
Efficient Symbolic Representation of Convex
Polyhedra in High-Dimensional Spaces

Bernard Boigelot and Isabelle Mainz

Institut Montefiore, B28,
Université de Liège,

B-4000 Liège, Belgium
{Bernard.Boigelot, Isabelle.Mainz}@uliege.be

Abstract. This work is aimed at developing an efficient data structure
for representing symbolically convex polyhedra. We introduce an origi-
nal data structure, the Decomposed Convex Polyhedron (DCP), that is
closed under intersection and linear transformations, and allows to check
inclusion, equality, and emptiness. The main feature of DCPs lies in
their ability to represent concisely polyhedra that can be expressed as
combinations of simpler sets, which can overcome combinatorial explo-
sion in high dimensional spaces. DCPs also have the advantage of being
reducible into a canonical form, which makes them efficient for represent-
ing simple sets constructed by long sequences of manipulations, such as
those handled by state-space exploration tools. Their practical efficiency
has been evaluated with the help of a prototype implementation, with
promising results.

1 Introduction

Convex polyhedra, i.e., the subsets of Rn defined by finite conjunctions of linear
constraints, are extensively used in many areas of computer science. Among
their many applications, convex polyhedra are employed in optimization theory
and in particular linear programming [23], constraint programming, Satisfiability
Modulo Theories (SMT) solving [10], abstract interpretation, for which they are
one of the most used numerical abstract domains [12, 13], and computer-aided
verification [5, 19, 15].

Our motivation for studying convex polyhedra is to use them for representing
the reachable sets produced during symbolic state-space exploration of linear hy-
brid systems and temporal automata [18, 9, 7, 1]. For this application, one needs
a data structure that is closed under intersection and linear transformations, in
order to be able to compute the image of sets by the transition relation of the
system under analysis. Furthermore, it should be possible to decide inclusion,
equality, and emptiness of represented sets, in order to detect that a fixed point
has been reached, as well as for comparing the reachability set against the safety
property of interest. Our choice is to aim for an exact symbolic representation,
in the sense that it should both rely only on exact arithmetic, and not over- or
under-approximate the represented sets.

Existing solutions to this problem have several drawbacks. Representations
based on logical formulas are notoriously difficult to simplify. This makes them
inefficient for handling simple sets constructed by long sequences of manipula-
tions, such as those produced by state-space exploration procedures.

Another well known representation is the double description method [22, 11],
used by most popular software libraries for handling convex polyhedra, such
as cdd [16], PolyLib [21], NewPolka [20], and PPL [4]. This technique consists
in jointly describing a polyhedron by two different geometric representations: a
constraint system, expressing the polyhedron as the set of solutions of a finite
conjunction of linear constraints, and a generator system, defining the polyhe-
dron as the convex-conical combination of a finite set of vertices and extremal
rays. These two representations are equivalent, in the sense that each of them
can be reconstructed from the other. However, keeping both of them makes it
possible to speed up some operations, such as removing their redundant ele-
ments. The major drawback of the double description method is that it suffers
from combinatorial explosion in high dimensional spaces. For instance, the n-
cube [0, 1]n is characterized by 2n constraints, but its generator system contains
2n vertices, which leads to a representation that grows exponentially with n.

From a mathematical point of view, the geometrical structure of a convex
polyhedron is precisely described by its face lattice, which corresponds to a
partial ordering of its faces. The double description method can actually be seen
as an explicit representation of the non trivial top and bottom layers of this face
lattice. Another strategy is to keep a representation of the whole face lattice of
polyhedra, which has the advantage of providing complete information about
the adjacency relation between their faces. This information makes it possible,
in particular, to remove redundant constraints and elements of the generator
system in polynomial time [3].

A data structure that explicitly represents the face lattice is the Real Vector
Automaton, whose expressive power goes beyond first-order additive arithmetic
of mixed integer and real variables [8]. When it represents a convex polyhedron,
an RVA is essentially a deterministic decision graph for determining which face
contains a given point. RVA have the advantage of being easily reducible to a
minimal canonical form, which makes the representation of a set independent
from its construction history. Nevertheless, their size grows linearly with the
coefficients of linear constraints, and they suffer from the same combinatorial
explosion as the double description method. The former drawback is alleviated
by the Implicit Real Vector Automaton (IRVA) [14] and the Convex Polyhedron
Decision Diagram (CPDD)[7], in which parts of the decision graph are encoded
by more efficient algebraic structures.

Our goal is to make CPDDs efficient in high dimensional spaces. In order to
deal with the combinatorial explosion of the generator system, a decomposition
mechanism for convex polyhedra has been proposed in [17]. The approach con-
sists in partitioning syntactically the variables involved in the linear constraints
into independent subsets. Roughly speaking, convex polyhedra are decomposed
into Cartesian products of simpler ones defined over disjoint subsets of variables.

2

This procedure has the disadvantage of being unable to handle efficiently con-
straints that jointly involve many variables, which makes it ill-suited for our
intended applications. During the reachability analysis of timed automata for
instance, applying a time-step operation to a polyhedron will generally produce
constraints linking together all clock variables, making decomposition unfeasible.

The contributions of this work are twofold. First, by keeping an explicit rep-
resentation of the face lattice of polyhedra, we obtain a significant advantage
over the double description method, leading in particular to a more efficient
implementation of the projection operation. Second, we tackle the combinato-
rial explosion in high dimensional spaces by introducing a novel decomposition
mechanism. As opposed to the purely syntactic approach of [17], this mecha-
nism is not affected by non-singular linear transformations, which significantly
broadens its applicability. The resulting data structure, the Decomposed Convex
Polyhedron (DCP), admits an easily computable canonical form, which simpli-
fies comparison operations and leads to concise representations of simple sets
constructed in a complex way. DCPs share the same advantages as CPDDs,
such as offering a simple decision procedure for checking which face of a convex
polyhedron contains a given point.

The rest of this paper is organized as follows. Section 2 recalls basic concepts
and the principles of the double description method. Section 3 introduces DCPs,
starting from CPDDs and enhancing them with a decomposition mechanism.
Section 4 discusses the implementation of operations over DCPs. Section 5 as-
sesses the practical efficiency of our proposed data structure with the help of a
prototype implementation.

2 Preliminaries

2.1 Basics

A convex polyhedron P is defined as the set of solutions of a finite conjunction of
linear constraints, i.e., P = {x ∈ Rn |

∧k
i=1 ai.x#i bi} where, for all i, ai ∈ Zn,

bi ∈ Z, and #i ∈ {≤, <}. Such polyhedra can either be bounded or unbounded,
as well as topologically closed or not1. We denote by P the topological closure
of P , that is, the set P = {x ∈ Rn |

∧k
i=1 ai.x ≤ bi}.

Given a constraint ai.x#i bi, a point v ∈ Rn satisfies this constraint if
ai.v #i bi, and saturates it if ai.v = bi. Constraints of the form ai.x ≤ bi are
called closed, or non-strict, and constraints of the form ai.x < bi are called
open, or strict. The dimension of a convex polyhedron P , noted dimP , is the
dimension of its affine hull, i.e the smallest affine space that contains P . The
lineality space linP of P is the largest vector space L such that P + L = P ,
where + denotes the Minkowski sum.

A closed convex polyhedron P can be represented as a finite intersection of
halfspaces by its constraint system H = {ai.x ≤ bi}. Alternatively, P can be
expressed in terms of a generator set G = (V,R), where V, R ∈ Qn are finite sets

1 They are also known as NNC (Not Necessarily Closed) polyhedra, or copolyhedra.

3

of (respectively) vertices and extremal rays. One then has P = {
∑p

i=1 λivi +∑q
i=1 µiri}, where V = {v1, . . . ,vp}, R = {r1, . . . , rq}, λi, µi ≥ 0 for all i, and∑p
i=1 λi = 1. The pair (H,G) forms the double description of P [22, 11].

2.2 Face Lattice of a Polyhedron

With respect to a polyhedron P , a linear inequality c.x ≤ δ is said to be valid if it
is satisfied by all x ∈ P . A face of P is any set F such that F = P ∩ {x | c.x = δ},
where c.x ≤ δ is valid. Note that from the valid inequalities 0.x ≤ 0 and 0.x ≤ 1,
we get that P and the empty set ∅ are both faces of P . These two faces are said
to be trivial. Note that a face is itself a polyhedron; the dimension of a face is
its dimension as a polyhedron. The faces of dimension 0, 1, and dimP − 1 are
respectively called vertices, edges, and facets. Remark that the intersection of
any set of faces of P is itself a face of P .

A partial order � over a set S is a binary relation that is reflexive, anti-
symmetric and transitive. We then say that (S,�), or simply S if the partial
order is clear from the context, is a partially ordered set. A partially ordered set
S is a lattice if every two elements x, y ∈ S admit a unique minimal upper bound
in S, called the join x t y, and a unique maximal lower bound in S, called the
meet x u y.

The set F ′(P) of nonempty faces of P is partially ordered by set inclusion.
However, this set does not necessarily contain a minimum element, hence we
define the smallest face of P as the intersection F0 = ∩F∈F ′(P)F of all its
nonempty faces. The set F(P) = {F0} ∪ F ′(P) is a finite lattice under set
inclusion, called the face lattice of P .

For F , G ∈ F(P), the face F t G = ∩{H ∈ F(P) | F ∪ G ⊆ H}, is the
smallest one containing both F and G. Similarly, the face F u G = F ∩ G is
the largest one contained in both F and G. Furthermore, we say that F is an
ascendant of G, or equivalently that G is a descendant of F , if F ⊂ G. We use the
terms direct ascendant and direct descendant if there does not exist H ∈ F(P)
such that F ⊂ H ⊂ G.

2.3 Canonical Representation of Convex Polyhedra

In the double description (H,G) of a closed convex polyhedron P , the constraint
system H and the generator system G admit minimal forms, meaning that no
element can be removed from them without affecting P .

Under two hypotheses, the minimal forms of H and G are unique for a given
P , which implies that (H,G) can then provide a canonical representation of P .
The first hypothesis is to have a fully dimensional polyhedron, meaning that
P ⊆ Rn is such that dimP = n. If P is not fully dimensional, then it can be
expressed as the image P = AQ+b of a fully dimensional polyhedron Q ⊂ Rm of
smaller dimension m < n by a linear transformation (A, b), with A ∈ Zn×m and
b ∈ Qn. This transformation can be made canonical by Gaussian elimination.

The second hypothesis is to have a polyhedron P with a lineality space of
dimension 0. If this condition is not satisfied, then P can be expressed as a sum

4

P = Q+L, where linQ = 0, L = linP , and dimP = dimQ+ dimL. The vector
space L can be described canonically by applying Gaussian elimination to one
of its bases.

Consider a polyhedron P that satisfies both hypotheses, for which the double
description (H,G) has been made minimal. This means that all redundant con-
straints have been removed from H, hence the saturated form of each constraint
in H is a facet. More generally, each face of P corresponds to a subset of sat-
urated constraints in H. Similarly, the vertices of G correspond to the minimal
non-trivial faces of P . If P is bounded, then G does not contain extremal rays,
and the double description (H,G) exactly contains the minimal and maximal
non-trivial elements of the face lattice of P . If P is unbounded, the extremal
rays of G can be computed from the direct descendants of the vertices.

3 Decomposed Convex Polyhedra

We now present our proposed data structure, by first introducing the principles
of CPDDs, and then enhancing them with a decomposition mechanism.

3.1 Convex Polyhedron Decision Diagram

A Convex Polyhedron Decision Diagram (CPDD) [7] representing a convex poly-
hedron P is a directed acyclic graph (Q,T, q0) such that:

– Q is a finite set of nodes. Each node q ∈ Q corresponds to a face of P , and
is labeled by the constraints of P that are saturated by that face. (In the
special case where q represents the empty face, all constraints are considered
to be saturated.) Moreover, q is associated with a binary polarity that is true
if each constraint that is saturated by q is an open constraint of P , and false
otherwise. This polarity is used for representing the strictness of constraints;
the representations of P and P only differ in the polarity of their nodes.

– q0 ∈ Q is an initial node, representing the unique minimal element of the
face lattice of P .

– T ⊆ Q × Q is a transition relation corresponding to the inclusion relation
between faces, removing the edges that are redundant by transitivity. An
edge (q1, q2) ∈ T is labeled by the constraints that are saturated in q1 but
not in q2.

An example of a CPDD is given in Figure 1. This data structure can be seen
as a deterministic decision graph for determining which face of P contains a
given point v ∈ Rn. This operation consists in starting from the initial node, and
then following edges labeled by constraints satisfied by v. The procedure ends
either upon reaching a node q labeled by constraints saturated by v, in which
case q represents the face of P containing v, and the polarity of q indicates
whether v belongs to P , or when no outgoing edge can be followed from the
current node, corresponding to v 6∈ P . Note that if several paths can be followed

5

x2

(1, 1)

(3, 2)

x1

(2, 4)

P :


−3x1 + x2 ≤ −2
x1 − 2x2 ≤ −1
3x1 − x2 ≤ 7
−x1 + 2x2 ≤ 6

(4, 5)

< −2

T

x1 − 2x2 = −1−3x1 + x2 = −2 3x1 − x2 = 7 −x1 + 2x2 = 6

x1 − 2x2 < −1 3x1 − x2 < 7

−3x1 + x2 < −2 −x1 + 2x2 < 6

−3x1 + x2 = −2

−x1 + 2x2 = 6

x1 − 2x2 = −1

3x1 − x2 = 7

−x1 + 2x2 = 6 −3x1 + x2 = −2x1 − 2x2 = −1 3x1 − x2 = 7

3x1 − x2 < 7
−x1 + 2x2 < 6

x1 − 2x2 < −1
3x1 − x2 < 7

−3x1 + x2 < −2
−x1 + 2x2 < 6

−3x1 + x2 < −2
x1 − 2x2 < −1

< −1

−3x1 + x2 = −2 x1 − 2x2 = −1 3x1 − x2 = 7 −x1 + 2x2 = 6

x1 − 2x2 −3x1 + x2
< −2

x1 − 2x2
< −1

< 7

3x1 − x2
3x1 − x2 < 7

−x1 + 2x2
< 6

−x1 + 2x2 < 6

−3x1 + x2

Fig. 1: Example of CPDD.

from a given node, one of them can be chosen arbitrarily without the need for
backtracking, since for every pair of nodes q1, q2 ∈ Q, all paths linking q1 to q2
are labeled with the same constraints. Intuitively, a CPDD can be understood
as a compact representation of a deterministic finite automaton accepting the
points of a convex polyhedron [8, 7].

3.2 Decomposition of Convex Polyhedra

Like the double description method, CPDDs suffer from combinatorial explosion
in high dimensional spaces. For instance, a simple polyhedron such as the n-cube
[0, 1]n has 2n vertices, which makes its representation grow exponentially with
the dimension n.

In this example, each constraint involves a single variable. In order to check
whether a given point p = (p1, . . . , pn) belongs to the cube, one can separately
check that each pi is inside [0, 1]. This essentially amounts to decomposing the
n-cube into a Cartesian product of intervals, that can be processed individually.
This idea is developed in [17], which shows how to determine syntactically blocks
of variables that can be considered independently from each other.

This approach is however not sufficient for handling the reachable sets com-
puted by state-space exploration tools. In particular, the analysis of timed au-
tomata often produces constraints that involve all variables, expressing that
they share an identical rate of variation with time. Another example is given by
the polyhedron in Figure 1, which depicts a typical region obtained during the
state-space exploration of a linear hybrid system.

In this latter example, one notices however that the polyhedron can become
decomposable into a Cartesian product of two intervals by expressing it in a dif-
ferent coordinate system, for instance the one defined by the basis {(2, 1), (1, 3)}.

6

The idea behind our improved decomposition scheme is to detect whether a suit-
able coordinate system exists, that makes the polyhedron decomposable into a
Cartesian product of simpler ones. The main advantage of this strategy over a
purely syntactic one is that the decomposability property of polyhedra remains
unaffected by changes of coordinate system, or equivalently, by non-singular lin-
ear transformations (cf. Section 4.2).

We define a decomposition of a finite set of vectors S ⊂ Rn as a partition of
S into blocks, such that:

– If a block B contains at least two elements, then each of them can be written
as a linear combination of the other ones. Formally, if B = {b1, . . . , bk} with
k ≥ 2, then

∀i ∈ [1, k] : ∃β1 . . . , βk ∈ Rn : bi =
∑

j∈[1,k], j 6=i

βjbj .

– For each block B, there does not exist a non-zero linear combination of the
elements of B that can be written as a linear combination of the elements
of the other blocks. Formally, if B = {b1, . . . , bk}, then∑

bi∈B

βibi =
∑

bi
′∈S\B

β′ibi
′ ⇒

∑
bi∈B

βibi = 0.

Intuitively, a decomposition of a set of vectors partitions this set into blocks
that are linearly independent from each other. For example, the set {(1, 1, 1),
(1, 1, 2), (−2,−2,−2), (1,−1, 0), (0, 1, 1)} admits the decomposition {{(1, 1, 1),
(−2,−2,−2)}, {(1, 1, 2), (1,−1, 0), (0, 1, 1)}}.

If P1 and P2 are two partitions of a set S, then P1 is finer than P2 (or,
equivalently, P2 is coarser than P1) if every block of P1 is a subset of some block
of P2. This notion generalizes to decompositions as follows.

Proposition 1. If D1 and D2 are decompositions of a set S, then the partition

D = D1 ∩D2 = {Bi ∩B′j | Bi ∩B′j 6= ∅ ∧ Bi ∈ D1, B
′
j ∈ D2}

is itself a decomposition.

This property naturally leads to a notion of finest decomposition of a set,
obtained by computing the intersection of all its decompositions. This finest
decomposition is, by definition, unique.

The finest decomposition of a given set S can be computed by an incremental
procedure that considers successively all vectors v in S. At each step, one checks
whether v can be expressed as a linear combination of the vectors that have
already been dealt with. In the positive case, the blocks containing these vectors
have to be merged into a single one, to which the vector v is added. Otherwise,
a new block is created, containing only v.

We are now ready to apply our notion of decomposition to polyhedra. The
canonical decomposition of a convex polyhedron P ⊆ Rn is defined as the finest

7

decomposition of the set of normal vectors of its bounding hyperplanes, that is,
of the set {a1, . . . ,ak} where P = {x ∈ Rn |

∧k
i=1 ai.x#i bi}.

Let D = {B1, . . . , Bk} be the canonical decomposition of P . In order to ex-
press P in a coordinate system in which it can be decomposed into a Cartesian
product of simpler polyhedra, one builds a new basis of Rn by computing individ-
ual bases for the blocks B1, . . . , Bk, and then taking their union. The next step
is to perform a coordinate change by expressing the constraints of P in terms of
this new basis. This operation will turn a constraint ai.x#i bi into ai

′.x#i b
′
i,

in which the components of ai
′ are all zero, except for the ones provided by

the basis of the block Bj containing ai. In other words, if Bj contains up to
d linearly independent vectors, then the constraint ai

′.x#i b
′
i will only involve

d variables. The change of coordinates induced by the canonical decomposition
of P is the one that maximizes the possibility of separating syntactically the
variables.

3.3 Decomposed Convex Polyhedron

A Decomposed Convex Polyhedron representing a polyhedron P ⊆ Rn is a tuple
(A, b, q0, C), where

– (A, b) with A ∈ Zn×m and b ∈ Qn is a linear transformation such that P =
AQ+ b, where Q ∈ Rm is a fully dimensional polyhedron (cf. Section 2.3).

– q0 is an initial node labeled with the canonical decomposition D of Q, and
its associated change of coordinates.

– C is a finite set of CPPDs, each of them being associated to an element of
D. One thus has |C| = |D|. The transition from q0 to an element of C is
called a decomposition branch. Each decomposition branch is labeled by its
corresponding variables in the new coordinate system.

x2

(1, 1)

(3, 2)

x1

(2, 4)

P :


−3x1 + x2 ≤ −2
x1 − 2x2 ≤ −1
3x1 − x2 ≤ 7
−x1 + 2x2 ≤ 6

=


−y1 ≤ −2
y2 ≤ −1
y1 ≤ 7
−y2 ≤ 6

(4, 5)
y1 = 3x1 − x2
y2 = x1 − 2x2

y1 = 2
y1 = 7

y1 y2

y2 = −6

y2 = −1
y2 = −6

y2 = −1y1 = 7y1 = 2

T

y1 > 2 y2 < −1 y2 > −6y1 < 7

T

y1 < 7 y1 > 2 y2 > −6 y2 < −1

Fig. 2: Example of DCP.

8

An example of DCP is given in Figure 2. In this example, the represented
polyhedron is fully dimensional, thus the transformation (A, b) can be chosen
as the identity relation, which we do not depict for clarity sake. Decomposi-
tion branches are denoted by dashed edges. The set of normal vectors of the
constraints is {(−3, 1), (1,−2), (3,−1), (−1, 2)}, the canonical decomposition of
which is {{(−3, 1), (3,−1)}, {(1,−2), (−1, 2)}}. The basis of R2 induced by this
decomposition is {(3,−1), (1,−2)}.

In order to determine whether a given point v ∈ Rn belongs to a polyhe-
dron P represented by a DCP (A, b, q0, C), the first step consists in computing
v′ ∈ Rm such that v = Av′+b. If no such vector exists, then the answer is nega-
tive. Otherwise, the coordinate change associated to q0 is applied to v′, yielding
vectors y1, . . .yk such that k = |C| and dimv′ = dimy1 + · · · + dimyk. One
then runs the point location procedure described in Section 3.1 for one yi in
each of the k decomposition branches, all of which have to succeed in order to
conclude that v belongs to P . Determining which face of P contains v amounts
to combining together the faces reached in each decomposition branch. For ex-
ample, in Figure 2, the point v = (2, 1.5) is found to belong to the universal
(bottom) node in the branch labeled by y1, and to the node y2 = −1 in the one
labeled by y2. The corresponding face of P is thus x1 − 2x2 = −1.

Finally, it is worth mentioning that in the case of a polyhedron with a lineality
space of non-zero dimension d, our decomposition strategy will produce d trivial
decomposition branches, associated to the universal set. Such branches do not
have to be explicitly constructed and can be omitted in an actual implementation
of the data structure.

4 Operations

4.1 Intersection

We now discuss the computation of operations over convex polyhedra represented
by DCPs, starting with the intersection P1∩P2 of two given polyhedra P1 and P2.
These polyhedra may define different decompositions. We go around this problem
by proceeding incrementally, starting from P1 and successively intersecting the
polyhedron with each constraint of P2.

Dealing with Decompositions In order to intersect a polyhedron P with a
constraint c.x# δ, the first step consists in inserting c in the current decompo-
sition of P , following the procedure outlined in Section 3.2. If c is placed in a
single existing branch, or in a newly created one, then the intersection can be
computed locally over the CPDD associated to this branch. Otherwise, if several
decomposition blocks become merged, then a single CPDD corresponding to the
Cartesian product of their associated branches first needs to be constructed. The
intersection operation is then computed over this CPDD, leaving the other de-
composition branches untouched. Then, after having intersected a CPDD with a

9

constraint, the result is inspected in order to detect whether it is further decom-
posable. This is achieved by applying the procedure of Section 3.2 to its system
of constraints. A final step is to check whether the resulting polyhedron is fully
dimensional, which amounts to inspecting the bottom component of the CPDD
of the branch affected by the intersection. Depending on the outcome of this
operation, it may be needed to adapt the linear transformation of the DCP.

CPDD Intersection The intersection of a polyhedron P represented by a
CPDD with a constraint c.x# δ is computed by means of a coloring procedure,
consisting in labeling the nodes of the CPDD with a color that indicates how
they are affected by the operation.

Recall that the CPDD nodes correspond to the faces of P . The coloring
scheme uses the colors Green, Red, Blue, and Yellow. A face F is colored Red if
∀x ∈ F : c.x ≥ δ ∧ ∃x ∈ F : c.x > δ (no point in F satisfies the open form of
the constraint), Green if ∀x ∈ F : c.x ≤ δ ∧ ∃x ∈ F : c.x < δ (all points in F
satisfy the closed form of the constraint), Blue if ∀x ∈ F : c.x = δ (all points in
F saturate the constraint), and Yellow if ∃x,y ∈ F : c.x < δ ∧ c.y > δ (some
points in F satisfy the constraint, and some others do not).

The color of all nodes can be computed by first coloring the minimal non-
trivial faces of P , and then propagating this information through its face lattice.
Consider for instance the case of a face F that has a direct ascendant F1 labeled
Green, and another one F2 labeled Red. Thus, there exist x1 ∈ F1 such that
c.x1 < δ and x2 ∈ F2 such that c.x2 > δ. Since F1 ∪ F2 ⊆ F , the face F must
be colored Yellow.

Similar propagation rules are easily obtained for all cases, except for a tech-
nical difficulty arising when P is unbounded. In such a case it is possible for a
face G to have a single direct ascendant F . In order to determine the color of G
from the color of F , one then needs to take into account a direction d from F
to G, defined as a vector satisfying ∀x′ ∈ G : ∃x ∈ F, λ ≥ 0 : x′ = x+ λd. This
direction will be colored Green if it is compatible with the constraint (c.d < 0),
Red if it is not (c.d > 0), and Blue if it saturates it (c.d = 0). It will then be
considered as an additional ascendant of G. Intuitively, this direction simulates
a face F ′ with the same dimension as F , located infinitely far away from F in
the same direction as G.

After all nodes have been colored, a CPDD representing the result of the
intersection is obtained as follows. All Green and Blue nodes remain unchanged,
since they represent faces that satisfy c.x ≤ δ. Similarly, Red nodes disappear,
since all points of their associated face violate the constraint. Yellow faces F
are split into two new faces: A first one F1 = F ∩ {x | c.x ≤ δ} with the same
dimension as F , and another one F2 = F ∩ {x | c.x = δ} of smaller dimension.
Note that F1 is associated with the same set of saturated constraints as F , and
can thus be considered as being a modified copy of F .

After having computed all the faces of the resulting polyhedron, it remains
to restore the inclusion relation between them. For the nodes left untouched by
the intersection operation, such as Green and Blue ones, this information can

10

simply be copied from the original CPDD. For Yellow nodes, an additional step
needs to be performed. Consider two Yellow nodes F and G such that F is a
direct ascendant of G. The nodes F and G will respectively be split into F1, F2,
and G1, G2, where F2 (resp. G2) is a direct ascendant of F1 (resp. G1). In this
situation, one has F2 ⊂ G2, hence an edge needs to be added linking F2 to G2.
A similar phenomenon occurs when a Blue face F has a Green direct descendant
G, that has a Yellow direct descendant H. The node H is split into H1 and
H2 with dimH2 < dimH1. In this case, one has F ⊂ H2, hence an edge must
be added between those nodes. These two situations are illustrated in Figure 3
(added edges are in bold).

(Yellow)

F

(Yellow)

G

(Blue)

F

(Green)

G

(Yellow)

H

F2

G2

F1

G1 H1

G

F

H2

Fig. 3: Restoring the inclusion relation between faces.

A pseudocode version of the CPDD intersection algorithm is sketched in
Figure 4.

Implementation Issues In our implementation, the coloring procedure is im-
plemented lazily, meaning that it only considers the nodes that will potentially
be present in the resulting CPDD. In particular, the descendants of a Red node
will not be explored, except if they are reached by another path. When several
decomposition branches need to be merged upon processing a new constraint,
the CPDD representing their Cartesian product is not explicitly constructed but
computed on-the-fly, which helps keeping the memory used by the procedure un-
der control. Finally, we keep a canonical double representation of the maximal
and non-trivial minimal faces of polyhedra within their respective nodes of their
face lattice. This information makes it possible to speed up the computation of
the color of minimal faces, as well as the check for full dimensionality.

4.2 Linear Transformations

We now address the problem of computing the image of a convex polyhedron
P ⊆ Rn represented by a DCP by an affine transformation π : x 7→ Ax + b,
with A ∈ Qn×n and b ∈ Qn.

There are two cases to consider. First, if A is a non-singular matrix, then
applying the transformation amounts to expressing P in a new coordinate sys-
tem. The decomposition of P and the structure of its face lattice are thus left

11

Color(node N, constraint C):

if N is minimal:

compute N.color from the saturated constraints of N

else:

S = set of colors of the direct ascendants of N

if S == { Green } or S == { Green, Blue }: N.color = Green

if S == { Red } or S == { Red, Blue }: N.color = Red

if S == { Blue}: N.color = Blue

if Yellow in S: N.color = Yellow

if Green in S and Red in S: N.color = Yellow

SplitYellowNodes(node N, constraint C):

if N.color == Yellow:

add new node N2 and new edge from N2 to N

for all direct ascendants M of N:

if M.color == Yellow:

add new edge from M to N2

if M.color == Green:

for all direct ascendants L of M:

if L.color == Blue:

add new edge from L to N2

Intersect(CPDD P, constraint C):

for all N:

N.color = undefined

FIFO Queue Q = { }

Q.put(P.initialNode)

while not IsEmpty(Q):

Node N = Q.get()

if N.color == undefined:

Color(N, C)

if N.color != Red or MinimalNonTrivial(N):

for all direct descendants M of N:

Q.put(M)

Q.put(P.initialNode)

while not IsEmpty(Q)

Node N = Q.get()

SplitYellowNodes(N, C)

for all direct descendants M of N:

Q.put(M)

CheckFullDimensionality(P)

Fig. 4: CPDD intersection algorithm.

12

unchanged, and the operation can be implemented by translating the constraints
of P in the new coordinate system, and then updating the labels of the nodes
and edges of the DCP accordingly.

If on the other hand A is singular, then the transformation represents a
projection, mapping P into a polyhedron P ′ = π(P) such that dimP ′ = rank(A),
hence dimP ′ < dimP . It is well known that P ′ is itself a convex polyhedron,
and that for each face F ′ of P ′, there exists a face F of P such that π(F) = F ′.
Moreover, the face lattice of P ′ shares the same structure as the one of P .

W.l.o.g., we assume rank(A) = n − 1, since any projection can easily be
expressed as a sequence of projections that satisfy this hypothesis. The first
step of the computation consists in checking whether the decomposition of the
DCP can be preserved. This is done by computing a direction for the projection,
defined as a vector d that satisfies Ad = 0. This intuitively means that two
points that only differ in a multiple of this direction are projected identically.
In the current decomposition, all the branches that are not orthogonal to d
(i.e., containing a vector a such that a.d 6= 0) must be merged together. The
projection is then applied separately to the CPDD associated to each branch.

Consider a CPDD representing a polyhedron P ⊆ Rn. The computation
of its projection by π proceeds bottom-up in its face lattice, as opposed to
the intersection operation that was carried out in top-down order. We start by
projecting the trivial face of dimension n (corresponding to the whole polyhedron
P). This projection yields the trivial face P ′ = π(P), of dimension n− 1.

The next step consists in projecting the following two layers, that is, the facets
of P (of dimension n− 1), and their direct ascendants (of dimension n− 2). The
projection π(F) of a facet F of P may either be of dimension n− 1 or n− 2. In
the former case, it corresponds to the unique trivial face of dimension n − 1 of
P ′. In the latter, the set π(F) needs to be explicitly computed.

The projection π(F) of a face F of P such that dimF = n− 2 can either be
a face of P ′ (of dimension n − 2 or n − 3), or it will not be a face of P ′. These
situations are distinguished by performing Fourier-Motzkin elimination. This is
illustrated in Figure 5, the two parts of which show a vertex (of dimension 0)
that respectively remains as a face of P ′, or vanishes after projecting out x2.

d

{
x1 + x2 ≤ 1

−x1 + x2 ≤ 1

{
−x1 + x2 ≤ 1

−x1 − x2 ≤ −1

x2

x2

x1x1

d

Fig. 5: Effect of Fourier-Motzkin projection.

13

The major difference with the double description method [22, 11] is that
we only apply Fourier-Motzkin elimination to the constraints that intersect at
the face of interest, which are readily determined using the adjacency relation
represented in the face lattice. This is the key to the efficiency of our procedure.

After having projected the first two non-trivial layers, it remains to compute
the projection of the other faces. Since the face lattice of P ′ matches the one
of P , this is simply done by following the structure of this lattice in bottom
up order, computing each face as the meet (thus, the intersection), of its direct
descendants. The resulting representation of P ′ is, by construction, free from
redundancy in its constraint and generator systems.

Finally, the computation of the projection of a DCP is followed by a cleanup
step aimed at detecting further decompositions and checking full dimensionality.
This step is identical to the last operation of the insersection algorithm presented
in Figure 4.

5 Experimental Results

In order to assess the advantages of DCPs against other solutions for dealing
with convex polyhedra, we have implemented a prototype tool that builds the
minimal DCP representing a polyhedron given by its set of constraints. Unsur-
prisingly, other tools based on the double description method do not come with
benchmarks containing problems expressed in high dimensional spaces. Our first
idea was to construct a set of examples composed of polyhedra that are decom-
posable by design. Our implementation handles them in an exponentially faster
way than the other tools that we have considered, but this was expected since
these examples were specifically tailored to our decomposition mechanism.

Obtaining instances of realistic problems related to the state-space explo-
ration of hybrid systems, which was the main motivation for this work, is not easy
since to the best of our knowledge, no existing tool can handle high-dimensional
problems. We therefore turned to the domain of SMT solving, for which exten-
sive benchmarks of problems involving a large number of variables are available.
Our approach consisted in running the SMT prover veriT [10] on the verifi-
cation problem uart-9.base2 from the QF LRA benchmark of the SMT-LIB
library [6]. During its operation, the SMT prover generates systems of linear
inequalities that are checked for satisfiability by an external simplex procedure.
We replaced this procedure by an explicit construction of a DCP representing
the corresponding convex polyhedron.

The results of this experimental evaluation are summarized in Figure 6. We
compare the execution time (in seconds) of our prototype implementation against
cdd [16] and PPL [4], which are based on the double description method with
some clever optimizations, as well as lrs [2], which implements the reverse search
algorithm for computing the vertices of polyhedra. The experiments were carried
out on a computer equipped with a i7-970 processor running at 3.2 GHz, with

2 The test cases are available at http://www.montefiore.ulg.ac.be/~boigelot/

research/atva2018-case-study.tgz.

14

turbo boost disabled. Timeout was set at one hour. The indices 1, 50, 100, . . . of
the instances correspond to the steps at which these problems were produced by
veriT (selected arbitrarily), and not to the increasing value of some parameter. In
this setting, the results show that our approach (DCP) compares quite favorably
against the other tools.

Problem #Var. #Constr. DCP PPL cdd lrs

dump-1 80 171 0.036 0.019 0.157 0.041
dump-50 129 402 0.091 0.158 1.306 0.240
dump-100 141 482 0.111 1006.717 2.014 0.350
dump-150 153 561 0.123 timeout 2.066 0.490
dump-200 166 639 0.148 timeout 4.458 0.650
dump-250 171 732 0.163 timeout 5.401 0.899

Fig. 6: Experimental results (times in s).

6 Conclusions

This paper introduces a new data structure, the Decomposed Convex Polyhe-
dron (DCP), for representing symbolically convex polyhedra in Rn. This data
structure is based on an explicit representation of the whole face lattice of poly-
hedra, including complete adjacency information between its faces, which makes
some operations (such as projection) more efficient. It is able to scale up to high
dimensional spaces thanks to a novel decomposition mechanism that is not af-
fected by changes of coordinates. DCPs have been evaluated experimentally with
a prototype implementation. On an SMT solving case study related to software
verification, they perform better than other existing tools for handling convex
polyhedra.

Future work will focus on implementing additional operations on DCPs, such
as the time-elapse operator needed for exploring the state-space of linear hybrid
systems, and on improving our prototype with some optimization mechanisms
borrowed from other tools. The practical cost of operations performed over DCPs
also needs to be thoroughly evaluated in the scope of a more detailed case study.

Acknowledgment

The authors wish to thank Pascal Fontaine and Laurent Poirrier for their pre-
cious help in obtaining relevant benchmarks.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

15

2. Avis, D.: A revised implementation of the reverse search vertex enumeration algo-
rithm. Polytopes — Combinatorics and Computation pp. 177–198 (2000)

3. Bachem, A., Grötschel, M.: Characterizations of adjacency of faces of polyhedra.
Mathematical Programming at Oberwolfach pp. 1–22 (1981)

4. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming 72(1–2), 3–21 (2008)

5. Bagnara, R., Hill, P.M., Zaffanella, E.: Applications of polyhedral computations
to the analysis and verification of hardware and software systems. Theoretical
Computer Science 410(46), 4672 – 4691 (2009)

6. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Proc.
SMT’10 (2010)

7. Boigelot, B., Herbreteau, F., Mainz, I.: Acceleration of affine hybrid transforma-
tions. In: Proc. ATVA’14. LNCS, vol. 8837, pp. 31–46. Springer (2014)

8. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear
arithmetic over the integers and reals. ACM Transactions on Computational Logic
6(3), 614–633 (2005)

9. Bournez, O., Maler, O., Pnueli, A.: Orthogonal polyhedra: Representation and
computation. In: Proc. HSCC’99. LNCS, vol. 1569, pp. 46–60. Springer (1999)

10. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: An open,
trustable and efficient SMT-solver. In: Proc. CADE’09. pp. 151–156. LNCS,
Springer (2009)

11. Chernikova, N.: Algorithm for finding a general formula for the non-negative so-
lutions of a system of linear inequalities. USSR Computational Mathematics and
Mathematical Physics 5(2), 228 – 233 (1965)

12. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc.
POPL’77. pp. 238–252. ACM Press (1977)

13. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proc. POPL’78. pp. 84–96. ACM (1978)

14. Degbomont, J.F.: Implicit Real-Vector Automata. Ph.D. thesis, Université de Liège
(2013)

15. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Inter-
national Journal on Software Tools for Technology Transfer 10(3), 263–279 (2008)

16. Fukuda, K.: cdd. https://www.inf.ethz.ch/personal/fukudak/cdd_home/
17. G. Singh, M.P., Vechev, M.: Fast polyhedra abstract domain. In: Proc. POPL’17.

pp. 46–59. ACM (2017)
18. Halbwachs, N., Proy, Y., Raymond, P.: Verification of linear hybrid systems by

means of convex approximations. In: Proc. SAS’94. LNCS, vol. 864, pp. 223–237.
Springer (1994)

19. Halbwachs, N., Proy, Y.E., Roumanoff, P.: Verification of real-time systems using
linear relation analysis. Formal Methods in System Design 11(2), 157–185 (1997)

20. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Proc. CAV’09. pp. 661–667. LNCS, Springer (2009)

21. Leverge, H., Wilde, D.: PolyLib. http://www.irisa.fr/polylib/
22. Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The double description

method, pp. 51–74. Princeton University Press (1953)
23. Schrijver, A.: Theory of linear and integer programming. Wiley (1999)

16

