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Abstract

In this paper we study the Fréchet functional equation in the n-
dimensional Euclidian space as well as in the context of distributions.
We also generalise the Cauchy functional equation for distributions to
any natural order.
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1 Introduction

An additive function is a function f : R→ R satisfying the equation

f(x+ y) = f(x) + f(y), (1)

for any x and any y belonging to the real line. This equation has been studied
by several mathematicians during the 17th century and Cauchy provided the
first significant result, stating that an additive function that is continuous is
necessarily linear [5]; equation (1) is usually referred as the Cauchy functional
equation. It can be shown that an additive function that is not linear is nec-
essarily discontinuous everywhere [7] and Hamel provided such a solution using
Zorn’s lemma to get a basis (of R as a Q-vector space) which now bears his
name [10]. One of the charms of this equation lies in the form of the solutions:
they are either extremely regular or “pathological”; see [13] for a deeper study
of this problem.

The Cauchy functional equation can be generalised as follows: given a func-
tion f : R→ R, let us define the (forward) difference operator of order one ∆1

as

∆1
hf(x) = f(x+ h)− f(x), (2)

for any x and any h belonging to R. Equation (1) becomes

∆1
yf(x) = f(y). (3)

Then, by defining the difference operator of order m > 1 by the recurrence
formula

∆m
h f(x) = ∆1

h∆m−1
h f(x),
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the Cauchy functional equation leads to ∆2
hf(x) = 0. This equation is not

equivalent to (1), since any polynomial of degree at most 1 is a solution. The
interesting fact is that the continuous solutions of this last equation are such
polynomials. Indeed, Fréchet proved that the continuous solutions of the equa-
tion

∆m
h f(x) = 0 (4)

are the polynomials of degree at most m − 1 [8]. As for Cauchy, equation (4)
is today named after Fréchet. In general, when studying such an equation,
one tries to obtain the weakest hypothesis under which the solutions are not
“pathological”. Most often, the result associated to Fréchet functional equation
reads as follows: “the solutions of Fréchet functional equation (4) that are locally
integrable are the polynomials of order at most m−1“, although other conditions
exist [17, 18, 15, 3].

A generalisation of (3) is given by the following equation:

∆m
h f(x) = m!f(h). (5)

Even though less studied, it is well known that the solutions of (5) which are
locally integrable are the homogeneous polynomials of degree m [16, 2].

In this paper, we study equations (4) and (5) from various points of view.
First we give very weak assumptions under which the solutions of the local
Fréchet functional equation are locally polynomials: we consider functions that
are bounded almost everywhere which satisfies the equation for almost every
h small enough (with respect to the Lebesgue measure). This requirement is
somehow similar to the one given in [3], albeit weaker, but we use here very
different techniques. Next, we generalise this result by considering the equation
on the Euclidian space Rn, where x and h both belong to this space in the
definition of the difference operator (2). We also characterise the solutions
to the functional equation (5) in the same framework. Next, we consider the
Fréchet functional equation in the setting of the distributions. Finally, we also
study equation (5) for distributions; more precisely, we generalise the Cauchy
functional equation for distributions given in [14] to any order m in the natural
setting of the pullbacks.

In the sequel, we will assume that the reader is well versed in the theories
of finite differences (see e.g. [4, 12]) and distributions (see e.g. [11, 9]). For
example, we will regularly use the formula

∆m
h f(x) =

m∑
j=0

(−1)j
(
m

j

)
f(x+ (m− j)h). (6)

We set E = Rn and B(x, r) will stand for the open ball centered at x with
radius r > 0. We denote by D(X) the space of infinitely differentiable functions
on X with compact support and by D′(X) the topological dual of D(X). The
space of locally integrable functions on X will be designated by L1

loc(X) and
D is the differentiation operator, whereas Dj (j ∈ {1, . . . , n}) is the partial
differentiation operator following the direction of the j-th component ej of the
canonical basis of E.
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2 The Fréchet functional equation on a real in-
terval

Let us first sail in terra cognita by considering the usual case of the local version
of the Fréchet functional equation on the real line.

Lemma 1. If f : R → R is a function that is bounded almost everywhere on
(a, b) and which satisfies ∆m

h f = 0 on (a, b) for almost every h small enough,
then f is bounded on (a, b).

Proof. Remark first that we have, using (6),

|f(x)| = |
m−1∑
j=0

(−1)j
(
m

j

)
f(x+mh− jh)| ≤ 2m sup

y∈{x+jh:j∈{1,...,m}}
|f(y)|,

for any x ∈ (a, b) and say almost every |h| < ε. Let C > 0 and N ⊂ (a, b) be
a negligible set such that |f(x)| ≤ C for any x belonging to (a, b) \ N . Given
j ∈ {1, . . . ,m} and x ∈ (a, b), let us define

Aj = {h ∈ (
a− x
m

,
b− x
m

) : x+ jh ∈ (a, b) \N}.

For j ∈ {2, . . . ,m}, we have A1 ⊂ (A1 \ Aj) ∪ Aj , where A1 \ Aj is negligible
as a subset of (N − x)/j. As a consequence, A1 is equal to ∩mj=1Aj almost
everywhere. Let us also remark that A1 ∩ (−ε, ε) is equal to an interval almost
everywhere. Therefore, by choosing h such that x + jh ∈ (a, b) \ N for every
j ∈ {1, . . . ,m}, we get

|f(x)| ≤ 2mC,

for any x ∈ (a, b), as expected.

Theorem 1. Let m ∈ N and f : R→ R be a functions that is bounded almost
everywhere on a neighborhood of a point x0 ∈ R. If equation ∆m

h f = 0 is
satisfied on a neighborhood of x0 for almost every h sufficiently small, then f
can be written as a polynomial of degree at most m−1 on a neighborhood of x0.

Proof. It is sufficient to prove the result for m > 1. Thanks to Lemma 1, we can
suppose that there exists η > 0 for which f is bounded and satisfies ∆m

h f = 0
on (x0− η, x0 + η) for almost every |h| < η. For the sake of clarity, we will drop
the locution “almost every” in the remaining of the proof. Let ε be such that
0 < ε < η/m and set δ = η −mε. We can suppose that we have |∆j

hf(x)| ≤ C
for any j ∈ {0, . . . ,m}, any x ∈ (x0−δ, x0+δ) and |h| < ε. If x ∈ (x0−δ, x0+δ),
let us prove that f is continuous at x. Given r ∈ N, let h be such that |rh| < ε;
Newton’s interpolation formula gives

f(x+ qh) =

q∑
j=0

∆j
hf(x)

j!
(q)j ,
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for any q ∈ N0, where (q)j denotes the falling factorial,

(q)j =


1 if j = 0

j−1∏
k=0

(q − k) if j > 0
.

We also have, for q ≥ m,

f(x+ qrh) =

q∑
j=0

∆j
rhf(x)

j!
(q)j ,

which implies

qr∑
j=0

∆j
hf(x)

j!
(qr)j =

q∑
j=0

∆j
rhf(x)

j!
(q)j .

If we denote by s(j, k) the Stirling numbers of the first kind, we can rewrite
the last equality as follows:

qr∑
j=0

∆j
hf(x)

j!

j∑
k=0

s(j, k)(qr)k =

q∑
j=0

∆j
rhf(x)

j!

j∑
k=0

s(j, k)qk.

This implies
qr∑
j=k

∆j
hf(x)

j!
s(j, k) =

q∑
j=k

∆j
rhf(x)

j!
s(j, k)r−k,

for k ∈ {0, . . . ,m − 1}. Now, if S(j, k) denotes the Stirling numbers of the
second kind, the equality

m−1∑
k=l

qr∑
j=k

∆j
hf(x)

j!
s(j, k)S(k, l) =

m−1∑
k=l

q∑
j=k

∆j
rhf(x)

j!
s(j, k)r−kS(k, l),

allows to write (since
∑j
k=l s(j, k)S(k, l) = δjl)

∆l
hf(x)

l!
=

m−1∑
k=l

q∑
j=k

∆j
rhf(x)

j!
s(j, k)r−kS(k, l),

for l ∈ {0, . . . ,m− 1}. Consequently, we have

|∆
l
hf(x)

l!
| ≤ C ′

m−1∑
k=l

r−k,

for some constant C ′. Now, given 0 < |h| < ε, let r be the natural number such
that r|h| < ε ≤ (r + 1)|h|. The last inequality gives

|∆
l
hf(x)

l!
| ≤ C ′

m−1∑
k=l

|h|k

(ε− |h|)k
,
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for any l ∈ {0, . . . ,m − 1}. In particular, we have limh→0 ∆1
hf(x) = 0, so that

f is continuous on (x0 − δ, x0 + δ).
Given 0 < |h| < δ/m, there exists a unique polynomial Ph of degree at most

m − 1 such that Ph(x0 + jh) = f(x0 + jh), for j ∈ {0, . . . ,m}. For r ∈ N,
the same arguments as in the beginning of the proof lead to the existence of a
polynomial Ph/r such that Ph/r(x0 + jh/r) = f(x0 + jh/r), for j ∈ {0, . . . ,mr}.
Since Ph and Ph/r are equal on m different points, they are equal on R. So Ph
is equal to f on {x0 + qh : q ∈ Q, 0 ≤ q ≤ m}, which allow to conclude, using
the continuity of f .

Remark 1. If one assumes the measurability of f , the proof of theorem 1 becomes
much simpler (one can proceed as in the proof of theorem 2).

3 The Fréchet functional equation on the Eu-
clidian space Rn

The previous result can be generalised to E.

Lemma 2. The polynomials

P (x) =
∑
|α|=m

cαx
α1
1 · · ·xαn

n

are solutions to the equation ∆m
h f(x) = m!f(h).

Proof. By linearity, it is sufficient to prove that, given a multi-index α ∈ Nn

such that |α| = m, the monomial xα1
1 · · ·xαn

n is a solution to the considered
equation. This claim is easy to check for m = 1 and m = 2. If the result has
been obtained for m = k, let us show that it is still valid for k + 1. Let α be a
multi-index such that |α| = k+ 1; we can suppose that αn ≥ 1 in order to write

∆k
h(xα1

1 · · ·x
αn−1

n−1 x
αn−1
n xn)(x)

=

k∑
j=0

(
k

j

)
∆j
h(xα1

1 · · ·x
αn−1

n−1 x
αn−1
n )(x) (∆k−j

h xn)(x+ jh)

=

(
k

k − 1

)
∆k−1
h (xα1

1 · · ·x
αn−1

n−1 x
αn−1
n )(x)hn + k!hα1

1 · · ·h
αn−1

n−1 h
αn−1
n (xn + khn),

which allows to write

∆k+1
h (xα1

1 · · ·xαn
n )(x) =

(
k

k − 1

)
∆k
h(xα1

1 · · ·xαn−1
n )(x)hn + k!hα1

1 · · ·hαn−1
n hn

= (k + 1)!hα1
1 · · ·hαn

n ,

as desired.

As a consequence, the polynomials of degree at most m−1 satisfy the Fréchet
functional equation.

We can now characterise the solutions to the local Fréchet functional equa-
tion for the functions on E that are bounded almost everywhere on a neighbor-
hood.
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Theorem 2. Let f : E→ R be a function that is bounded almost everywhere on
a neighborhood of a point x0 ∈ E and such that ∆m

h f = 0 on a neighborhood of
x0 for almost every h sufficiently small. The function f is equal to a polynomial
of degree at most m− 1 on a neighborhood of x0.

Proof. Let us first remark that f is measurable on a neighborhood of x0. This
result from theorem 1: for x chosen in a neighborhood of x0, the function

fj : t 7→ f(x1, . . . , xj−1, t, xj+1, . . . , xn)

is continuous on a neighborhood of the j-th component of x0; this being said,
we can conclude using a result from Carathéodory (see e.g. [6, 1]).

Let ε > 0 be such that f is measurable and bounded on B(x0, ε) with
∆m
h f(x) = 0 for every x ∈ B(x0, ε) and almost every |h| < ε. It is well known

that there exists a function Φ ∈ D(E) such that
∫

Φ(x) dx = 1 and f = g ∗ Φ
on B(x0, ε/2), with

g(x) =

{
f(x) if x ∈ B(x0, ε)
0 otherwise

.

As a consequence, f is infinitely continuously differentiable on a neighborhood
of x0 (see Remark 2 for an explicit construction of Φ).

We thus can write

Dm
j f(x) = lim

h→0

∆m
hej
f(x)

hk
= 0,

for any x ∈ B(x0, ε/2) and j ∈ {1, . . . , n}, which implies that f is a polynomial
of degree at most n(m− 1) on a neighborhood of x0.

Let us suppose that f is a polynomial of degree p ≥ m on B(x0, ε/2) and
define the polynomial P such that

f(x) =
∑
|α|≤p

cαx
α1
1 · · ·xαn

n =
∑
|α|=p

cαx
α1
1 · · ·xαn

n +
∑
|α|<p

cαx
α1
1 · · ·xαn

n

= P (x) +
∑
|α|<p

cαx
α1
1 · · ·xαn

n ,

on B(x0, ε/2). We have

0 = ∆p
hf(x0) = ∆p

hP (x0) = p!P (h),

for h sufficiently small, so that P = 0.

Let us give the classical construction of the function Φ, appearing in the
proof of Theorem 2.

Remark 2. Let us give the explicit definition of the function Φ appearing in the
proof of Theorem 2. Let r be an odd number multiplied by two strictly greater
than m and ρ ∈ D(E) be a radial function such that supp(ρ) ⊂ B(0, ε/2),
0 ≤ ρ ≤ 1 and

∫
ρ(x) dx = 1. We can consider the function Φ̃ on E obtained as

follows:

Φ̃(x) =

r/2−1∑
j=0

(−1)j
(
r

j

)
1

(2j − r)n
ρ(

x

2j − r
) (7)
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and set Cr =
∫

Φ̃(x) dx (one can check that Cr =
(
r
r/2

)
/2) in order to define the

function Φ on E as Φ(x) = Φ̃(x)/Cr. For x ∈ B(x0, ε/2), we have

g ∗ Φ(x)− f(x)

=
1

Cr

r/2−1∑
j=0

(−1)j
(
r

j

)
1

(2j − r)n

∫
f(x− y) ρ(

y

2j − r
) dy − f(x)

=
1

2Cr

( r∑
j=0
j 6=r/2

(−1)j
(
r

j

)∫
f(x− (2j − r)y) ρ(y) dy − 2Crf(x)

)

=
1

2Cr

∫
∆r
yf(x)ρ(y) dy = 0,

as claimed.

We directly get the following result.

Corollary 1. Let m ∈ N and f : E→ R be a function which is bounded almost
everywhere; if f satisfies ∆m

h f = m!f(h) on E for any h, then it can be written
as

f(x) =
∑
|α|=m

cαx
α1
1 · · ·xαn

n

on E.

4 The Fréchet functional equation for distribu-
tions

Given T ∈ D′(E), the (forward) difference ∆m of order m ∈ N of T is naturally
defined as follows:

∆m
h T (ϕ) = T (∆m

−hϕ),

for h ∈ E and ϕ ∈ D(E). If T ∈ D′(R), we naturally have

lim
h→0

∆m
h T

hm
= DmT,

so that if T satisfies ∆m
h T = 0 for any h sufficiently small, the m-th derivative

of T is equal to zero, which implies that T is a distribution associated to a
polynomial of order at most m−1. We aim now at showing that this result still
holds if T belongs to D′(E).

Theorem 3. Given m ∈ N, the solutions to the equation ∆m
h T = 0 for almost

every h ∈ E with T ∈ D′(E) are the distributions associated to a polynomial of
degree at most m− 1.

Proof. Let T ∈ D′(E) be a solution to the Fréchet functional equation. Again,
let r ∈ N be a natural number greater than m that is equal to an odd number
multiplied by two and define Φ as in the proof of theorem 2, using the constant
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Cr and the function Φ̃ satisfying (7). With the same arguments, one can assert
the existence of a constant C such that

ϕ ∗ Φ(x)− ϕ(x) = C

∫
∆r
yϕ(x) ρ(y) dy,

for any ϕ ∈ D(E) and any x ∈ E. We get

T (ϕ ∗ Φ− ϕ) = CTx(

∫
∆r
yϕ(x) ρ(y) dy) = C

∫
T
(
∆r
yϕ) ρ(y) dy

= C

∫
∆r
yT
(
ϕ) ρ(y) dy = 0,

so that T is associated to a infinitely continuously differentiable function f . Now,
since the distribution associated to ∆m

h f is vanishing, we have obtained that
∆m
h f(x) = 0 for any x ∈ E and any h ∈ E, which is sufficient to conclude.

As a consequence, we recover the usual solution to the Fréchet functional
equation.

Corollary 2. Given m ∈ N, if f ∈ L1
loc(E) satisfies ∆m

h f = 0 for almost every
h, then f is a polynomial of degree at most m− 1.

5 A generalisation of the Cauchy functional equa-
tion for distributions

In this section we generalise ideas from [14] and show that a natural formulation
of the results can be achieved through pullbacks. Let us recall this notion. Given
two open sets U ⊂ Rm, V ⊂ Rn and a C∞ map f : U → V whose differential g
is such that g(x) is surjective for every x ∈ U , there exists a unique continuous
linear map f∗ : D′(V ) → D′(U) such that f∗T = T ◦ f if T ∈ C0(V ); f∗T is
called the pullback of T by f (for more details, see e.g. [11]).

Given j ∈ N0, let us define

pj : E2 → E (x, y) 7→ x+ jy and qj : E2 → E (x, y) 7→ jx+ y.

Obviously, p0 and q0 are orthogonal projections and

∆m
h f(x) =

m∑
j=0

(−1)m−j
(
m

j

)
p∗jf(x, h),

for any f ∈ C0(E). One can thus define the unique continuous linear map

∆m : D′(E)→ D′(E2) T 7→
m∑
j=0

(−1)m−j
(
m

j

)
p∗jT.

In [14], the Cauchy functional equation ∆1T = q∗0T (with T ∈ D′(E)) is
studied, although this equation not considered as an equation on E2. Here, we
will consider the functional equation

∆mT = m!q∗0T. (8)
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This equation generalises the previous one in the same way that equation (5)
generalises the Cauchy functional equation.

Likewise, we could have defined the operator

Λm : D′(E)→ D′(E2) T 7→
m∑
j=0

(−1)m−j
(
m

j

)
q∗jT,

in order to consider the equation ΛmT = m!p∗0T . A simple calculation show
that this equation is equivalent to (8).

Lemma 3. A distribution T ∈ D′(E) satisfies ∆mT = m!q∗0T if and only if it
also satisfies ΛmT = m!p∗0T .

Proof. Let T ∈ D′(E) be a solution to (8) and consider the diffeomorphism

π : E2 → E2 (x, y) 7→ (y, x).

One easily checks that the following relation holds:

q∗j f(x, y) = (pj ◦ π)∗f(x, y),

for any f ∈ D(E), which implies q∗j = π∗p∗j on D′(E).
Therefore, we get

ΛmT =

m∑
j=0

(−1)m−j
(
m

j

)
q∗jT = π∗

m∑
j=0

(−1)m−j
(
m

j

)
p∗jT

= π∗∆mT = m!π∗q∗0T = m!p∗0T

and a symmetric argument allows to conclude.

Let us now show that the solutions to equation (8) are the distributions
associated to the homogeneous polynomials of degree m.

Lemma 4. A distribution T ∈ D′(E) associated to a polynomial of type

P (x) =
∑
|α|=m

cαx
α (9)

is a solution to the equation (8).

Proof. Let T ∈ D′(E) be the distribution associated to the polynomial P of
type (9). Given ϕ ∈ D(E2), we have

∆mT (ϕ) =

m∑
j=0

(−1)m−j
(
m

j

)
p∗jT (ϕ)

=

m∑
j=0

(−1)m−j
(
m

j

)∫∫
P
(
pj(x, y)

)
ϕ(x, y) dxdy

=

∫∫
∆m
y P (x)ϕ(x, y) dxdy

= m!

∫∫
q∗0P (x, y)ϕ(x, y) dxdy = m!q∗0T (ϕ),

as expected.
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We have the converse result.

Theorem 4. Given m ∈ N, the solutions to equation (8) are the distributions
associated to the polynomials P which satisfy equality (9).

Proof. Let us consider a solution T ∈ D′(E) to equation (8). For any j belonging
to {1, . . . , n}, we have, using the chain rule,

Djp
∗
kT =

n∑
l=0

(Dj [pk]l)(p
∗
kDlT ) = p∗kDjT,

as well as Djq
∗
0T = 0. This implies ∆mDjT = 0.

Now, the unicity of p∗j implies that, for any T ∈ D′(E), we have

∆mT (ϕ) =

∫
∆m
y Tx

(
ϕ(x, y)

)
dy,

for any ϕ ∈ D(E2). These relations imply that a solution T necessarily satisfies
∆m
y DjT = 0 for almost every y. Hence, DjT is a distribution associated to a

polynomial of degree at most m− 1, which is sufficient to conclude.

As a consequence, we recover the usual solution to equation (5).

Corollary 3. Given m ∈ N, if f ∈ L1
loc(E) satisfies (8), then f is a polynomial

of the form (9).
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