

Finite Element activation strategy in the numerical simulation of Additive Manufacturing Processes

C.Laruelle (cedric.laruelle@ULiege.be), R.Boman, L.Papeleux, J.-P. Ponthot, Department of Aerospace and Mechanical Engineering, Liège, Belgium

Context and challenges

- ☐ This work consists in building a first 3D thermal Finite Element Analysis of an additive manufacturing process in the fully implicit in-house Finite Element code "Metafor" [1].
- ☐ The **challenges** of such a simulation come from multiple sources:
- The nature of the process requires a large deformation thermo-mechanical simulation.
- The modeling of the material law is complex.
- The geometry of the process imposes a **very fine discretization** for accurate results.
- The process requires altering the mesh geometry of the model during the simulation to model the addition of matter.
- ☐ This work is a preliminary work to asses the current possibilities of additive manufacturing modelling of Metafor. It focuses on mesh and geometry management.

Mesh management technique

<u>Principle</u>

- ☐ Finite elements and boundary conditions (convection/radiation/laser heat flux) are all created at the start of the simulation but only enter the computation after their activation (born-dead elements).
- □ Sets of finite elements or boundary conditions are activated/deactivated based on the current laser position/mesh geometry (see figure bellow).
- ☐ The method used is **adapted from** the deactivation of elements and boundary conditions used in **crack propagation** [2].

Computation of new active mesh and boundary conditions

- 1. Known configuration at time t.
- 2. Computation of laser position at time $t + \Delta t$.
- 3. Activation of finite elements based on the new laser position.
- 4. Deactivation of boundary conditions and heat flux based on the new mesh geometry and laser position.
- 5. Activation of boundary conditions and heat flux based on the new mesh geometry and laser position.

Time evolution of the process

References

[1] J.-P. Ponthot, "Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes", International Journal of Plasticity. 18 (2002) 91-126.

[2] J.-P. Ponthot, R. Boman, P.-P. Jeunechamps, L. Papeleux, G. Deliége, "An implicit erosion algorithm for the numerical simulation of metallic and composite materials submitted to high strain rate", Proceedings of the Indian National Science Academy. 79/4 (2013) 519-528
[3] M. Chiumenti, X. Lin, M. Cervera, W. Lei, Y. Zheng, W. Huang, "Numerical simulation and experimental calibration of Additive Manufacturing by blown powder technology. Part I: thermal analysis", Rapid Prototyping Journal 23 (2) (2017) 448–463.

Experimental and numerical temperature evolution [3] Experimental piece after process [3] Experimental piece after process [3] Thermocopie - CRI Thermoco

□ Good agreement between the final temperature distribution

Good agreement between the final temperature distribution and the experimentally observed oxidation zone.

UNIVERSITAT IN DE CATALUNYA BARCELONATE

352 288

224 160

800

Our results (Metafor)

☐ Good agreement of the temperature evolution between COMET and Metafor.

☐ Both Metafor and COMET could predict the experimental oxidation zone.

TEMPERATURE

Plan for future research

□ Optimize Metafor for the modeling of Additive Manufacturing:

160

The method is currently **not CPU-efficient**. Indeed, since the elements are **activated by "sets"** in Metafor, it requires the creation of a **very high number of sets (1 set for each boundary condition/element).** The software was not built to efficiently handle such a high number of sets.

Good agreement between the results obtained by COMET and Metafor.

- Create a more automated activation/deactivation technique within a single set of elements.
- ☐ Improve of the **FEM modeling of the mesh/geometry** for Additive Manufacturing:
- Implement X-FEM to model the geometry of additive manufacturing processes to remove the constraint of a very fine mesh imposed by the layer height without lost of accuracy:

X-FEM for AM: