

∆(Fn, F∞) ∼ an
4
. (2.65)

In order to find a comparable lower bound for the Wasserstein-2 distance, we need the
following technical lemma.

Lemma 2.4. We denote by φn and φ∞ the characteristic functions of Fn and F∞ respec-
tively. We have the following inequality:

sup
t∈R\{0}

|φn(t)− φ∞(t)|
|t|

≤W2(Fn, F∞). (2.66)
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Proof. Let Tn be as in the proof of Proposition 2.2 (given by Brenier theorem). We have:

|φn(t)− φ∞(t)| := |
∫
R
eitTn(x) − eitxdµ∞(x)|,

≤
∫
R
|eit(Tn(x)−x) − 1|dµ∞(x),

≤ |t|
∫
R
|Tn(x)− x|dµ∞(x),

≤ |t|W2(Fn, F∞),

where we have used Cauchy-Schwarz inequality in the last inequality and the definition of
Tn. This concludes the proof of the lemma.

Therefore, we have the following lower bound.

Lemma 2.5. There exists a strictly positive constant c such that we have, for n large
enough:

W2(Fn, F∞) ≥ c(an)
3
4 . (2.67)

Proof. By straightforward computations, we have the following formula for φn(t) and
φ∞(t):

∀t ∈ R, φn(t) =
e
−it

√
1− an

2√
1− 2it

√
1− an

2

e
−it

√
an
2√

1− 2it

√
an
2

, (2.68)

φ∞(t) =
e
−it

√
1

2√
1−
√

2it
. (2.69)

Therefore, we have, for all t 6= 0:

|φn(t)− φ∞(t)| ≥ ||φn(t)|−|φ∞(t)||:= | 1

((1 + 2t2(1− an))(1 + 2t2an))
1
4

− 1

(1 + 2t2)
1
4

|,

(2.70)

≥ | 1

(1 + 4t4(1− an)an + 2t2)
1
4

− 1

(1 + 2t2)
1
4

|, (2.71)

≥ 1

(1 + 2t2)
1
4

| 1

(1 + 4t4(1−an)an
1+2t2

)
1
4

− 1| (2.72)

Now we select tn := 1√
an

. We obtain:

|φn(tn)− φ∞(tn)|≥ (an)
1
4

(2 + an)
1
4

| 1

(1 + 4(1−an)
an+2 )

1
4

− 1|. (2.73)

The previous lower bound then implies:

|φn(tn)− φ∞(tn)|
|tn|

≥ (an)
3
4

(2 + an)
1
4

| 1

(1 + 4(1−an)
an+2 )

1
4

− 1|. (2.74)

But it is clear that there exists a strictly positive constant c > 0 (independent of n) such
that:

1

(2 + an)
1
4

| 1

(1 + 4(1−an)
an+2 )

1
4

− 1|≥ c. (2.75)

17



Then, we obtain that:

|φn(tn)− φ∞(tn)|
|tn|

≥ c(an)
3
4 . (2.76)

Using Lemma 2.4 concludes the proof of the lemma.

Remark 2.4. Modifying the proof of Lemma 2.5 by choosing tn = (1/an)β for some β > 0
produces lower bounds with different rates of convergence to 0. Indeed, one can check that
the exponent of the resulting lower bound (denoted by χ(β)) is defined in the following way:

χ(β) =

{
1− β

2 β ∈ (0, 12 ],
3β
2 β ∈ [12 ,+∞).

(2.77)

Thus, β = 1
2 corresponds to the scale which reduces the most the gap between the lower and

the upper scaling exponents.

2.5 Comparison with the Malliavin–Stein method for the
variance-Gamma

We recall that the target distributions of our interest laying in the second Wiener chaos
takes the form

F∞ =

q∑
i=1

α∞,i(N
2
i − 1), (2.78)

where q ≥ 2, {Ni}qi=1 are i.i.d. N (0, 1) random variables, and the coefficients {α∞,i}qi=1

are non-zero and distinct. We stress that q in representation (2.78) cannot be infinity. The
aim of this section is to study the connections between the class of our target distributions
given as (2.78), and the so called variance-gamma class of probability distributions, and to
compare our quantitive bound in Corollary 2.1 with the bounds recently obtained in [8]
using the Malliavin–Stein method. First, we recall some basic facts that we need on the
variance-gamma probability distributions. For detailed information, we refer the reader to
[9, 12] and references therein. The random variable X is said to have a variance-gamma
probability distribution with parameters r > 0, θ ∈ IR, σ > 0, µ ∈ IR if and only if its
probability density function is given by

pVG(x; r, θ, σ, µ) =
1

σ
√
πΓ( r2)

e
θ
σ2

(x−µ)
(
|x− µ|

2
√
θ2 + σ2

) r−1
2

K r−1
2

(√
θ2 + σ2

σ2
|x− µ|

)
,

where x ∈ IR, and Kν(x) is a modified Bessel function of the second kind, and we write
X ∼ VG(r, θ, σ, µ). Also, it is known that for X ∼ VG(r, θ, σ, µ) (see for example relation
(2.3) in [12])

IE(X) = µ+ rθ, and Var(X) = r(σ2 + 2θ2). (2.79)

Lemma 2.6. (a) Let N1, N2 ∼ N (0, 1) be independent, and take two arbitrary α∞,1, α∞,2 >
0. Then

F∞ = α∞,1(N
2
1 − 1)− α∞,2(N2

2 − 1) ∼ VG(1, α∞,1 − α∞,2, 2
√
α∞,1α∞,2, α∞,2 − α∞,1).

(2.80)
(b) Let q = 2. Then the target random variable F∞ as (2.78) so that α∞,1, α∞,2 > 0 (or
similarly when α∞,1, α∞,2 < 0) cannot belong to the variance-gamma class.
(c) Let q ≥ 3. Then the target random variable F∞ as (2.78) cannot belong to the variance-
gamma class.
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Proof. (a) Set

X = α∞,1N
2
1 ∼ Γ(

1

2
,

1

2α∞,1
), and Y = α∞,2N

2
2 ∼ Γ(

1

2
,

1

2α∞,2
).

Then the claim follows directly from part (v) in [9, Proposition 3.8]. (b,c) These also follow
directly using a straightforward comparison between the characteristic function of F∞ and
the one of the variance-gamma random variable (see, for example, [20, page 83]).

Next, we want to compare our bound in Corollary 2.1 with the bound in [8] obtained
using the Malliavin–Stein method. A good starting point for such comparison is the right
hand side of equation (4.1) in [8, Theorem 4.1]. This is because the bound in [8, Corollary
5.10, part (a)] is obtained from the right hand side of equation (4.1) in [8, Theorem 4.1]
by norms of contraction operators. In virtue of Lemma 2.6, in order for F∞ as in (2.78) to
belong to the variance-gamma class, it is necessary to have r = 1 and q = 2. Letting r = 1
in the right hand side of equation (4.1) in [8, Theorem 4.1], and taking into account that
κ2(F∞) = σ2 + 2θ2, and κ3(F∞) = 2θ(3σ2 + 4θ2), for an element F in the second Wiener
chaos associated to the underlying isonormal process X, we arrive at

W1(F, F∞) ≤ C1IE
∣∣∣Γ2(F )− 2θΓ1(F )− σ2(F + θ)

∣∣∣
+ C2|κ2(F )− κ2(F∞)|

≤ C1IE
∣∣∣ 3∑
r=1

P (r)(0)

r! 2r−1
(Γr−1(F )− IE(Γr−1(F )))

∣∣∣
+ C2|κ3(F )− 4θκ2(F )− 2σ2θ|+C3|κ2(F )− κ2(F∞)|

≤ C1

√
∆(F ) + C2

3∑
r=2

|κr(F )− κr(F∞)|.

The last inequality is derived from the Cauchy-Schwarz inequality together with [2, Lemma
3.1] where we used the fact that F belongs to the second Wiener chaos.

3 Applications

3.1 An example from U-statistics

Under some degeneracy conditions, it is possible to observe the appearance of limiting
distributions of the form

∑
k≥1 α∞,k(N

2
k −1) in the context of U -statistics. In this example,

we restrict our attention to second order U -statistics. We refer the reader to [29, Chapter
5.5 Section 5.5.2] or to [15, Chapter 11 Corollary 11.5] for full generality. Let Zi = I1(hi) be
a sequence of i.i.d. standard normal random variables supported by the isonormal Gaussian
process X, where I1 is the Wiener-Itô integral of order 1 and {hi} is an orthonormal basis
of H. Let a 6= 0 be a real number. We consider the following second order U -statistic
which has a degeneracy of order 1:

Un =
2a

n(n− 1)

∑
1≤i<j≤n

ZiZj ,

= I2

(
2a

n(n− 1)

∑
1≤i<j≤n

hi⊗̂hj
)
.

A direct application of Theorem 5.5.2 in [29] allows one to obtain:

nUn(h)⇒ a(Z2
1 − 1).

Using Corollary 2.1, we have the following result:
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Corollary 3.1. For any n ≥ 3, we have:

W2(nUn(h), a(Z2
1 − 1)) ≤ C

(
a2

√
n(n− 3)

(n− 1)3
+

2a2

n− 1

)
.

Namely, for n large enough:

W2(nUn(h), a(Z2
1 − 1)) = O(

1√
n

).

Proof. By Corollary 2.1, we have:

W2(nUn(h), a(Z2
1 − 1)) ≤ C

(√
∆(nUn(h))+ | κ2(nUn(h))− κ2(a(Z2

1 − 1)) |
)
.

But,

κ2(a(Z2
1 − 1)) = 2a2,

κ2(nUn(h)) =
2a2n

n− 1
,

∆(nUn(h)) =
4∑
r=2

Θr

κr(Z2
1 − 1)

κr(nUn(h)),

∆(nUn(h)) =

4∑
r=2

Θr

κr(Z2
1 − 1)

[
κr(nUn(h))− κr(a(Z2

1 − 1))

]
.

In order to obtain an explicit rate of convergence, we have to compute the cumulants of
order 3 and 4 of the random variable nUn(h). Since nUn(h) is in the second order Wiener
chaos, we can apply the following formula:

κr(I2(f)) = 2r−1(r − 1)! 〈f ⊗1 ...⊗1 f ; f〉, (3.1)

where there are r − 1 copies of f in f ⊗1 ...⊗1 f . We note that:

∀r ≥ 2, κr(a(Z2
1 − 1)) = ar2r−1(r − 1)! .

Let us compute the third and the fourth cumulants of nUn(h). By formula (3.1), we have:

κ3(nUn(h)) =
26a3

(n− 1)3
〈fn ⊗1 fn; fn〉,

with,

fn =
∑

1≤i<j≤n
hi⊗̂hj .

By standard computations, we have:

fn ⊗1 fn =
1

16

∑
i 6=j

∑
k 6=l

(
δikhj ⊗ hl + δilhj ⊗ hk + δjkhi ⊗ hl + δjlhi ⊗ hk

)
.

We denote by (I), (II), (III) and (IV ) the four associated double sums. The scalar product
of (I) with fn gives:

〈(I); fn〉 =
1

32

∑
i 6=j

∑
k 6=l

∑
m6=o

δik〈hj ⊗ hl;hm⊗̂ho〉,

=
1

32

∑
i 6=j

∑
k 6=l

∑
m6=o

δik

(
1

2
〈hj ⊗ hl;hm ⊗ ho〉+

1

2
〈hj ⊗ hl;ho ⊗ hm〉

)
,

=
1

64

∑
i 6=j

∑
k 6=l

∑
m6=o

δik

(
δjmδlo + δjoδlm

)
,

=
1

32
n(n− 1)(n− 2).
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The three other terms contribute in a similar way. Thus, we have:

κ3(nUn(h)) =
23a3

(n− 1)2
n(n− 2). (3.2)

Similar computations for the fourth cumulants of nUn(h) lead to the following formula:

κ4(nUn(h)) =
23a43!

(n− 1)3
n(n− 2)(n− 3).

Using the facts that Θ2 = a2, Θ3 = −2a and Θ4 = 1, we obtain:

∆(nUn(h)) =

4∑
r=2

Θr

κr(Z2
1 − 1)

[
κr(nUn(h))− κr(a(Z2

1 − 1))

]
,

=
a4

n− 1
+

2a4

(n− 1)2
+

a4

(n− 1)3
[1 + (3− 2n)n],

=
a4

(n− 1)3
n(n− 3).

The result then follows.

3.2 Application to some quadratic forms

In this example, we are interested in the asymptotic distributions of sequences of some
specific quadratic forms. More precisely, we consider the following sequence of random
variables:

Qn(Z) =
n∑

i,j=1

ai,j(n)ZiZj ,

where An = (ai,j(n)) is a n× n real-valued symmetric matrix and (Zi) an i.i.d. sequence of
standard normal random variables. A full description of the limiting distributions for this
type of sequences is contained in [30]. In particular, it is possible to observe the appearance
of limiting distributions of the form

∑
k≥1 α∞,k(N

2
k − 1). Sufficient conditions for such an

appearance have been introduced in [33]. Let {λm, m ∈ {1, ..., q}} be q distinct non-zero
real numbers. We make the following assumptions:

• Let {bmi (n)} be a sequence of real numbers such that:

n∑
i=1

bmi (n)bki (n)→ δkm,

∃b > 0, ∀i,m, n,
√
n | bmi (n) |≤ b < +∞

• For each m, we assume that:

n∑
i,j=1

ai,j(n)bmi (n)bmj (n)→ λm.

• Finally, we assume that:

n∑
i,j

ai,j(n)2 →
q∑

m=1

λ2m.
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In order to fit the assumptions of Corollary 2.1, we renormalize the quadratic form Qn.
We denote by Q̃n the quadratic form associated with the matrix Ãn defined by:

ãi,j(n) =
ai,j(n)(∑n

i,j=1 ai,j(n)2
) 1

2

In particular, we have:

• for each m ≥ 1,

n∑
i,j=1

ãi,j(n)bmi (n)bmj (n)→ λ̃m =
λm(∑q

m=1 λ
2
m

) 1
2

,

• and,

1 =
n∑
i,j

ãi,j(n)2 →
q∑

m=1

λ̃2m = 1.

By Theorem 2 of [33], we have the following result:

Q̃n(Z)− E[Q̃n(Z)]⇒ Q̃∞ =

q∑
m=1

λ̃m(Z2
m − 1).

If we assume that the Zi is a sequence of standard normal random variables supported by
a Gaussian isonormal process, we have the following representation:

Q̃n(Z)− E[Q̃n(Z)] = I2

( n∑
i,j=1

ãi,j(n)hi⊗̂hj
)
,

with Zi = I1(hi). Applying Corollary 2.1, we will obtain an explicit rate of convergence
for the previous limit theorem in 2-Wasserstein distance. For this purpose we need to
compute the cumulants of order r of Q̃n(Z)− E[Q̃n(Z)] for r ∈ {2, ..., 2q + 2}. Using the
fact that the Zi’s are i.i.d. standard normal, we have:

∀r ∈ 2, ..., 2q + 2, κr(Q̃n(Z)) = 2r−1(r − 1)! Tr (Ãrn).

Combining the previous formula together with Corollary 2.1, we obtain the following
bound on the 2-Wasserstein distance between Q̃n(Z)− E[Q̃n(Z)] and Q̃∞:

W2(Q̃n(Z)− E[Q̃n(Z)], Q̃∞) ≤C
(√√√√2q+2∑

r=2

Θr

[
Tr (Ãrn)−

q∑
m=1

λ̃rm

]
(3.3)

+

q+1∑
r=2

2r−1(r − 1)! | Tr (Ãrn)−
q∑

m=1

λ̃rm |
)
.

Thanks to this bound, we can obtain explicit rates of convergence for some more specific
examples. In the sequel, we denote by Cα([0, 1]) the space of Hölder continuous real-valued
functions of order α ∈ (0, 1] on [0, 1]. We have the following result.

Corollary 3.2. Let {em} be q distinct orthonormal functions of L2(0, 1) such that em ∈
Cα([0, 1]) for some α ∈ (0, 1]. Let Kq(., .) be the square integrable kernel defined by

∀(x, y) ∈ (0, 1)× (0, 1), Kq(x, y) =

q∑
m=1

λmem(x)em(y)
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and let An be the n× n matrix defined by:

∀i, j, n, ai,j(n) =
1

n
Kq(

i

n
,
j

n
).

Then, we have, for n large enough:

W2(Q̃n(Z)− E[Q̃n(Z)], Q̃∞) = O(
1

n
α
2

).

Proof. First of all, choosing bmi (n) = em( in)/
√
n, we note that the assumptions of the

non-central limit theorem are verified so that the corresponding quadratic form converges
in law towards

∑q
m=1 λ̃m(Z2

m − 1). Let us work out the bound (3.3) in order to obtain an
explicit rate of convergence. By standard computations, we have for all r ≥ 2:

Tr (Arn) =
∑
i1,...,ir

ai1,i2(n)...air,i1(n),

=
∑

m1,...,mr

λm1 ...λmr
1

nr

∑
i1,...,ir

em1(
i1
n

)em1(
i2
n

)....emr(
ir
n

)emr(
i1
n

),

=
∑
m

λrm
1

nr

∑
i1,...,ir

e2m(
i1
n

)...e2m(
ir
n

)

+
′∑

m1,...,mr

λm1 ...λmr
1

nr

∑
i1,...,ir

em1(
i1
n

)em1(
i2
n

)....emr(
ir
n

)emr(
i1
n

),

where
∑′ means that we have excluded the hyper diagonal ∆r = {(m1, ...,mr) ∈

{1, ..., q}r, m1 = ... = mr}. Thus, we have:

Tr (Arn)−
q∑

m=1

λrm =
∑
m

λrm

[(
1

n

n∑
i=1

e2m(
i

n
)

)r
− 1

]

+

′∑
m1,...,mr

λm1 ...λmr
1

nr

∑
i1,...,ir

em1(
i1
n

)em1(
i2
n

)....emr(
ir
n

)emr(
i1
n

).

Note that the second term tends to 0 as n tends to +∞ since we have excluded the hyper
diagonal ∆r and that:

1

nr

∑
i1,...,ir

em1(
i1
n

)em1(
i2
n

)....emr(
ir
n

)emr(
i1
n

)→ δm1,m2 ...δmr,m1 .

Since em ∈ Cα([0, 1]), we have the following asymptotic for every m:

|
(

1

n

n∑
i=1

e2m(
i

n
)

)r
− 1 |= O(

1

nα
).

Similarly, using the fact that em ∈ Cα([0, 1]), it is straightforward to see that the second
term is O(1/nα). Now, we note that:

| Tr (Ãrn)−
q∑

m=1

λ̃rm |= O(
1

nα
),

since for r ≥ 2,

Tr (Ãrn)−
q∑

m=1

λ̃rm =
Tr (Arn)−

∑q
m=1 λ

r
m(∑

i,j a
2
i,j

) r
2

+

q∑
m=1

λrm

(
− 1(∑q

m=1 λ
2
m

) r
2

+
1(∑

i,j a
2
i,j

) r
2

)
.

The result then follows.
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Remark 3.1. Theorem 2 of [33] is actually more general than the particular instance we
have displayed since it holds for quadratic forms defined by:

Q̃n(X) =

n∑
i,j=1

ãi,j(n)XiXj ,

where (Xi) is an i.i.d. sequence of centered random variables such that E[X2
i ] = 1 and

E[X4
i ] < +∞. Furthermore, since the works of Rotar’ [28], it is known that Q̃n(X) exhibits

the same asymptotic behavior than Q̃n(Z) and explicit rates of approximation have been
obtained in Kolmogorov distance (see e.g. [14] and more generally [21] Theorems 2.1 and
2.2).

We end this subsection with a universality result as announced in the previous remark.
We assume that (Xi) is a i.i.d. sequence of centered random variables such that E[X2

i ] = 1
and E[X4

i ] < +∞. First of all, as a direct application of Theorem 2.1 of [21], we obtain an
explicit bound of approximation between Q̃n(X) and Q̃n(Z) in Kolmogorov distance.

Corollary 3.3. Under the previous assumptions, there exists C > 0 such that:

dKol(Q̃n(X), Q̃n(Z)) ≤ C

n
1
16

.

Proof. Since the sequence (Xi) is a i.i.d. sequence of centered random variables with unit
variance and finite 4th moment we have in particular that E[| Xi |3] = E[| X1 |3] = β < +∞.
Moreover, we have:

Q̃n(x1, ..., xn) =

n∑
i,j=1

ãi,j(n)xixj =
∑
S⊂[n]

cS
∏
i∈S

xi,

with,

cS =

{
0 | S |6= 2

ãi,j(n) S = {i, j}.
(3.4)

It is clear that
∑

S⊂[n] c
2
S = 1. Moreover, we have, for any i ∈ {1, ..., n}:

∑
S3i

c2S =
n∑
j=1

ãi,j(n)2,

=
n∑
j=1

a2i,j(n)∑
i,j ai,j(n)2

,

=
1∑

i,j ai,j(n)2
1

n2

n∑
j=1

(∑
m

λmem(
i

n
)em(

j

n
)

)2

,

≤ 1∑
i,j ai,j(n)2

q

n2

n∑
j=1

∑
m

λ2me
2
m(

i

n
)e2m(

j

n
),

≤ C1∑
i,j ai,j(n)2

q

n

∑
m

λ2m

(
1

n

n∑
j=1

e2m(
j

n
)

)
,

where we have used the fact that the em are bounded on [0, 1]. Now, we note that:∑
i,j

ai,j(n)2 −→
∑
m

λ2m,

∑
m

λ2m

(
1

n

n∑
j=1

e2m(
j

n
)

)
−→

∑
m

λ2m

(∫ 1

0
e2m(x)dx

)
=
∑
m

λ2m.
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Thus, we have, for some C2 > 0: ∑
S3i

c2S ≤
C2

n
.

Applying directly Theorem 2.1 of [21], we obtain:

dKol(Q̃n(X), Q̃n(Z)) ≤ C

n
1
16

.

In order to obtain a rate for the Kolmogorov distance, we combine the previous corollary
with Corollary 3.2 and with the fact that the Kolmogorov distance admits the following
bound when the density of the target law is bounded (see e.g. Theorem 3.3 of [6]):

dKol(Q̃n(Z)− E[Q̃n(Z)], Q̃∞) ≤ C
√

W2(Q̃n(Z)− E[Q̃n(Z)], Q̃∞).

Q̃∞ admits a bounded density as soon as q is large enough. In this regard, we have the
following lemma.

Lemma 3.1. Let q ≥ 3. Let X be a random variable such that:

X =

q∑
j=1

λj(Z
2
j − 1). (3.5)

with {λj} non-zero real numbers. Then, X has a bounded density.

Proof. The proof is standard so that we only sketch it. The characteristic function of X is
given by the following formula:

∀ξ ∈ R, φX(ξ) =

q∏
j=1

exp(−iξλj)√
1− 2iξλj

. (3.6)

We introduce λmin = min|λj |6= 0. Then,

|φX(ξ)|≤ 1

(1 + 4ξ2λ2min)
q
4

. (3.7)

Since q ≥ 3, we deduce from the previous inequality that φX(.) is in L1(R). Thus, we can
apply Fourier inversion formula to obtain the following bound:

‖fX‖∞≤ ‖φX‖L1(R)<∞. (3.8)

This concludes the proof of the lemma.

Therefore, we have the following result:

Theorem 3.1. Under the previous assumptions, we have:

dKol(Q̃n(X)− Ẽ[Q̃n(X)], Q̃∞) ≤ C1

n
1
16

+
C2

n
α
4

.

Remark 3.2. We would like to mention that it is possible to combine the inequality (3.3)
together with Theorem 2.1 of [21] to obtain a general bound in Kolmogorov distance for
q ≥ 3. We introduce the following quantity:

τn = sup
i∈{1,...,n}

n∑
j=1

ãi,j(n)2
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Then,

dKol(Q̃n(X)− Ẽ[Q̃n(X)], Q̃∞) ≤ C1(τn)
1
16 + C2

(√√√√2q+2∑
r=2

Θr

[
Tr (Ãrn)−

q∑
m=1

λ̃rm

]

+

q+1∑
r=2

2r−1(r − 1)! | Tr (Ãrn)−
q∑

m=1

λ̃rm |
) 1

2

.

3.3 The generalized Rosenblatt process at extreme critical
exponent

We conclude this section with a more ambitious example, providing rates of convergence
in a recent result given by [3, Theorem 2.4]. Let Zγ1,γ2 be the random variable defined by:

Zγ1,γ2 =

∫
R2

(∫ 1

0
(s− x1)γ1+ (s− x2)γ2+ ds

)
dBx1dBx2 ,

with γi ∈ (−1,−1/2) and γ1 + γ2 > −3/2. By Proposition 3.1 of [3], we have the following
formula for the cumulants of Zγ1,γ2 :

κm(Zγ1,γ2) =
1

2
(m− 1)!A(γ1, γ2)

mCm(γ1, γ2, 1, 1)

where,

A(γ1, γ2) = [(γ1 + γ2 + 2)(2(γ1 + γ2) + 3)]
1
2

× [B(γ1 + 1,−γ1 − γ2 − 1)B(γ2 + 1,−γ1 − γ2 − 1)

+B(γ1 + 1,−2γ1 − 1)B(γ2 + 1,−2γ2 − 1)]−
1
2 ,

and,

Cm(γ1, γ2, 1, 1) =
∑

σ∈{1,2}m

∫
(0,1)m

m∏
j=1

[(sj − sj−1)
γσj+γσ′j−1

+1

+ B(γσ′j−1
+ 1,−γσj − γσ′j−1

− 1)

+ (sj−1 − sj)
γσj+γσ′j−1

+1

+ B(γσj + 1,−γσj − γσ′j−1
− 1)]ds1...dsm,

B(α, β) =

∫ 1

0
uα−1(1− u)β−1du.

Let ρ ∈ (0, 1) and Yρ be the random variable defined by:

Yρ =
aρ√

2
(Z2

1 − 1) +
bρ√

2
(Z2

2 − 1),

with Zi independent standard normal random variables and aρ and bρ defined by:

aρ =
(ρ+ 1)−1 + (2

√
ρ)−1√

2(ρ+ 1)−2 + (2ρ)−1
,

bρ =
(ρ+ 1)−1 − (2

√
ρ)−1√

2(ρ+ 1)−2 + (2ρ)−1
.

For simplicity, we assume that γ1 ≥ γ2 and γ2 = (γ1 + 1/2)/ρ− 1/2. Then [3, Theorem
2.4] implies that as γ1 tends to −1/2:

Zγ1,γ2
law→ Yρ. (3.9)
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Note that, in this case, γ2 automatically tends to −1/2 as well. To prove the previous
result, the authors of [3] prove the following convergence result:

∀m ≥ 2, κm(Zγ1,γ2)→ κm(Yρ) = 2
m
2
−1(amρ + bmρ )(m− 1)! .

Now, using Corollary 2.1, Lemma 2.1 and applying Lemma 3.2, we can present the following
quantative bound for convergence (3.9), namely as γ1 tends to −1/2:

dW2(Zγ1,γ2 , Yρ) ≤ Cρ

√
−γ1 −

1

2
,

where Cρ is some strictly positive constant depending on ρ uniquely. In order to apply
Corollary 2.1 to obtain an explicit rate for convergence (3.9), we need to know at which
speed κm(Zγ1,γ2) converges towards κm(Yρ). For this purpose, we have the following
lemma:

Lemma 3.2. Under the above assumptions, for any m ≥ 3, we have, as γ1 tends to −1/2:

κm(Zγ1,γ2) = κm(Yρ) +O(− γ1 −
1

2
).

Proof. First of all, we note that, as γ1 tends to −1/2:

A(γ1, γ2) = [(γ1 +
1

ρ
(γ1 +

1

2
) +

3

2
)(2γ1 +

2

ρ
(γ1 +

1

2
) + 2)]

1
2

× [B(γ1 + 1,−(1 +
1

ρ
)(γ1 +

1

2
))B(

1

ρ
(γ1 +

1

2
) +

1

2
,−(1 +

1

ρ
)(γ1 +

1

2
))

+B(γ1 + 1,−2γ1 − 1)B(
1

ρ
(γ1 +

1

2
) +

1

2
,−2

ρ
(γ1 +

1

2
))]−

1
2 ,

≈ (−γ1 − 1/2)√
(1 + 1

ρ)−2 + (4ρ)−1
− Cρ(−3 + 2γ + 2ψ(

1

2
))(γ1 +

1

2
)2

+ o((−γ1 − 1/2)2),

where γ is the Euler constant, ψ(.) is the Digamma function and Cρ some strictly positive
constant depending on ρ uniquely. Note that −3 + 2γ + 2ψ(1/2) < 0. Moreover, we have:

Cm(γ1, γ2, 1, 1) ≈
∑

σ∈{1,2}m

∫
(0,1)m

m∏
j=1

{
Isj>sj−1

[
(−γσj − γσ′j−1

− 1)−1 − log(sj − sj−1)

+ (−γ − ψ(
1

2
)) + o(1)

]
+ Isj<sj−1

[
(−γσj − γσ′j−1

− 1)−1 − log(sj−1 − sj)

+ (−γ − ψ(
1

2
)) + o(1)

]}
ds1...dsm (3.10)

≈
∑

σ∈{1,2}m

∫
(0,1)m

m∏
j=1

[
(−γσj − γσ′j−1

− 1)−1 + Isj>sj−1 log((sj − sj−1)−1)

+ Isj<sj−1 log((sj−1 − sj)−1) + (−γ − ψ(
1

2
)) + o(1)

]
ds1...dsm. (3.11)

Note that −γ − ψ(12) > 0. The diverging terms in Cm(γ1, γ2, 1, 1) are B(γσ′j−1
+ 1,−γσj −
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γσ′j−1
− 1) and B(γσj + 1,−γσj − γσ′j−1

− 1). At σ and j fixed, the only possible values are:

B(γ1 + 1,−γ1 − γ2 − 1) = B(γ1 + 1,−(γ1 +
1

2
)(1 +

1

ρ
)),

≈ − 1

(1 + 1
ρ)(γ1 + 1

2)
+ (−γ − ψ(

1

2
)) + o(1),

B(γ2 + 1,−γ1 − γ2 − 1) = B(
1

ρ
(γ1 +

1

2
) +

1

2
,−(γ1 +

1

2
)(1 +

1

ρ
)),

≈ − 1

(1 + 1
ρ)(γ1 + 1

2)
+ (−γ − ψ(

1

2
)) + o(1),

B(γ1 + 1,−2γ1 − 1) ≈ − 1

2(γ1 + 1
2)

+ (−γ − ψ(
1

2
)) + o(1),

B(γ2 + 1,−2γ2 − 1) = B(
1

ρ
(γ1 +

1

2
) +

1

2
,−2

ρ
(γ1 +

1

2
)),

≈ − ρ

2(γ1 + 1
2)

+ (−γ − ψ(
1

2
)) + o(1).

Moreover, we have, for j fixed:

(sj − sj−1)
γσj+γσ′j−1

+1

+ = Isj>sj−1(sj − sj−1)
γσj+γσ′j−1

+1

≈ Isj>sj−1 [1 + log(sj − sj−1)(γσj + γσ′j−1
+ 1) + o((γσj + γσ′j−1

+ 1))].

Developing the product in the right hand side of (3.11), we obtain:

Cm(γ1, γ2, 1, 1) ≈
∑

σ∈{1,2}m

m∏
j=1

(−γσj − γσ′j−1
− 1)−1

+ (−γ − ψ(
1

2
))

∑
σ∈{1,2}m

m∑
j=1

m∏
k=1, k 6=j

(−γσk − γσ′k−1
− 1)−1

+
∑

σ∈{1,2}m

m∑
j=1

m∏
k=1, k 6=j

(−γσk − γσ′k−1
− 1)−1

∫
(0,1)m

[
Isj>sj−1 log((sj − sj−1)−1)

+ Isj<sj−1 log((sj−1 − sj)−1)
]
ds1...dsm + o((−γ1 −

1

2
)−m+1),

≈
∑

σ∈{1,2}m

m∏
j=1

(−γσj − γσ′j−1
− 1)−1

+ (−γ − ψ(
1

2
) +

3

2
)
∑

σ∈{1,2}m

m∑
j=1

m∏
k=1, k 6=j

(−γσk − γσ′k−1
− 1)−1

+ o((−γ1 −
1

2
)−m+1).
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This leads to the following asymptotic for the cumulants of Zγ1,γ2 ,

κm(Zγ1,γ2) ≈ (m− 1)!

2

[
(−γ1 − 1/2)√

(1 + 1
ρ)−2 + (4ρ)−1

− Cρ(−3 + 2γ + 2ψ(
1

2
))(γ1 +

1

2
)2

+ o((−γ1 − 1/2)2)

]m[ ∑
σ∈{1,2}m

m∏
j=1

(−γσj − γσ′j−1
− 1)−1

+ (−γ − ψ(
1

2
) +

3

2
)
∑

σ∈{1,2}m

m∑
j=1

m∏
k=1, k 6=j

(−γσk − γσ′k−1
− 1)−1

+ o((−γ1 −
1

2
)−m+1)

]
,

≈ (m− 1)!

2

(−γ1 − 1/2)m(√
(1 + 1

ρ)−2 + (4ρ)−1
)m ∑

σ∈{1,2}m

m∏
j=1

(−γσj − γσ′j−1
− 1)−1

+O((−γ1 −
1

2
))

≈ κm(Yρ) +O((−γ1 −
1

2
)),

where we have used similar computations as in the proof of Theorem 2.4 of [3] for the last
equality.
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