

LBTI: latest results and prospects

D. Defrère
University of Liège

The Large Binocular Telescope

Mt Graham, Arizona (10400 feet -- 3170 meters)

The Large Binocular Telescope

Mt Graham, Arizona (10400 feet -- 3170 meters)

The Large Binocular Telescope

Resolution

Beam combination provides the equivalent resolution of a 22.7-m telescope.

High Contrast

The AO system creates an image with a Strehl of >90% at 3.8 μ m.

Sensitivity

LBT has two 8.4-m mirrors mounted on a single structure (collecting area of a single 11.8-m aperture)

The Large Binocular Telescope

Resolution

Beam combination provides the equivalent resolution of a 22.7-m telescope.

High Contrast

The AO system creates an image with a Strehl of >90% at 3.8 μ m.

Sensitivity

LBT has two 8.4-m mirrors mounted on a single structure (collecting area of a single 11.8-m aperture)

Key specificities

1. Common mount interferometer

- ⇒ No geometric delay
- ⇒ No long delay line

Key specificities

2. Deformable secondary mirrors => Low thermal background

The LBT interferometer (LBTI)

Resolution

Beam combination provides the equivalent resolution of a 22.7-m telescope.

High Contrast

The AO system creates an image with a Strehl of >90% at 3.8 μ m.

Sensitivity

LBT has two 8.4-m mirrors mounted on a single structure (collecting area of a single 11.8-m aperture)

The LBT interferometer (LBTI)

The LBT interferometer (LBTI)

Versatile instrument

VORTEX

LBTI science

LBTI surveys

- LEECH (planet survey): Stone et al. (submitted)
- HOSTS (exozodi survey): Ertel et al. 2018

HOSTS survey

- NASA-funded exozodi survey at 10 μm
- Main design driver for the Binocular nature of the LBT
- What is an exozodi?

HOSTS survey

- NASA-funded exozodi survey at 10 μm
- Main design driver for the Binocular nature of the LBT
- What is an exozodi?

Why an exozodi survey?

- Source of noise and confusion for future direct imaging missions

HOSTS: observing challenge

- 1 zodi around a 2-Jy star is **~1 million times** dimmer than the background and **~20000 times dimmer** than the star
- Signal mixed with the stellar PSF!

The Large Binocular Telescope

- Employing nulling interferometry
- 36 nearby main-sequence stars observed

The Large Binocular Telescope

- Employing nulling interferometry
- 36 nearby main-sequence stars observed

The Large Binocular Telescope

N-band nulling with LBTI-NOMIC

HOSTS: results

- 36 nearby main-sequence stars observed
- Deepest N-band interferometric survey to date
- Exozodi more frequently found around stars with cold dust
- Good news for future imaging missions! Median exozodi density around “clean” stars < 16 zodis

ALES (Arizona Lenslet for Exoplanet Survey)

- First tests of system carried out on June 1-3 (2015).
 - spaxels are 25 mas.
 - FOV is 2.6"

ALES (Arizona Lenslet for Exoplanet Survey)

The Vortex modes

The Large Binocular Telescope

Several possibilities

Single AO+AGPM
imaging

Single AO+AGPM
imaging

Binocular AO+AGPM
imaging

Binocular AO+AGPM
imaging

New mode

Single
IFU+AO+AGPM
imaging

Optical setup

Nov. 2013: first-light observations

- First-light observations on October 17, 2013 (AGPM-L4, **1 telescope**)
- Only one side and with un-optimized Lyot stop

Peak rejection \sim 35:1
(far from optimal)

Comparison with other instruments

ALES+AGPM observations

- Can be used with ALES (now field-of-view of $\sim 3''$)
- Re-aligned this summer

First AGPM+IFU image (beta Aur)

Spectral image cube (2.8 – 4.2 microns, R~20)

Data processing by Jordan Stone (UoA)

QACITS commissioning

- Implemented a IDL-Python wrapper to call QACITS
- Commissioned 1T QACITS

New optimized Lyot stops

- Ordered on Tuesday

Simulations done by B. Carlomagno

New optimized Lyot stops

Simulations done by B. Carlomagno

Status

- Only ~1 night on sky since 2013 (out of 3.5 allocated nights):
 - * 0.5 night for HR8799 images
 - * 2 hours for commissioning QACITS and testing new ALES+AGPM mode
 - * 2.5 hours on HD179128
- Need observing time!
 - * Lossing expertise at LBT

Summary and future observations

- LBTI + AGPM is the most sensitive L-band imager
- IFU + AGPM mode ($R=40$) available
- Need observing time! No observing time since 2016B...
- Proposal for 2019A due by the end of September

