
Effective development of a finite-
element solver at the University

Romain BOMAN,

Luc PAPELEUX,

Jean-Philippe PONTHOT

University of Liège

Departement of

Aerospace and Mechanical Engineering

ICSAAM

August 28-31, 2018 – Tarbes, France

https://www.linkedin.com/in/rboman
https://www.linkedin.com/grp/home?gid=8279308
https://www.facebook.com/GeeksAnonymesLiege/

2

J.-P. Ponthot

Our lab within the university

• Numerical simulation
• Solid mechanics
• Finite element method
• Software development

Computational Mechanics

hydroforming of a tube

Dept of Aerospace and
Mechanical Engineering

(Faculty of Applied Sciences)

Our main simulation code: Metafor
3

Implicit Finite-Element solver
for the numerical simulation of large deformations of solids

•ALE Formalism, remeshing.
• Thermomechanical time-integration schemes.

•Modelling of cracks,
fracture.
•Contact algorithms.

•Nonlinear constitutive laws.
•Mesh generation from medical

images.

• Fluid finite elements.
•Monolithic schemes.
•Coupling with extenal

solvers.

Metal Forming applications Crash / Impact

Biomechanics Fluid/structure
interaction

Typical simulation
4

Modelling of a roll forming mill
(forming of beams and tubes from steel sheets)

Current team
5

D. Boemer
(PhD student)

R. Boman
(Senior Researcher)

M.L. Cerquaglia
(PhD student)

L. Papeleux
(Senior Researcher)

3 PhD students – 2 senior researchers – 1 visiting academic

P. Flores
(visiting academic)

C. Laruelle
(PhD student)

Former developers
6

http://metafor.ltas.ulg.ac.be/dokuwiki/team

A. Stephany E. Biotteau C. Laurent J. Xhardez L. Vigneron L. Adam

L. Noels L. Ziane M. Mengoni O. Karaseva P. Bussetta P.-P. Jeunechamps

R. Koeune S. Hannay S. Trichon V.Q. Bui V. d’Otreppe W. Guo

25 contributors to the present code – from 2000

C. Canales Y. CarrettaY. Crutzen G. Deliége C. Hennuyer P. JorisG. Wautelet

http://metafor.ltas.ulg.ac.be/dokuwiki/team

7

Industrial partners

= owns a Metafor license

Scope
8

1. Practical Management of Simulation Codes
• Metafor… from 1992 to 2018

2. Numerical Applications
• Introduction to ALE formalism
• Thixoforming
• Continuous Roll forming
• Friction Stir Welding
• Additive manufacturing

3. Conclusions

Scope
9

1. Practical Management of Simulation Codes
• Metafor… from 1992 to 2018

2. Numerical Applications
• Introduction to ALE formalism
• Thixoforming
• Continuous Roll forming
• Friction Stir Welding
• Additive manufacturing

3. Conclusions

My PhD project in 1997
10

Metafor
Ponthot’s PhD

doc

1992

Metafor
+powders

Metafor
+contact

Metafor
+optimisation

1997

Metafor
+shells

Metafor
+thermal,

+3D

tests

Metafor
+remeshing

1996

My PhD
project!

Good luck!

PhD supervisor

State of Metafor in 1997
11

Source Code?
• “Spaghetti” code (Fortran 77)
• Several versions of the code

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Regression testing?
• Non-automatic and

incomplete procedure.

Documentation?
• An outdated technical

report from 1992
printed on paper.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

…and then?
12

During 3 years I did almost no research at all!

In 2000, I seriously considered stopping my PhD research...

FORTUNATELY,

my supervisor gave me the opportunity to solve all these problems and
build a framework that would allow us to avoid the errors from the past.

One unique version
since 2001.

Almost no loss of
development since

then!

TODAY

How?

State of Metafor in 1997
13

Source Code?
• “Spaghetti” code (Fortran 77)
• Several versions of the code

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Regression testing?
• Non-automatic and

incomplete procedure.

Documentation?
• An outdated technical

report from 1992
printed on paper.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

State of Metafor in 1997
14

Source Code?
• “Spaghetti” code (Fortran 77)
• Manual management of revisions

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Regression testing?
• Non-automatic and

incomplete procedure.

Documentation?
• An outdated technical

report from 1992
printed on paper.

User friendliness?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

All these problems have very elegant solutions
in the “computer science” world

BUT

…we are neither “computer scientists” nor “IT specialists”!

I’m here to
“do science”,
not coding!

Even worse:
• Some of my colleagues do not want to learn

how it works.
• Moreover these things are not taught in class

(in ULiège).

State of Metafor in 1997
15

Source Code?
• “Spaghetti” code (Fortran 77)
• Manual management of revisions

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Regression testing?
• Non-automatic and

incomplete procedure.

Documentation?
• An outdated technical

report from 1992
printed on paper.

User friendliness?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

For each problem, we have tried to find a compromise
between both worlds

Welcome to the
academic world!

Welcome to the
computer science world!

let’s code!let’s publish!

characters from http://geek-and-poke.com/

State of Metafor
16

Source Code?
• “Spaghetti” code (Fortran 77)
• Several versions of the code

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Regression testing?
• Non-automatic and

incomplete procedure.

Documentation?
• An outdated technical

report from 1992
printed on paper.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

State of Metafor
17

Source Code?
• “Spaghetti” code (Fortran 77)
• Several versions of the code

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Regression testing?
• Non-automatic and

incomplete procedure.

Documentation?
• An outdated technical

report from 1992
printed on paper.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

Source code
18

Very long tradition of Fortran 77 for implementing the finite element method...

... and a lot of other
computation programs.
(cfr BLAS: http://www.netlib.org/blas/
MUMPS: http://mumps.enseeiht.fr/ , etc.)

Still today, all the
famous older

brothers of Metafor
are written in

Fortran 77!

... also in the industry:

http://www.netlib.org/blas/
http://mumps.enseeiht.fr/

Source code
19

Yes, it is obviously possible to write a
good finite-element solver in Fortran…

BUT

• the language does not help you
produce clean/maintainable code

• the maintenance effort increases
with time!

Example of a subroutine call in Metafor written in Fortran
(2000)

Main problems of Fortran 77

Source code
20

• Memory management?
No dynamic memory allocation:
➢ any modification is very instrusive

• Modularity?
No easy way to gather similar
variables/ subroutines together
➢ structures?

• Features?
Necessity to learn another
programming language: (graphics, GUI,
use of libraries, network, etc.)

partially solved with
later versions of Fortran

remaining problem

We finally decided to rewrite Metafor in C++ and
take advantage of Object Oriented Programming

Main problems of Fortran 77

Source code
21

The resulting source code (300k lines) can be split into 33 dynamic libraries

HPC lib

lib GUI

CAD lib

Researchers/projects are
isolated into THEIR OWN
library.

➔ Limited risk of conflict.
➔ Bad/duplicated code

remains confined.
➔ Avoid the use of high-level

objects in low-level code.

Metafor.exe
executable

mtGeo.dll
geometry

mtMath.dll
math tools

mtFEM.dll
FE method

mtMaterials.dll
Constitutive laws

mtViz.dll
visualisationmtKernel.dll

access to data

mtThixo.dll
law from a PhD

Private
(NDA)

mtSabca.dll
Private routines
from a company

Not compiled on
supercomputers

set of tools commonly used
in the IT world

“version control systems”

gmail

set of tools commonly
used in academia

winzip

?

Source Code
22

Our goals
• One single reference version for everybody (4-10 simultaneous researchers).
• Try to gather all the results / code / models from past projects.
• Keep track of the whole history of modifications in the source code.

How to have one single set of source files?

Source Code
23

Repository

checkout:
get any version
as « working copy »

commit:
send changes and
create a new
revision

update:
retrieve and merge
modifications of
others

Version control systems - How does it work?

holds the
complete
history of
modifications

Most basic workflow

Daily usage should be
very easy and
intuitive because my
colleages will not
read the manual…

➔ No “branches”

Source Code
24

Repository

checkout:
get any version
as « working copy »

commit:
send changes and
create a new
revision

update:
retrieve and merge
modifications of
others

Version control systems - How does it work?

holds the
complete
history of
modifications

Most basic workflow

Additional safeguard:

➔ A series of tests
(“test suite”) should
succeed before any
commit.

➔ The latest version
is always stable.

State of Metafor
25

Source Code?
• “Spaghetti” code (Fortran 77)
• Several versions of the code

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Regression testing?
• Non-automatic and

incomplete procedure.

Documentation?
• An outdated technical

report from 1992
printed on paper.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

State of Metafor
26

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Regression testing?
• Non-automatic and

incomplete procedure.

Documentation?
• An outdated technical

report from 1992
printed on paper.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

State of Metafor
27

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Regression testing?
• Non-automatic and

incomplete procedure.

Documentation?
• An outdated technical

report from 1992
printed on paper.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Regression testing
28

Aims
• Non regression of the algorithms

and the numerical models.
• Avoid conflicts between people.

set of tools commonly
used in academia

manual testing
(when something is already broken)

set of tools commonly used
in the IT world

“continuous integration”

Travis CICTest CDash

shell scripts

?

Regression testing
29

Principles of our “test suite”
• In-house python script.
• Easy procedure – “just run the script!”
• Runs a series of about 3100 FE models, in parallel if the machine allows it.
• Lasts less than 1 night on a classical desktop PC (~75000s CPU = ~5h30 on a 4-

core PC).
• 4 configurations (various OS/compilers):
• Each test extracts “well chosen” results that are compared to the results of the

previous version of the code (these results are committed with the source code.)

1. It is forbidden to commit without a full
success of the test suite.

2. Any untested development can be destroyed
(adding tests becomes mandatory).

2 simple rules

State of Metafor
30

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Regression testing?
• Non-automatic and

incomplete procedure.

Documentation?
• An outdated technical

report from 1992
printed on paper.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

State of Metafor
31

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Documentation?
• An outdated technical

report from 1992
printed on paper.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Regression testing?
• Mandatory.
• In-house script.

State of Metafor
32

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Documentation?
• An outdated technical

report from 1992
printed on paper.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Regression testing?
• Mandatory.
• In-house script.

Documentation
33

documentation
of changes

What was modified? When?
By whom? Why?

documentation
of the source

code

user
documentation

Usage of the program

3 types of
documentation

svn log!

Doxygen!

LaTeX!

???

Documentation
34

Wiki system: Dokuwiki

https://www.dokuwiki.org/

Strong points
• Created 14 years ago.
• Very easy installation

(text-based DB).
• Numerous plugins.
• Regular / automatic updates.

• ... and no need to read a long
manual to edit a page.

http://metafor.ltas.ulg.ac.be/

https://www.dokuwiki.org/
http://metafor.ltas.ulg.ac.be/

Documentation
35

As any wiki:
• Online editing.
• Keep track of all changes.
• Importation of images,

videos, etc.

javascript rendering engine for equations:

Print

Online view

Online editor

Documentation
36

Documentation of source code changes (“commits”)

Each commit is fully documented
by its author on the wiki.

State of Metafor
37

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Documentation?
• An outdated technical

report from 1992
printed on paper.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Regression testing?
• Mandatory.
• In-house script.

State of Metafor
38

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Regression testing?
• Mandatory.
• In-house script.

Documentation?
• A wiki system on the

web.

State of Metafor
39

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Regression testing?
• Mandatory.
• In-house script.

Documentation?
• A wiki system on the

web.

Portability
40

Windows

Linux

Rule: The code should be easily built/tested on any (recent) platform

macOS

OS of supercomputers

Less user-friendly

Most popular OS

Libraries should be recompiled

Popular OS

Libraries should be recompiled

It is very important to let
developers work in their
preferred environment
(which is rarely Linux), then
build their code on
supercomputers for heavy
calculations.

Main problems
• the build system should be multi-platform (CMake).
• the dependencies should be limited and multi-platform.

Visualisation
41

Initially, 2 aims
• To see what we are doing, anytime.
• To make the software usage easier for

students and the industry.

Features
• 1 thread exclusively dedicated to

graphics running in parallel.
• The state of the memory is continuously

displayed in 3D.
• Nothing is written to disk.

Multi-platform libraries:
windows /
menus / buttons

3D display of the
problem

Example: Real-time visualisation during the simulations

State of Metafor
42

Portability?
• Depends on a library only

available as binaries on
supercomputers.

• Post-processing with a non-free
product.

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Regression testing?
• Mandatory.
• In-house script.

Documentation?
• A wiki system on the

web.

State of Metafor
43

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Regression testing?
• Mandatory.
• In-house script.

Documentation?
• A wiki system on the

web.

Portability?
• Runs on any recent desktop

computer and supercomputers.
• Own GUI / post-processor,

State of Metafor
44

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Regression testing?
• Mandatory.
• In-house script.

Documentation?
• A wiki system on the

web.

Portability?
• Runs on any recent desktop

computer and supercomputers.
• Own GUI / post-processor,

Input files
45

geo = domain.getGeometry()

p1 = geo.add(Point(1, 0.0, 0.0))
p2 = geo.add(Point(2, 1.0, 0.0))
p3 = geo.add(Point(3, 1.0, 1.0))
p4 = geo.add(Point(4, 0.0, 1.0))

c1 = geo.add(Line(1, p1, p2))
c2 = geo.add(Line(2, p2, p3))
c3 = geo.add(Line(3, p3, p4))
c4 = geo.add(Line(4, p4, p1))

• Parsing requires a lot of code.
• Error handling?
• New syntax to learn.

• Almost no source code at all!
• Error handling by python.
• Same syntax as internal C++.

Python scripts as input files

.poi
i 1 x 0.0 y 0.0
i 2 x 1.0 y 0.0
i 3 x 1.0 y 1.0
i 4 x 0.0 y 1.0

.cur
i 1 points 1 2
i 2 points 2 3
i 3 points 3 4
i 4 points 4 1

old home-made syntax python syntax

Input files
46

.poi
i 1 x 0.0 y 0.0
i 2 x 1.0 y 0.0
i 3 x 1.0 y 1.0
i 4 x 0.0 y 1.0

.cur
i 1 points 1 2
i 2 points 2 3
i 3 points 3 4
i 4 points 4 1

geo = domain.getGeometry()

def createCube(no, Lx, Ly, ox=0.0, oy=0.0):
p1 = geo.add(Point(1, ox, 0.0))
p2 = geo.add(Point(2, ox+Lx, 0.0))
p3 = geo.add(Point(3, ox+Lx, oy+Ly))
p4 = geo.add(Point(4, ox, oy+Ly))

c1 = geo.add(Line(1, p1, p2))
c2 = geo.add(Line(2, p2, p3))
c3 = geo.add(Line(3, p3, p4))
c4 = geo.add(Line(4, p4, p1))

for i in range(5):
createSquare(no=i, Lx=1.0, Ly=1.0, ox=i*2)

import myroutines
myroutines.createBeam()

What if I want to add:
• parameters?
• functions?
• branches, loops?
• …

old home-made syntax python syntax

“for” loop

call to a function

parameters

• all these features come at no cost!

Python scripts as input files

call to external
modules

Input files
47

No cost? Really?

Yes! a Python class is automatically created by
SWIG (free tool) for each C++ class.

from materials import *

mat = ElasticMat(E, nu)

model.setMaterial(mat)
model.run()

INPUT FILE

_materials.pyd

materials.py

class ElasticMat
{

double E, nu;
public:

ElasticMat(double, double);
T computeStress(T &strain);

…
};

ElasticMat.h

materials.i

%module materials
%{
#include "ElasticMat.h"
%}

%include "ElasticMat.h"

State of Metafor
48

Input files?
• Home-made input files.
• Error-prone obscure syntax.

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Regression testing?
• Mandatory.
• In-house script.

Documentation?
• A wiki system on the

web.

Portability?
• Runs on any recent desktop

computer and supercomputers.
• Own GUI / post-processor,

State of Metafor
49

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Regression testing?
• Mandatory.
• In-house script.

Documentation?
• A wiki system on the

web.

Portability?
• Runs on any recent desktop

computer and supercomputers.
• Own GUI / post-processor,

Input files?
• Python.

State of Metafor
50

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Regression testing?
• Mandatory.
• In-house script.

Documentation?
• A wiki system on the

web.

Portability?
• Runs on any recent desktop

computer and supercomputers.
• Own GUI / post-processor,

Input files?
• Python.

Extensibility
51

1. Extensibility with “Inheritance” in C++

class ElasticMat
{

double E, nu;
public:

virtual
T computeStress(T &strain);

};

ELASTIC MATERIAL

class ElPlastMat : public ElasticMat
{

double sig_yield, hardening;
public:

virtual
T computeStress(T &strain);

};

ELASTO PLASTIC MATERIAL

• In any object-oriented language, you can extend a class using “inheritance”.
• Example: extension of an elastic material to handle elasto-plasticity:

Purpose?
• The code using the material can be written without any conditional

statements and should never be modified.
➔ “ if the material is elastic, do this…. else, do that” is avoided.

• But, of course, the new code should be recompiled.

Extensibility
52

2. Inheritance of C++ classes in Python : “user subroutines”

Thanks to SWIG, the derived class can be written in Python!

class ElasticMat
{

double E, nu;
public:

virtual
T computeStress(T &strain);

};

ELASTIC MATERIAL (written in C++)

from materials import *

class ElPlastMat(ElasticMat):

def computeStress(self, strain):
compute stresses
from strains
using python cmds here…
return stress

ELASTO-PLASTIC MATERIAL (derived in Python)

This python code will be called
from C++!

✓ Very useful for students (FYP)

A new constitutive law is
available without any
compiler!

Extensibility
53

3. Extensibility via “python as a glue language”:
coupling with another solver

David Thomas

Metafor
Solid solver (C++)

fluid –
structure

solver

metafor.py

SU2.py

SU2
Fluid solver (C)

fluid-structure interaction (FSI)

Prof. V. Terrapon’s lab

Prof. J.-P. Ponthot’s lab

Extensibility
54

• Less source code: no need to code a home-made parser,

• Safety: errors are never ignored and can be correctly
handled.

• Complete Language: possibility to use loops, conditional
statements, objects, functions, ... in the input file.

• Extensibility: inheritance of C++ classes.

• Glue language: call to external programs, solvers.

Summary – Advantages of the Python interface

State of Metafor
55

Extensibility?
• None.

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Regression testing?
• Mandatory.
• In-house script.

Documentation?
• A wiki system on the

web.

Portability?
• Runs on any recent desktop

computer and supercomputers.
• Own GUI / post-processor,

Input files?
• Python.

State of Metafor
56

Source Code?
• Modular (C++).
• Source Code Management

with Subversion.

Portability?
• Runs on any recent desktop

computer and supercomputers.
• Own GUI / post-processor,

Regression testing?
• Mandatory.
• In-house script.

Documentation?
• A wiki system on the

web.

Input files?
• Python.

Extensibility?
• Python user-subroutines.
• Coupling with external

solvers.

Scope
57

1. Practical Management of Simulation Codes
• Metafor… from 1992 to 2018

2. Numerical Applications
• Introduction to ALE formalism
• Thixoforming
• Continuous Roll forming
• Friction Stir Welding
• Additive manufacturing

3. Conclusions

Introduction to ALE formalism
58

Eulerian formalism

✓ Undistorted mesh
 Free boundaries are difficult to

track
 History-dependent materials

are difficult to handle

Lagrangian formalism

 The mesh can be rapidly
distorted

✓ Free boundaries are
automatically computed

✓ History-dependent materials are
easier to handle

Kinematic description of the motion

Introduction to ALE formalism
59

Kinematic description of the motion

Arbitrary Lagrangian Eulerian
(ALE) formalism

• Extension of both previous
formalisms

• The mesh motion is uncoupled from
material motion

• ALE can be crudely seen as a
continuous remeshing procedure

• Mesh topology does not change
• Remapping of variables is faster than

classical remeshing

2 Families of ALE Problems
60

• Helps us keep well-shaped elements
despite large deformations

• Most often remeshing is completely
avoided

Benefits of ALE vs. Lagrangian models

1. Problems involving excessive mesh distortion

Example: axisymmetric forging

Lagrangian model ALE model

2 Families of ALE Problems
61

2. “Quasi-Eulerian” models

• The size of the model is decreased in the flow direction.
• Loading is easier.
• The element size may be optimised in the flow direction.
• The contact regions do not change.

Benefits of ALE vs. Lagrangian models

Lagrangian model (1755 FEs)

ALE model (954 FEs)

Example: cold rolling fixed

free

Scope
62

1. Practical Management of Simulation Codes
• Metafor… from 1992 to 2018

2. Numerical Applications
• Introduction to ALE formalism
• Thixoforming
• Continuous Roll forming
• Friction Stir Welding
• Additive manufacturing

3. Conclusions

Thixoforming
63

What is thixotropy?

• A thixotropic material behaves...
• … like a solid, at rest (a billet can sustain its own

weight).
• … like a liquid, during shearing (can be cut easily).

• Common examples: clays, muds, paints, tomato ketchup.
• Some alloys (Magnesium, Aluminium, Steels) exhibit a

semi-solid behaviour in a narrow range of T.

What is thixoforming?

• Taking advantage of this semi-solid state.
• The process combines advantages of casting and forging.

Thixoforming
64

Constitutive behaviour

cohesion degree
(microstructural state)

ҧ𝑓 = ത𝜎𝑉𝑀 − 𝜎𝑦 − 𝜂 ሶഥ𝜀 𝑣𝑝

R. Koeune

modified yield stress

𝜎𝑦 = 𝜎𝑦(ሶഥ𝜀 𝑣𝑝, ҧ𝜀𝑣𝑝, 𝜆, 𝑓𝑙) 𝜂 = 𝜂 (ሶഥ𝜀 𝑣𝑝, ҧ𝜀𝑣𝑝, 𝜆, 𝑓𝑙)

apparent viscosity

𝜆 = 𝜆(ሶഥ𝜀 𝑣𝑝, 𝑓𝑙)

Both liquid and solid formalisms are
contained in the proposed models!

liquid fraction
(phase change)

𝑓𝑙 = 𝑓𝑙(𝑇)

2
 N

EW
 IN

TE
R

N
A

L
V

A
R

IA
B

LE
S

“Extended yield criterion” for thixotropy

Thixoforming
65

Double cup extrusion – process description

• Production of an axisymmetric H-shape part, starting from a cylinder.
• Temperature controlled by induction heating.
• Experiments made in PIMW, Liège in collaboration with ENSAM, Metz.
• Material: 100Cr6 steel alloy.

Example of (half) part

Thixoforming
66

Double cup extrusion – mesh management

cohesion degree l

ALE mesh management
(numerical trick):

➔ An initial thin squeezed mesh is
added to the top of the billet

Thixoforming
67

Double cup extrusion - results
Tdie = 170 °C

Tdie = 130 °C

Tdie = 180 °C

• Good agreement between
experimental and numerical results.

• The model is able to predict the
residual stresses after unloading and
cooling to room temperature.

Thixoforming
68

A PhD project built from the results of other projects

Modelling
of Thixoforming

Materials &
FE formulations

Visco-plasticity

Contact
algorithms

ALE
formalism

Thermal
problems

Scope
69

1. Practical Management of Simulation Codes
• Metafor… from 1992 to 2018

2. Numerical Applications
• Introduction to ALE formalism
• Thixoforming
• Continuous Roll forming
• Friction Stir Welding
• Additive manufacturing

3. Conclusions

Continuous Roll forming
70

A metal strip is incrementally bent by sets of rolls (called “forming stands”)
until the desired cross section is obtained

Process description

➔ Key advantage: OK for Advanced High Strength Steels

Industrial roll forming mill

Post-cut-off press system

FE Modelling of roll forming is essential
(roll design, prediction of defects, residual stresses, springback, etc.)
… but very time-consuming!

Continuous Roll forming
71

Forming of a rocker panel (closed section)

Process parameters
• 16 stands - unsymmetrical shape
• Material: DP980 steel
• Inter-stand distance: 350 mm
• Strip: width:167mm - thickness:1.5 mm
• Length of the model: 6.26m
• Sheet velocity: 𝑣 = 200 mm/s
• Coulomb friction 𝜇 = 0.2

cutting machine

welding line

rocker panel

Continuous Roll forming
72

Drawbacks of Lagrangian modelling

• Non-realistic boundary conditions or friction coefficents to make the sheet move.
• The sheet hits the stands and gets sometimes blocked.

➔ Incremental modifications of the geometry of the tools by trial and error.
• How to model the welding and post-cut operation?

In a Lagrangian model,
the continuous strip is
modelled by a sheet of
limited length.

The setup of the Lagrangian model is very tricky and time-consuming!

Continuous Roll forming
73

Initial ALE mesh: interpolation of the flower diagram

Continuous Roll forming
74

Modelling of inline welding in ALE

• Actual physics in the welding process is heavily simplified.
• The initial mesh is built as a closed mesh.

Initial ALE mesh with
closed edges in the outlet.

Y. Crutzen

Continuous Roll forming
75

• Aims:
• release the final product from the

forming rolls
• Accurate computation of the

springback

• Perfect cut-off is assumed: deactivate
the finite elements located inside the
roll-forming machine.

• Switch from ALE to purely Lagrangian
formalism.

• Implicit dynamic integration scheme
with viscous damping to kill out the
oscillations.

Modelling of the post-cut operation in ALE

Y. Crutzen

Continuous Roll forming
76

View of ALE results from a downstream point of view

Welding line

Continuous Roll forming
77

• ALE and Lagrangian curves are very similar, except in the inlet region.
• Maxima values are close to each other.

Longitudinal strain along the 2 edges

Comparison to Lagrangian results

Continuous Roll forming
78

Shape defects predicted by the model:
• Bending radii in the lower part are much larger than the desired ones.
• Upper part is not perfectly planar.

Without welding
With welding

Final shape of the cross-section extracted at mid-length of the product

Influence of the welding operation and analysis of the final section

not planar

too large radii

Continuous Roll forming
79

Shape defects predicted by the model:
• A slight longitudinal bow defect appears after post-cut.
• No significant twist defect (torsion)

Middle of the web

Analysis of the final shape of the cut-to-length strip

bow

twist

Continuous Roll forming
80

A project built from the results of other projects

Tools import
from CAD files,

Experiments

Enhanced
Assumed Strain
finite elements

Dynamic time-
integration

ALE
formalism,
parallelism

Parallel contact
algorithms

ALE model of
continuous roll

forming

Scope
81

1. Practical Management of Simulation Codes
• Metafor… from 1992 to 2018

2. Numerical Applications
• Introduction to ALE formalism
• Thixoforming
• Continuous Roll forming
• Friction Stir Welding
• Additive manufacturing

3. Conclusions

Friction Stir Welding
82

Process description

• Solid-state joining process  better than classical welding.
• Tprocess < Tmelting.

• Non-consumable tool.
• Mechanical intermixing + friction heating.
• Well suited for alloys with low fusion temp.

FSW of aluminium alloy 2024
• rotation: 500 RPM
• advance: 25 cm/min
• tool angle: 1.5°

Friction Stir Welding
83

FSW modelling with the ALE formalism

Mesh management – 3 zones
1. The mesh moves with the tool – ALE formulation (red)
2. Remeshing (transition zone - white)
3. Fixed mesh – Eulerian formulation (grey)

P Bussetta

Friction Stir Welding
84

FSW (ALE) – Example of mesh motion

Constitutive law:

Norton-Hoff

Friction Stir Welding
85

Comparison between a solid and a fluid approach

collaboration with UPC, Barcelona

Solid approach – Metafor (ULiège) Fluid approach – COMET (UPC)

unknowns: displacements,
temperature

unknowns: pressure,
velocity,

temperature

Friction Stir Welding
86

Comparison between a solid and a fluid approach

• Temperature evolution is similar with
both approaches.

Point 2

Point 1

te
m

p
er

at
u

re
at

 p
o

in
t

1
te

m
p

er
at

u
re

at
 p

o
in

t
2

Friction Stir Welding
87

Residual stresses with the solid approach

Stresses & temp. during the process

•  = 25
• K = 1.5 MPa sm (viscosity parameter)
• m = 0,12 (strain rate sensitivity parameter)
• Q = 155 kJ/mol (activation energy)
• Young modulus = E(T)
• Poisson ratio = 0.33

Sonne et al (2013) JMPT 213

𝜎𝑦 = 𝜎0 𝑇 + 𝐴 𝑇 1 − 𝑒𝜉ത𝜀 + 𝐾𝑒
𝑚𝑄
𝑅𝑇 ሶ ҧ𝜀𝑚

Plates (AA2024): thermo-elasto-viscoplastic

Friction Stir Welding
88

Residual stresses with the solid approach

Stresses & temp. after the process and cooling

Plates (AA2024): thermo-elasto-viscoplastic

•  = 25
• K = 1.5 MPa sm (viscosity parameter)
• m = 0,12 (strain rate sensitivity parameter)
• Q = 155 kJ/mol (activation energy)
• Young modulus = E(T)
• Poisson ratio = 0.33

Sonne et al (2013) JMPT 213

𝜎𝑦 = 𝜎0 𝑇 + 𝐴 𝑇 1 − 𝑒𝜉ത𝜀 + 𝐾𝑒
𝑚𝑄
𝑅𝑇 ሶ ҧ𝜀𝑚

Friction Stir Welding
89

A project built from the results of other projects

Remeshing

Norton-Hoff
constitutive

law

ALE
formalism,

meshers

Friction Stir
Welding model

Thermal
problems

Materials &
FE formulations

Scope
90

1. Practical Management of Simulation Codes
• Metafor… from 1992 to 2018

2. Numerical Applications
• Introduction to ALE formalism
• Thixoforming
• Continuous Roll forming
• Friction Stir Welding
• Additive manufacturing

3. Conclusions

Additive Manufacturing
91

Context and challenges

• New PhD thesis started a few months ago: Very first model of
an laser solid forming with Metafor.

• The thesis focuses on mesh and geometry management.

• Material law?
• for now: thermal calculations only.
• future: reuse of the constitutive law developed in the

frame of thixoforming.

Thermal study of an AM process using
Laser Solid Forming of Ti-6Al-4V metal powder

C. Laruelle

• Can we extend the “element deletion”
algorithm (developed to compute cracks)
to an “element addition” algorithm?

Reference results from Chiumenti et al.
(UPC, Barcelona)

Additive Manufacturing
92

Mesh management technique

Computation of new active mesh and boundary conditions

Activated
Element

Element to
be activated

Boundary Condition
(e.g. Convection/Radiation)

Heat Flux Laser
Position

Time t Time t + Δt

• Finite elements and boundary conditions are all created and
deactivated at the start of the simulation.

• Activation/Deactivation of finite elements and boundary conditions
based on the current laser position.

1. 2. 3. 4. 5.

Additive Manufacturing
93

Numerical results – Time evolution of the temperature field

Additive Manufacturing
94

Thermal study of an AM process using
Laser Solid Forming of Ti-6Al-4V metal powder

Results – comparison with literature

160 TEMPERATURE 800

Metafor

COMET

METAFOR

Good agreement of the temperature evolution between
COMET, Metafor and experimental measurements.

EXP

COMET

thermocouples on the lower surface

Final temperature distribution [°C]

Additive Manufacturing
95

A project built from the results of other projects

Remeshing

Semi-solid
constitutive

law
X-FEM

Modelling of
Additive

Manufacturing

Thermo
mechanical

models

Crack
propagation

Scope
96

1. Practical Management of Simulation Codes
• Metafor… from 1992 to 2018

2. Numerical Applications
• Introduction to ALE formalism
• Thixoforming
• Continuous Roll forming
• Friction Stir Welding
• Additive manufacturing

3. Conclusions

Conclusions
97

• The development of complex models/algorithms is always
the sum of the work of many researchers.

• Keeping their source code clean, effective, reliable, robust
and easily extensible is a difficult task which is usually
underestimated in the academic world.

• A lot of simulation codes are continuously lost and projects
based on previous work do not reach their goals.

• The presented tools and the resulting methodology have
the advantage to be rather simple and allow the researchers
to spend more time on “science” and less time on
“coding”.

