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g.chaspierre@uliege.be

Guillaume Denis Patrick Panciatici
Research & Development Dept.
RTE, Paris La Défense, France
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Abstract—This paper deals with the derivation of a dynamic
equivalent of a distribution system for use in (phasor-mode)
dynamic simulations of large disturbances in the transmission
system. The original, unreduced system hosts inverter-based
generators such as photovoltaic units or full-converter wind
turbines. The individual behaviour of inverter-based generators
and loads is assumed to be reasonably well captured by a
parameterized model, but the values of its parameters are
uncertain. Monte-Carlo simulations involving random variations
of those parameters are performed, yielding a set of dynamic
responses to a given large disturbance. The equivalent is of the
”grey-box” type and its parameters are tuned in the least-square
sense to have its response falling in time-varying confidence
intervals obtained from the 5-th and the 95-th percentiles of
the distribution of dynamic responses. Simulations results are
reported on a variant of the CIGRE Medium-Voltage Distribution
Network Benchmark.

Index Terms—active distribution networks, inverter-based gen-
erators, Monte-Carlo simulations, short-term dynamics, model
reduction, dynamic equivalents

I. INTRODUCTION

Distribution grids are expected to host more and more
distributed generation. Most of these generators are connected
to the grid through an electronic interface which will signifi-
cantly change the dynamics of distribution grids. It becomes
important to have proper models of such Active Distribution
Networks (ADNs) in order to account for their contributions
in power system dynamic studies.

For transmission system operators, a unique model of both
transmission and distribution systems is not only impractical,
but would also entail data confidentiality issues. Indeed, while
the Distribution System Operator (DSO) is usually entitled
to collect data about the connected equipment, sharing this
information with the Transmission System Operator (TSO)
may raise legal issues.

Furthermore, it makes sense for DSOs to process the data
of their own systems and transmit to the TSO reduced,
“anonymized” models of much lower complexity than the
original, unreduced model they have assembled. Those “equiv-
alents” are intended to be incorporated to the transmission
system model for use by the TSO in dynamic security as-
sessment studies. While such equivalents are free from the
aforementioned problems, on the other hand, they should be
accurate enough for TSO studies.

The dynamic equivalent considered in this work is of the
“grey-box” type, as defined and recommended in [1] and [2].

For DSOs, one major issue when setting up a detailed
ADN model is the uncertainty affecting the behaviour of its
components. Their dynamic models involve parameters which
are not known accurately. In this work, it is assumed that
the dynamic behaviour of individual Inverter-Based Gener-
ators (IBGs) and loads can be reasonably well captured by
parameterized models, but their parameters are uncertain.

A well-known approach to deal with such uncertainty con-
sists of performing Monte-Carlo (MC) simulations [3], involv-
ing in this case random variations of the model parameters.
Thus, for a given disturbance and an initial operating point, a
set of randomized time responses is generated [4].

Several ways of exploiting the MC simulations can be
thought of. A first one consists of extracting one representative
instance of the detailed, unreduced model [5] and tuning the
parameters of the equivalent to make its response match that
representative evolution as closely as possible. This approach,
however, does not account for the dispersion of the dynamic
responses revealed by the MC simulations. If there is a large
dispersion, there is no point in attempting to make the reduced-
order model fit closely one particular response out of the whole
set. Instead, it is sufficient that its response falls into (time-
varying) confidence intervals derived from the distribution of
dynamic responses.

The rest of the paper is organized as follows. The method to
determine the above mentioned confidence intervals is detailed
in Section II. In Section III, the identification of the equivalent
is described. The respective IBG and load models are outlined
in Section IV. The test system and the simulations results are
presented in Section V, while concluding remarks are offered
in Section VI.

II. ASSESSING THE UNREDUCED SYSTEM WITH
MONTE-CARLO SIMULATIONS

A. Generating Monte-Carlo simulations

The procedure to generate the MC simulations is detailed
in [5]. It involves random variations of the parameters of the
unreduced ADN model. In this paper, the parameters are uni-
formly distributed in realistically chosen intervals. Note that
they are randomized from one MC simulation to another, but
also from one bus to another inside the same MC simulation.



The dynamic simulations involve responses to large distur-
bances (typically faults) taking place in the transmission sys-
tem. The variables of interest are the active and reactive powers
entering the ADN. Several disturbances, mainly voltage dips,
are applied by a time-varying voltage source replacing the
external system, and the time responses of the powers are
collected for the various instances of the ADN model.

B. Choosing the number of Monte-Carlo simulations

The number of MC simulations must be large enough for
the randomly drawn sample to be representative, but it should
be limited to keep the computational burden reasonable. It is
thus desirable to stop generating randomized responses once
sufficient information is contained in the sample.

The approach consists of increasing the sample until the
average power response does no longer vary significantly.
Denoting by k the discrete time (k = 1, . . . , N) and by pi

the i-th randomly drawn vector of parameters, the detailed
procedure is as follows [5]:

1) initialize: s = so, g = 0;
2) draw at random an initial set of so parameter vectors

(p1, . . . ,pso);
3) for each parameter vector, simulate the ADN dynamic

response to the disturbance;
4) compute the average power responses P̄ (so, j, k) and

Q̄(so, j, k);
5) generate a new random parameter vector ps+1, and

simulate the correspondng ADN response to the distur-
bance;

6) compute the new average power responses P̄ (s+1, j, k)
and Q̄(s+ 1, j, k);

7) compare them with the previous averages by computing
the Euclidean distance:

λ =
√
λ2P + λ2Q (1)

where:

λ2P =
1

N

N∑
k=1

[
P̄ (s+ 1, j, k)− P̄ (s, j, k)

]2
(2)

λ2Q =
1

N

N∑
k=1

[
Q̄(s+ 1, j, k)− Q̄(s, j, k)

]2
; (3)

8) if λ ≤ δ then g → g + 1; else g = 0;
9) if g = gmax then stop; else s→ s+ 1, go to Step 5.
As it can be seen, the procedure starts by performing a

set of so MC simulations. Simulations are added one by one
until λ has remained smaller than the tolerance δ over the
last gmax simulations. With this proposed stopping criterion,
randomizing more parameters does not necessarily increase
the computational burden [5].

C. Extracting the confidence intervals

As mentioned in the Introduction, time-varying confidence
intervals are obtained from the distribution of dynamic re-
sponses. At a given time k, the lower and upper bounds
of the active (resp. reactive) power confidence interval are
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Fig. 1. Structure of the equivalent and training signals

obtained as percentiles of the distribution of values taken by
the active (resp. reactive) power at that time [6]. Time-varying
confidence intervals are obtained by assembling the intervals
determined at all times k. In this work, the 5-th and 95-th
percentiles have been considered. Their use is explained in
the next section.

III. IDENTIFICATION OF THE ADN EQUIVALENT

A. Structure of the equivalent

The structure of the equivalent is shown in the left part
of Fig. 1. The originally distributed IBGs (resp. loads) are
aggregated into two lumped, equivalent IBGs (resp. loads).
They are differentiated by voltage levels, to separate medium-
and low-voltage devices, assumed to have different technical
characteristics. The aggregated components are placed behind
equivalent impedances accounting for the network effects.
Namely, RMV and XMV account for the medium-voltage
distribution grid, while RLV and XLV account for the low-
voltage networks.

The main substation transformer is modeled explicitly.

B. Identifying the parameters of the equivalent

In order to be valid for large disturbances, the equivalent
should be derived from multiple “training” scenarios involving
representative disturbances. Such scenarios are obtained by
replacing the transmission system with a time-varying voltage
source V̄tr(t), shown in the right part of Fig. 1. V̄tr(t) should
involve typical variations of the corresponding voltage, such
as variations of amplitude, phase jumps and frequency.

The V̄tr(t) signals are applied to both the unreduced ADN
model and the equivalent. The outputs of interest are the active
and reactive powers entering the distribution grid. Pd(t) and



Qd(t) account for the active and reactive power responses of
the detailed ADN, respectively.

The parameters of the equivalent are grouped in the θ vector.
Let m be the number of training signals. For the j-th signal

(j = 1, . . . ,m), let us denote by:

Pe(θ, j, k) the discrete-time evolution of the active power
entering the equivalent system (see Fig. 1) ;

Qe(θ, j, k) the corresponding evolution of reactive power;
Pl(j, k) the discrete-time evolution of the lower bound

of the confidence interval of active power
(determined as described in Section II-C);

Ql(j, k) the corresponding evolution of reactive power;
Pu(j, k) the discrete-time evolution of the upper bound

of the confidence interval of active power;
Qu(j, k) the corresponding evolution of reactive power;

where k refers to the discrete times used by the time-
simulation solver (k = 1, . . . , N). The same time instants are
considered for both the unreduced and the equivalent system;
if needed, interpolation is used to make the time instants
coincide.
θ is adjusted to minimize the objective function:

ε(θ) =
√
εP (θ) + w εQ(θ) (4)

with εP (θ) =
1

m

m∑
j=1

N∑
k=1

εP (j, k) (5)

εQ(θ) =
1

m

m∑
j=1

N∑
k=1

εQ(j, k) (6)

where the errors at time k are given by the barrier functions :

εP (j, k) =
[Pl(j, k)− Pe(θ, j, k)]

2 if Pe(θ, j, k) < Pl(j, k)

[Pu(j, k)− Pe(θ, j, k)]
2 if Pe(θ, j, k) > Pu(j, k)

0 otherwise,

εQ(j, k) =
[Ql(j, k)−Qe(θ, j, k)]

2 if Qe(θ, j, k) < Ql(j, k)

[Qu(j, k)−Qe(θ, j, k)]
2 if Qe(θ, j, k) > Qu(j, k)

0 otherwise,

under the constraints :

θL ≤ θ ≤ θU . (7)

In Eq. (4), w is a weight assigned to the reactive power
responses with respect to the active ones. The bounds θL and
θU keep θ in realistic ranges of values.

The barrier function is illustrated for the active power in
Fig 2. The idea is to force the dynamic responses of the
equivalent to fall in the confidence intervals [Pl(j, k) Pu(j, k)]
and [Ql(j, k) Qu(j, k)], for all training disturbances. If this
was achieved, the objective function in (4) would reach a
zero value. Further optimization is not sought considering the
uncertainty on the response of the unreduced, reference model.

εP (j, k)

Pe(θ, j, k)Pl(j, k) Pu(j, k)

Fig. 2. Barrier function used in the identification of the equivalent

At this stage of the research, a meta-heuristic optimization
method has been used, namely a variant of the Differential
Evolution (DE) algorithm [7] to solve the above minimization
problem. Please refer to [8] for additional information.

C. Initializing the equivalent

With reference to Fig. 1, the initial active and reactive
powers P `

MV and Q`
MV (resp. P g

MV and Qg
MV ) are obtained

by aggregating the consumptions of all dispersed loads (resp.
the productions of all dispersed IBGs) connected to MV buses
in the unreduced model. The same applies to loads and IBGs
connected at LV level and aggregated at the LV equivalent
bus, yielding P `

LV , Q
`
LV , P

g
LV and Qg

LV .
Since the resistances RMV , RLV and reactances

XMV , XLV are components of the θ vector to identify,
the losses in the two equivalent impedances change from one
value of θ to another. On the other hand, the initial values of
the active and reactive powers entering the distribution grid
must remain at the same (measured or forecasted) values.
Hence, to satisfy the power balance, a “slack” load is added,
as shown in Fig. 1. This load is usually small.

IV. IBG AND LOAD MODELS

A. Load model in the unreduced system

As sketched in Fig. 3, each load is split into an equivalent
induction motor with third-order model. That motor consumes
initially a fraction f of the load active power. The rest of the
load is modeled with a static exponential model, as shown in
the figure.

Vo
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o )
(
V
Vo

)α
Q = (Qo−Qmot

o )
(
V
Vo

)β
Initial

consumption :
Pmot
o = fPo

Qmot
o = fPo tanφm

Fig. 3. Load composition. Po (resp. Qo) stands for either P `
MV or P `

LV ,
and Qo for either Q`

MV or Q`
LV

B. Load model in the equivalent

The aggregated load model in the equivalent is identical to
the load model in the unreduced system.



C. IBG model in the unreduced system

Instead of focusing on internal components, the model
reproduces the IBG response to terminal voltage changes
in accordance with grid codes [9]–[11]. The main control
functions are described hereafter. They involve non-linearities
or discontinuous control. More detailed block diagrams and
additional information can be found in Refs. [8] and [12].

1) Phase Locked Loop (PLL): The PLL dynamics is rep-
resented in some detail, as shown in Fig. 4. It determines the
phase angle θ of the terminal voltage phasor. The magnitude
of the current phasor and its phase shift with respect to the
voltage phasor are adjusted in order to generate the required
active and reactive currents.

In Fig. 4, vx and vy (resp. ix and iy) are the projections
on reference axes (x, y) of the phasor of the terminal voltage
(resp. the current injected into the grid). The gains kIpll and
kPpll determine the PLL response time, while VPLL is the
voltage threshold below which it is blocked. Tm is a time
constant accounting for the measurement while iP and iQ are
the active and reactive current commands from the control
blocks of the inverter, respectively. Tm has been set to 20 ms
for large-scaled IBGs (e.g. industrial installations) and to 30
ms for small IBGs (e.g. residential rooftop photovoltaic units).
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Fig. 4. Block diagram of the PLL

2) Low Voltage Ride-Through (LVRT): LVRT capability
is an important feature of IBGs, requiring them to remain
connected to the grid during a disturbance as long as the
voltage is above a reference curve, as shown in Fig. 5. If the
terminal voltage of an IBG falls below the reference curve,
the unit is allowed to disconnect from the grid.

3) Reactive current injection: In low voltage conditions
IBGs (with a nominal power above some value) are requested
to inject reactive current to support their terminal voltages.
The injected current varies linearly with the measured voltage
magnitude, as shown in Fig. 6. Inom is the nominal current
of the inverter and Vm the voltage magnitude measured at

Vint

Vmin

0 T1 T2

Vr

V (pu)

timeTint

V (pu)

Fig. 5. LVRT characteristic (fault occurring at t = 0)

its terminal. VS1 is the voltage at which the inverter starts
injecting reactive current in the grid while m is in the range
[0 1]. Typically, m = 0, VS1 = 0.9 pu, and 2 ≤ kRCI ≤ 6 as
suggested in [11].

Vm

iQsup

m Inom

kRCI

0
VS1

Fig. 6. Reactive current injection characteristic

4) Active power recovery: When an IBG is called to
support the grid voltage, it may happen that its active current
is reduced to leave room for its reactive counterpart without
exceeding the inverter current limit. Once the voltage has
recovered to normal values, the IBG recovers its active current.
This cannot take place too rapidly but it should not take too
much time either, to avoid long-lasting power imbalances.
Some grid codes (e.g. [11]) specify a range of allowed values
for the rate of recovery of the active current.

D. IBG model in the equivalent

The model of the aggregated IBG in the equivalent includes
all the features presented in the previous sub-section. In
addition, it can reproduce the tripping of some of the individual
IBGs it replaces. The main issue is that the equivalent IBG has
a single terminal voltage while the individual IBG voltages
differ from one bus to another throughout the distribution
network. This issue has been tackled by providing the equiva-
lent IBGs with a “partial tripping” feature. The latter consists
of multiplying the output current by a factor f1f2f3 with
0 ≤ f1, f2, f3 ≤ 1, where f1, f2 and f3 relate respectively to
the time intervals [0 T1], [T1 Tint] and [Tint T2] of the LVRT
curve in Fig. 5 [8].

E. Total number of parameters to identify

The θ vector has a total of 40 components to identify. A
preliminary sensitivity analysis identified 11 parameters with
small or negligible influence on the model responses. The
remaining parameters include :



• for the IBGs: the nominal apparent power, the inverter
main time constant, the parameters of the LVRT curve
(see Fig. 5), the kRCI slope and the VS1 threshold (see
Fig. 6), the active current recovery rate r, and parameters
involved in the partial tripping;

• for the loads: the fraction f , the exponent α, the initial
power factor cosφm (see Fig. 3) and some parameters of
the motor such as the load factor and the inertia constant;

• for the network: RMV , XMV , RLV , XLV (see Fig. 1).

V. SIMULATION RESULTS

A. Test system

The simulations were performed on a variant of the CIGRE
Medium-Voltage Distribution Network Benchmark [13], at a
single operating point. Its one-line diagram is shown in Fig. 7.
The system feeds different categories of loads : residential
loads with a consumption of 16.24 MW and industrial loads
with a consumption of 4.3 MW.

The system also hosts dispersed IBGs of two types. The
large-scale IBGs account for 2.67 MW. They have fault-
ride-through and reactive current injection capabilities. Some
of them instantaneously trip when their measured terminal
voltage falls below the reference curve, while the others
remain connected. Whether an IBG falls in the first or the
second category changes randomly from one MC simulation
to another. For the second category, the Vmin threshold (see
Fig. 5) is set to zero.

The small-scale IBGs corresponding to residential rooftop
photovoltaic panels account for 180 kW of production. They
have no fault-ride-through nor reactive current injection capa-
bility. The load and IBG parameters have been randomized
from one bus to another within realistic ranges of values in
order to add diversity in the system. Specifically, the industrial
(resp. residential) loads involve “large” (resp.“small”) motors
with parameters randomized around the values given in [14].

B. Disturbances

The disturbances considered are voltage dips, typically
caused by faults, and applied at the transmission side of the
main transformer. They are characterized by a duration ∆T
and a depth ∆V , as shown in Fig. 8. The values of ∆T and
∆V are given in the same figure for the various disturbances
considered in this paper. ∆T = 0.10 s corresponds to faults
cleared by primary protections, and ∆T = 0.25 s to faults
cleared by back-up protections.

Simulations were performed with RAMSES, a software for
time simulation in phasor mode, developed at the University
of Liège [15]. The default time step size is 0.01 s, which leads
to N ' 300.

C. Results of Monte-Carlo simulations

The procedure of Section II-B with so = 100 initial
simulations, a tolerance δ = 0.05 MVA and gmax = 10 led
to generate s = 347 randomized responses to each of the
disturbances.

Fig. 7. One-line diagram of CIGRE Medium-Voltage Distribution Network

∆V

∆T

t

V

disturb. No ∆V (pu) ∆T (s)

1 0.2 0.10
2 0.2 0.25
3 0.3 0.10
4 0.3 0.25
5 0.4 0.10
6 0.4 0.25
7 0.5 0.10
8 0.5 0.25
9 0.6 0.10
10 0.6 0.25
11 0.7 0.10
12 0.7 0.25
13 0.8 0.1
14 0.8 0.25

Fig. 8. Disturbances considered in the simulations

As an illustration, Figs. 9 and 10 show the 347 time
evolutions of respectively the active and reactive powers,
received by the distribution grid at bus 1 in response to
disturbance No 8. Note that all responses correspond to the
same operating point; thus, all curves start from the same
value. The corresponding curves for disturbance No 14 are
given in Figs. 11 and 12.

Those four figures show a sharp increase of active and reac-
tive power immediately after fault clearing. The first reason is
that motors draw additional power when re-accelerating after
fault clearing. The second reason is that, during the fault, the
active currents of large-scale IBGs have been reduced, if not
canceled, owing to the priority given to reactive currents for
voltage support. This leads to higher active power imports for
a short period of time.

For each disturbance, the 5-th and 95-th percentiles were
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Fig. 11. MC simulations: 347 active power responses to disturbance No 14

extracted using the prctile function of MATLAB.
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Fig. 12. MC simulations: 347 reactive power responses to disturbance No 14

D. Results of training

The equivalent was trained on the most severe scenarios,
namely disturbances No 7 to 14 in Fig 8. It is important to train
the equivalent on several disturbances with different severities,
in order to avoid “overfitting” one particular scenario.

The optimization problem of Section III-B has been solved
with w = 1, using the DE algorithm. After 200 iterations,
the error ε(θ) was brought below 3 MVA. This nonzero
value indicates that some points of some responses still fall
outside the time-varying confidence intervals. Nevertheless,
the accuracy is good enough, as shown in the following figures.

Figures 13 and 14 compares the time evolution of, respec-
tively, the active and reactive power responses of the reduced
system with the time-varying confidence intervals. They relate
to the trained disturbance No 8. The corresponding plots for
the trained disturbance No 14 are given in Figs. 15 and 16.
For the active power response, it is observed that the final
value is slightly larger that the initial one. This corresponds to
the tripping of the residential IGBs (without fault-ride-through
capability), which the equivalent model is able to reproduce.

Furthermore, the figures show that the responses of the
equivalent fall within the time-varying confidence intervals at
almost all time steps, as expected from the small final value
of ε(θ). The bounds are slightly exceeded when the (non-
tripped) IBGs are ramping up and recovering their initial active
power. This is a challenging issue. In the detailed system, this
active power recovery is shared by multiple IBGs, while in the
equivalent it is assigned to a single IBG. The active current
recovery rate r, included in θ, is optimized to fit the various
training scenarios in the best possible way.

E. Results of validation

Disturbances No 1 to 6 were used to check that the equiv-
alent is accurate in scenarios not considered when identifying
θ and, i.e. it does not “overfit” the training scenarios.

Figures 17 to 20 compare the time evolutions of, re-
spectively, the active and reactive power responses of the
reduced system with the confidence interval obtained from
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Fig. 13. Trained disturbance No 8: active power response of the equivalent
compared to the time-varying confidence interval (P5, P95)
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Fig. 14. Trained disturbance No 8: reactive power response of the reduced
system compared to the time-varying confidence interval (Q5, Q95)

 0

 5

 10

 15

 20

 25

 30

 35

 0  0.5  1  1.5  2  2.5  3

A
ct

iv
e
 p

o
w

e
r 

(M
W

)

Time (s)

 P reduced
 P5

 P95

Fig. 15. Trained disturbance No 14: active power response of the reduced
system compared to the time-varying confidence interval (P5, P95)

MC simulations of disturbances No 2 and 6. It is observed
that the equivalent matches the confidence interval with the
same satisfactory accuracy as for the trained disturbances.

VI. SUMMARY AND PERSPECTIVES

The ongoing research reported in this paper made up of two
parts.
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Fig. 16. Trained disturbance No 14: reactive power response of the reduced
system compared to the time-varying confidence interval (Q5, Q95)
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Fig. 17. Untrained disturbance No 6: active power response of the reduced
system compared to the time-varying confidence interval (P5, P95)
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Fig. 18. Untrained disturbance No 6: reactive power response of the reduced
system compared to the time-varying confidence interval (Q5, Q95)

The first part consists of dealing with the uncertainty affect-
ing the detailed, unreduced model of the ADN. It is assumed
that the individual behaviour of IBGs and loads is reasonably
well captured by a parameterized model, but the values of its
parameters are uncertain. Monte-Carlo simulations involving
random variations of those parameters are performed. The
variables of interest are the active and reactive powers entering
the ADN. The MC simulations are stopped once sufficient
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Fig. 19. Untrained disturbance No 2: active power response of the reduced
system compared to the time-varying confidence interval (P5, P95)
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Fig. 20. Untrained disturbance No 2: reactive power response of the reduced
system compared to the time-varying confidence interval (Q5, Q95)

information is available. For each disturbance of interest, time-
varying confidence intervals are extracted from the set of
randomized time responses. Their bounds correspond to the
5-th and the 95-th percentiles of the distribution of dynamic
responses at each discrete time.

The second part deals with the tuning of the parameters of
a “grey-box” dynamic equivalent. The objective is to have its
responses falling in the time-varying confidence intervals.

Results obtained from a CIGRE benchmark system show
that the obtained equivalent can meet this objective, is accurate
and not subject to overfitting.

The following extensions are among those envisaged in the
near future.

• A wider range of training signals will be considered,
including for instance phase jumps and frequency varia-
tions. The main motivation is to avoid “overfitting” par-
ticular training signals and make the equivalent suitable
for a wider range of transients likely to take place in the
transmission system. It has to be checked that this is not
detrimental to accuracy.

• The training of the equivalent has been performed for
a single operating point. A further step is to assess its
accuracy for different operating points, corresponding to
load levels and changing weather conditions affecting the

renewable energy sources feeding the IBGs. Clearly, if a
significant decrease of accuracy is experienced, the equiv-
alent has to be updated for the new operating conditions.
It is hoped that a limited number of parameter vectors will
be enough to capture a wide range of operating points.

• The subset of disturbances selected for training was based
on engineering judgment. Instead, a recursive algorithm
is being developed to progressively select more and more
training signals until the remaining are found to bring no
further accuracy.

• Alternatives to the barrier function – see Fig. 2 and Eqs.
(4-6) – are contemplated with the objective of taking into
better account the dispersion of the randomized dynamic
responses provided by MC simulations.

• Other optimization techniques are considered as alterna-
tives to the DE algorithm.
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