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Abstract

In this paper we study the Fréchet functional equation in the n-
dimensional Euclidian space as well as in the context of distributions.
We also generalise the Cauchy functional equation for distributions to
any natural order.
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1 Introduction
An additive function is a function f : R — R satisfying the equation

flz+y) = flx) + fy), (1)

for any = and any y belonging to the real line. This equation has been studied
by several mathematicians during the 17th century and Cauchy provided the
first significant result, stating that an additive function that is continuous is
necessarily linear [5]; equation (1) is usually referred as the Cauchy functional
equation. It can be shown that an additive function that is not linear is nec-
essarily discontinuous everywhere [7] and Hamel provided such a solution using
Zorn’s lemma to get a basis (of R as a Q-vector space) which now bears his
name [10]. One of the charms of this equation lies in the form of the solutions:
they are either extremely regular or “pathological”; see [13] for a deeper study
of this problem.

The Cauchy functional equation can be generalised as follows: given a func-
tion f: R — R, let us define the (forward) difference operator of order one A!
as

A f(z) = f(z +h) = f(z), (2)
for any 2 and any h belonging to R. Equation (1) becomes
Ay f(z) = f(y). 3)

Then, by defining the difference operator of order m > 1 by the recurrence
formula

AR f() = ALATT (),



the Cauchy functional equation leads to A? f(z) = 0. This equation is not
equivalent to (1), since any polynomial of degree at most 1 is a solution. The
interesting fact is that the continuous solutions of this last equation are such
polynomials. Indeed, Fréchet proved that the continuous solutions of the equa-
tion

nf(x) =0 (4)

are the polynomials of degree at most m — 1 [8]. As for Cauchy, equation (4)
is today named after Fréchet. In general, when studying such an equation,
one tries to obtain the weakest hypothesis under which the solutions are not
“pathological”. Most often, the result associated to Fréchet functional equation
reads as follows: “the solutions of Fréchet functional equation (4) that are locally
integrable are the polynomials of order at most m—1¢, although other conditions
exist [17, 18, 15, 3].
A generalisation of (3) is given by the following equation:

AR () = mif (). (5)

Even though less studied, it is well known that the solutions of (5) which are
locally integrable are the homogeneous polynomials of degree m [16, 2].

In this paper, we study equations (4) and (5) from various points of view.
First we give very weak assumptions under which the solutions of the local
Fréchet functional equation are locally polynomials: we consider functions that
are bounded almost everywhere which satisfies the equation for almost every
h small enough (with respect to the Lebesgue measure). This requirement is
somehow similar to the one given in [3], albeit weaker, but we use here very
different techniques. Next, we generalise this result by considering the equation
on the Euclidian space R™, where x and h both belong to this space in the
definition of the difference operator (2). We also characterise the solutions
to the functional equation (5) in the same framework. Next, we consider the
Fréchet functional equation in the setting of the distributions. Finally, we also
study equation (5) for distributions; more precisely, we generalise the Cauchy
functional equation for distributions given in [14] to any order m in the natural
setting of the pullbacks.

In the sequel, we will assume that the reader is well versed in the theories
of finite differences (see e.g. [4, 12]) and distributions (see e.g. [11, 9]). For
example, we will regularly use the formula

P ) =3 (1) (T;)f(x T (m— ). (6)

=0

We set E = R™ and B(z,r) will stand for the open ball centered at = with
radius 7 > 0. We denote by D(X) the space of infinitely differentiable functions
on X with compact support and by D’(X) the topological dual of D(X). The
space of locally integrable functions on X will be designated by Llloc(X ) and
D is the differentiation operator, whereas D; (j € {1,...,n}) is the partial
differentiation operator following the direction of the j-th component e; of the
canonical basis of E.



2 The Fréchet functional equation on a real in-
terval

Let us first sail in terra cognita by considering the usual case of the local version
of the Fréchet functional equation on the real line.

Lemma 1. If f : R — R is a function that is bounded almost everywhere on
(a,b) and which satisfies A7'f = 0 on (a,b) for almost every h small enough,
then f is bounded on (a,b).

Proof. Remark first that we have, using (6),

m—1
@ =13 (-1 (”T‘)ﬂx Cmhogn<2m s )

=0 J ye{w+ihiie{l,...,m}}

for any x € (a,b) and say almost every |h| < e. Let C > 0 and N C (a,b) be
a negligible set such that |f(x)| < C for any x belonging to (a,b) \ N. Given
je{l,...,m} and x € (a,b), let us define

a—x b

A ={he( ,%):Hjhe(a,b)\zv}.

m

For j € {2,...,m}, we have A; C (A1 \ 4;) U A;, where A; \ A; is negligible
as a subset of (N — x)/j. As a consequence, A is equal to NJL;A; almost
everywhere. Let us also remark that Ay N (—¢,¢) is equal to an interval almost
everywhere. Therefore, by choosing h such that  + jh € (a,b) \ N for every
je{l,...,m}, we get

[f(z)] <2™C,

for any x € (a,b), as expected. O

Theorem 1. Let m € N and f : R — R be a functions that is bounded almost
everywhere on a neighborhood of a point xo € R. If equation AP*f = 0 is
satisfied on a neighborhood of xo for almost every h sufficiently small, then f
can be written as a polynomial of degree at most m —1 on a neighborhood of .

Proof. 1t is sufficient to prove the result for m > 1. Thanks to Lemma 1, we can
suppose that there exists n > 0 for which f is bounded and satisfies A7 f = 0
on (xg — 1, zo+n) for almost every |h| < n. For the sake of clarity, we will drop
the locution “almost every” in the remaining of the proof. Let e be such that
0 < e <n/m and set § = — me. We can suppose that we have |A7 f(z)| < C
forany j € {0,...,m}, any z € (xzg—9,z0+9) and |h| < e. If x € (xg—0, xo+9),
let us prove that f is continuous at . Given r € N, let h be such that |rh| < ¢;
Newton’s interpolation formula gives

flatah) =3 2@ ()
=0

4!



for any ¢ € Ng, where (¢); denotes the falling factorial,

1 if j=0
(@); = i—1
[[@—#% ifji>o0
k=0

We also have, for ¢ > m,

which implies

3 B (), = 3 BadlE) ),

=

If we denote by s(j, k) the Stirling numbers of the first kind, we can rewrite
the last equality as follows:
J

S A S = S0 20 5

j=0 ’ k=0 7=0 k=0

This implies

o ¢ i
A f() Appf(@) o
Z hJ' 3(.%]{;):2};7'8(37k)7ﬁ kv
j=k j=k

for k € {0,...,m — 1}. Now, if S(j, k) denotes the Stirling numbers of the
second kind, the equality

Z 3 A“ GRS = 3

q
=l j=k k=l j=k

5, k)r= S (k. 1),

A‘th(x) S( .
jl

allows to write (since Zi:l s(j4,k)S(k,1) = 65)

m—1 ¢ j
Ailfl(x) - Af"f}{(x)s(j, k)yr=*S(k,1),

k=l j=k

for I € {0,...,m — 1}. Consequently, we have

Alhf(x) /m71 -k
=<y e,
for some constant C’. Now, given 0 < |h| < ¢, let 7 be the natural number such

that 7|h| < & < (r + 1)|h|. The last inequality gives

ST L
| Z [P

k=l



for any [ € {0,...,m — 1}. In particular, we have lim,_,0 A} f(z) = 0, so that
f is continuous on (z¢ — d, g + 0).

Given 0 < |h| < §/m, there exists a unique polynomial P}, of degree at most
m — 1 such that Py(z¢ + jh) = f(zo + jh), for j € {0,...,m}. For r € N,
the same arguments as in the beginning of the proof lead to the existence of a
polynomial P/, such that Py, /.(xo +jh/r) = f(xo+jh/r), for j € {0,... ,mr}.
Since Py and P}/, are equal on m different points, they are equal on R. So P,
is equal to f on {zg+ ¢h : ¢ € Q, 0 < ¢ < m}, which allow to conclude, using
the continuity of f. O

Remark 1. If one assumes the measurability of f, the proof of theorem 1 becomes
much simpler (one can proceed as in the proof of theorem 2).

3 The Fréchet functional equation on the Eu-
clidian space R"
The previous result can be generalised to E.
Lemma 2. The polynomials
P(z) = Z Caxyt - aan
lal=m
are solutions to the equation A} f(x) = m!f(h).

Proof. By linearity, it is sufficient to prove that, given a multi-index o € N"
such that || = m, the monomial z{* -+ 2% is a solution to the considered
equation. This claim is easy to check for m = 1 and m = 2. If the result has
been obtained for m = k, let us show that it is still valid for k + 1. Let a be a

multi-index such that |o| = k+ 1; we can suppose that «,, > 1 in order to write

Ap (@ eyt e ) (2)

k

k . a _ . .
> <J’)A§L($§” eyt ) (@) (A ) (@ + i)
=0

J

k o o _
- <k >A§—1(x‘f1 g0 ) () hyy + KRS - RO e (2, + k),

-1 n—1 *n n—1

which allows to write

aq (e} k
A o) = ()

= (k+1)Ihg" - ho

n o

)Afz(x?l ce @Y (@) hy, + KRS RO,

as desired. O

As a consequence, the polynomials of degree at most m—1 satisfy the Fréchet
functional equation.

We can now characterise the solutions to the local Fréchet functional equa-
tion for the functions on E that are bounded almost everywhere on a neighbor-
hood.



Theorem 2. Let f : E — R be a function that is bounded almost everywhere on
a neighborhood of a point xo € E and such that A}'f =0 on a neighborhood of
xq for almost every h sufficiently small. The function f is equal to a polynomial
of degree at most m — 1 on a neighborhood of x.

Proof. Let us first remark that f is measurable on a neighborhood of xy. This
result from theorem 1: for x chosen in a neighborhood of z¢, the function

f]‘ t f(xl,...,xj_l,t,xj+1,...,xn)

is continuous on a neighborhood of the j-th component of xg; this being said,
we can conclude using a result from Carathéodory (see e.g. [6, 1]).

Let € > 0 be such that f is measurable and bounded on B(zg,e) with
AP f(x) = 0 for every & € B(xzg,¢) and almost every |h| < e. It is well known
that there exists a function ® € D(E) such that [®(x)dz =1 and f = g*®
on B(zg,e/2), with

g(a:)—{ f(x) if z € B(zo,¢)

10 otherwise

As a consequence, f is infinitely continuously differentiable on a neighborhood
of 2y (see Remark 2 for an explicit construction of ®).
We thus can write

for any € B(xg,¢/2) and j € {1,...,n}, which implies that f is a polynomial
of degree at most n(m — 1) on a neighborhood of z.

Let us suppose that f is a polynomial of degree p > m on B(zg,¢/2) and
define the polynomial P such that

flz) = g Cox]t e apt = g Cax]t x4 E CaXTt

|a|<p |a|=p lal<p

= P(x) + Z Cax]t - ann,

lal<p
on B(zg,e/2). We have
0= A} f(x0) = AL P(xo) = p'P(h),
for h sufficiently small, so that P = 0. O
Let us give the classical construction of the function ®, appearing in the

proof of Theorem 2.

Remark 2. Let us give the explicit definition of the function ® appearing in the
proof of Theorem 2. Let r be an odd number multiplied by two strictly greater
than m and p € D(E) be a radial function such that supp(p) C B(0,¢/2),
0<p<1and [p(z)dr=1. We can consider the function ® on E obtained as
follows:

<i><x>=r/22_1<—1>j(’")( L) ©

= i) (25— 2] —r



and set C, = [ ®(z) dx (one can check that C, = (JQ) /2) in order to define the
function ® on E as ®(x) = ®(x)/C,.. For z € B(x,£/2), we have

1 r/2—1 S .
~ & & 0 (g [ 1oty o
- 2(1]T( ZO (-1) (;) /f(x — (2§ = )y) ply) dy — 2C, f(x))
Py
- 2(le /Azf(ﬁc)P(y) dy =0,

as claimed.

We directly get the following result.

Corollary 1. Letm € N and f : E — R be a function which is bounded almost
everywhere; if f satisfies A7'f = m!f(h) on E for any h, then it can be written

as
f@)= " caritapn
|a]=m

on E.

4 The Fréchet functional equation for distribu-
tions

Given T € D'(E), the (forward) difference A™ of order m € N of T is naturally
defined as follows:

ART(p) = T(AZyp),

for h € E and ¢ € D(E). If T € D'(R), we naturally have

so that if T' satisfies AJ*T" = 0 for any h sufficiently small, the m-th derivative
of T is equal to zero, which implies that T is a distribution associated to a
polynomial of order at most m — 1. We aim now at showing that this result still
holds if T belongs to D’ (E).

Theorem 3. Given m € N, the solutions to the equation AJ*T =0 for almost
every h € E with T € D'(E) are the distributions associated to a polynomial of
degree at most m — 1.

Proof. Let T € D'(E) be a solution to the Fréchet functional equation. Again,
let 7 € N be a natural number greater than m that is equal to an odd number
multiplied by two and define ® as in the proof of theorem 2, using the constant



C, and the function ® satisfying (7). With the same arguments, one can assert
the existence of a constant C' such that

9 B(a) ~ pla) =C [ Ajp(a) plo)
for any ¢ € D(E) and any =z € E. We get
T @~ ) = CT.( [ Ajela) o) dy) = C [ T(Aj0) oty dy

—C [ AyT()pla) dy =

so that T is associated to a infinitely continuously differentiable function f. Now,
since the distribution associated to A}"f is vanishing, we have obtained that
AP f(x) =0 for any « € E and any h € E, which is sufficient to conclude. [

As a consequence, we recover the usual solution to the Fréchet functional
equation.

Corollary 2. Givenm € N, if f € LL _(E) satisfies AT f = 0 for almost every

loc
h, then f is a polynomial of degree at most m — 1.

5 A generalisation of the Cauchy functional equa-
tion for distributions
In this section we generalise ideas from [14] and show that a natural formulation
of the results can be achieved through pullbacks. Let us recall this notion. Given
two open sets U C R™, V C R"™ and a C* map f : U — V whose differential g
is such that g(x) is surjective for every x € U, there exists a unique continuous
linear map f* : D'(V) — D'(U) such that f*T = To fif T € C°(V); f*T is
called the pullback of T by f (for more details, see e.g. [11]).
Given j € Ny, let us define

pj:E2—>E (z,y) = x+jy and qj:E2—>E (x,y) = jr+y.

Obviously, pyp and gg are orthogonal projections and

m

1) =3 (7 )i o),

=0

for any f € C°(E). One can thus define the unique continuous linear map

AT - DI(E) N D/(EQ) T — Z(_l)m—j <T>p;kT

Jj=0

In [14], the Cauchy functional equation AT = ¢iT (with T € D'(E)) is
studied, although this equation not considered as an equation on E2. Here, we
will consider the functional equation

AT = mlgjT. (8)



This equation generalises the previous one in the same way that equation (5)
generalises the Cauchy functional equation.
Likewise, we could have defined the operator

A™:D'(E) » D'(E?) Tw Y (~1)" (?) g,
=0

in order to consider the equation A™T = mlp§T. A simple calculation show
that this equation is equivalent to (8).

Lemma 3. A distribution T € D'(E) satisfies A™T = mlq§T if and only if it
also satisfies AT = m!piT.

Proof. Let T € D'(E) be a solution to (8) and consider the diffeomorphism
7:E* = E? (2,9)— (y,2).

One easily checks that the following relation holds:
q; f(z,y) = (pjom)" f(z,y),

for any f € D(E), which implies ¢ = 7*p; on D'(E).
Therefore, we get

m - m—j m * * - m—j m *
AT =) (-1) J(j)qu:ﬂ' > (1) ﬂ(j);)jT
j=0

j=0
=7 AT = mlr*q;T = m!lpyT
and a symmetric argument allows to conclude. O

Let us now show that the solutions to equation (8) are the distributions
associated to the homogeneous polynomials of degree m.

Lemma 4. A distribution T € D'(E) associated to a polynomial of type
= Z Ca®” (9)
|a]=m
is a solution to the equation (8).

Proof. Let T € D'(E) be the distribution associated to the polynomial P of
type (9). Given ¢ € D(E?), we have

A™T (o i < >pjT(<P)

j=0

—i <>// (pj(x,9)) p(2, y) dxdy

/ AJ P(z) p(z,y) dedy

=m! // Qo P(z,y) o(x,y) dedy = m!qyT (),

as expected. O



We have the converse result.

Theorem 4. Given m € N, the solutions to equation (8) are the distributions
associated to the polynomials P which satisfy equality (9).

Proof. Let us consider a solution T' € D’(E) to equation (8). For any j belonging
to {1,...,n}, we have, using the chain rule,

D;piT = (D;lpel) (piDiT) = pi. DT,
=0

as well as D;qy1" = 0. This implies A™D;T = 0.
Now, the unicity of p; implies that, for any T' € D'(E), we have

AmT(QO) = /AZITx (@(x’y)) dy’

for any ¢ € D(E?). These relations imply that a solution 7' necessarily satisfies
AJD;T = 0 for almost every y. Hence, D;T' is a distribution associated to a
polynomial of degree at most m — 1, which is sufficient to conclude. O

As a consequence, we recover the usual solution to equation (5).

Corollary 3. Givenm € N, if f € Ll _(E) satisfies (8), then f is a polynomial
of the form (9).
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