
-1-

INFERNET simulator
Reference
For Macintosh computers

© J. Sougné
University of Liège

-2-

INFERNET simulator is freeware. It comes with no guaranty.
Caution: INFERNET requires a large amount of memory. The

more memory allocated to INFERNET, the better. This application
only runs on recent PPC Macintosh computers.

Report bugs and suggestions to J.Sougne@ulg.ac.be

-3-

1. Introduction
INFERNET is a connectionist model using integrate-and-fire nodes. In INFERNET,

nodes can be in two different states: they can fire (“on”), or they can be at rest (“off”). A
node fires at a precise moment and transmits activation to other connected nodes with
some time course. When a node activation or potential reaches a threshold, it emits a
spike. After firing, the potential is reset to some resting value. INFERNET solves the
binding problem by synchrony. Each object is represented by a cluster of nodes firing in
synchrony. If the firing distribution is tightly concentrated around the mean, the object is
considered to be activated. Objects are bound to their roles by synchronous firing. This
synchronous activity defines a window of synchrony: a delay within which the required
nodes fire. This delay is constrained by the precision of synchrony (± 5 ms). In
INFERNET, discrimination is achieved by successive windows of synchrony. Objects
and bindings are maintained in memory by oscillation. Once a node is activated, it tends
(but not necessarily) to begin oscillating at a γ (30-80 Hz) frequency range. The temporal
gap between 2 spikes of a node is therefore from 14 to 33 ms.

Here follows INFERNET simulator manual. An experiment with INFERNET requires
first to define which nodes represent a particular object. The Long term memory should
then be defined. The various INFERNET parameters must be set and the simulation can
be run. INFERNET provides also a means to analyze INFERNET results.

After double clicking on INFERNET icon the following window appears (Figure 1.1).

Figure 1.1 Introduction window of INFERNET

Click OK and the “Console” window appears (Figure 1.2). This window serves to
indicate message and results of various processes.

Figure 1.2 INFERNET console window

-4-

2. How to set an experiment
2.1 Definition of objects

1. Select the menu item “Define objects” in the Design menu. A window called “Object
definition” appears (Figure 2.1). INFERNET is not a fully connected network, its
structure is organized by clusters of nodes which constitute sub-nets. Each sub-net is fully
connected. From each node of a sub-net there is a connection to every other node in the
sub-net. Some of sub-net nodes possess connections to external sub-net nodes. In this
window, you must decide how many sub-nets (banks) to use and how many node in each
bank. You must also decide the value Δtγ which is the delay in ms corresponding to a
gamma wave. If the oscillation has a frequency of 40Hz, Δtγ is 25.

Figure 2.1 Setting of the number of sub-nets nodes and gamma frequency

2. Click on the button “New Object”. The following window appears (Figure 2.2). Here you
must give a name to each object and decide which nodes will represent it. Click on the
button “Define” to store the object. And define another object. When all objects have
been defined click on the button “Done”. The window closes.

Figure 2.2 Definition of nodes representing an object

-5-

2.2 LTM Definition
1. Select the menu item “Define LTM content” in the Design menu. A window called “LTM

building” appears (Figure 2.3). Here you must decide how objects are related. There are
six types of connections: post-synaptic excitation, post-synaptic inhibition, pre-synaptic
amplification of an excitation, pre-synaptic inhibition of an excitation, pre-synaptic
inhibition of an inhibition and pre-synaptic amplification of an inhibition. In the figure,
the object “DDD” is connected to the object “ZZZ” with an inhibitory weight (-127), a
delay of 10 ms and a full density. It means that all possible connections from “DDD” to
“ZZZ” have been set to -127. On these connection there are pre-synaptic inhibitions from
nodes representing the object “CCC”. It means that when “CCC” nodes fire, they will
inhibit, with a 5 ms delay, the inhibition transmitted from “DDD” nodes to “ZZZ” nodes.
When the connection has been set, click on the button “Add”, and define another
connection.

Figure 2.3 LTM definition

2. When all connections have been set, click on the button “Save LTM defs” and the
following dialog appears (Figure 2.4). It invites you to save the definitions.

Figure 2.4 Saving LTM definition

2.3 Save LTM loading file
1. Before using the LTM defined, you must save them in another format. Select the menu

item “Make LTM file” in the Design menu. The following dialog appears (Figure 2.5). It
invites you to save the LTM.

-6-

Figure 2.5 Saving LTM content

2.4 Set experiment variables
1. Select the menu item “Experiment settings” in the Design menu. A window called

“Experiment setting” appears (Figure 2.6). A series of parameters has to be set. Numbers
in brackets are minimum and maximum permissible values. All values must be Integers!
Choose the number of repetitions of the experiment (Number of trials). Choose the level
of noise on transmission delays (p noise on delays). Choose the level of noise on
connection weights (p noise on connections). Choose the level of noise on spike (p noise
on spikes). Choose the probability to reduce connection weights by noise (p reduce
connections). The Δw parameter is the learning and forgetting constant. The leaky factor
influence the speed of reduction of a node potential. This is the decreasing signal in a
Post-synaptic Potential function. The minimum threshold is the minimum level of
activation for a node to fire (remember that each connection give a maximum activation of
127). Random states are useful for repeated measure designs. If you want to test different
settings while controlling the way random numbers are drawn, using random states is
recommended. First create random states, in subsequent experiments check the “Use
random states” box.

Figure 2.6 Settings of experiment parameters

2. Click on the button “LTM file” and choose the file to be used in the experiment (Figure
2.7).

-7-

Figure 2.7 Choosing a LTM file for an experiment

3. Click on the button “Binding input” in Figure 2.6, a new window appears (Figure 2.8).
You have to decide which objects nodes will fire at each ms steps. In Figure 2.8, the
example shows that this input will be Or (A, B). Be sure to respect delays defined in the
LTM files. You have the opportunity to define successive binding inputs by clicking on
the button “Next”. When all binding inputs are defined, click on the button “Define”.

Figure 2.8 Definition of the binding input

-8-

4. Click on the button “Question input”in Figure 2.6, a new window appears (Figure 2.9).
You have to decide which objects nodes will fire at each ms steps. In Figure 2.9, the
example shows that this input question will be “negation A”. Together with the binding
input, this question should enable disjunctive syllogism and produce a “B” response. You
have the opportunity to define successive question inputs by clicking on the button “Next”.
When all question inputs are defined, click on the button “Define”.

Figure 2.9 Definition of the Question input

5. Click on the button “Set” for terminating experiment setting (Figure 2.6).

-9-

2.5 Save an experiment script

The next step is to save a script that contains all experiment definitions. Select the menu
item “Save a script” in the File menu. The following dialog appears (Figure 2.10). It
invites you to save the script.

Figure 2.10 Saving a script

2.6 Launch an experiment script
You are ready for running an experiment. Select the menu item “Launch a script” in the
File menu. The following dialog appears (Figure 2.11). It invites you to choose the script
to be executed. This process may take many hours depending on the size of the network
and the number of repetition. It is a good idea to run an experiment only one time to verify
that it gives the expected answer before running a full experiment. Caution, when an
experiment is running, processor interrupts are blocked, so you won’t be able to use the
computer until the experiment finishes!

Figure 2.11 Running a script

-10-

3. Analysis of results

3.1 Proportion of expected responses and
reaction times

3.1.1 Proportion of expected responses

1. Select the menu item “Proportions & RT” in the Analysis menu. A window called
“Correction” appears (Figure 3.1).

Figure 3.1 Window of correction

2. Click on the Question files button and select one of the question file you want to test
(Figure 3.2). If there are many trial, the system will analyze all trials for this question.

Figure 3.2 Selection of question files

-11-

3. Click on the button “Expected answer”, the following window appears (Figure 3.3). Select
the objects required firing times. Figure 3.3 shows the expectation of object “A” firing at
the 21st ms. Click on the button “Define” and the window closes.

Figure 3.3 Expected answer setting

4. Click on the button “Proportions” (Figure 3.1), results are displayed in the console window
(Figure 3.4).

Figure 3.4 Proportions results expressed in correlations

-12-

3.1.2 Reaction times

1. Click on the “RT files” button (Figure 3.1) and select one of the Binding file you want to
test (Figure 3.5). If there are many trial, the system will analyze all trials.

Figure 3.5 Selection of binding files

2. Click on the button “Expected answer”, a window appears (Figure 3.3). Select the objects
required firing times.

3. Click on the button “Reaction times” and wait for results displayed on the Console window
(Figure 3.6).

Figure 3.6 Reaction time result

3.2 Curve of mean theta cycle firing times
1. Select the menu item “Theta trace” in the Analysis menu. INFERNET asks you to select

one result file to analyze (Figure 3.7).

Figure 3.7 Selection of a result file to trace

2. A window called “Object firing” appears (Figure 3.8), select the objects you want to trace
and click on the button “Trace”.

-13-

Figure 3.8 Selection of objects to trace

3. Results appear in a new window called “Object firing density” (Figure 3.9). The curves
trace the firing density of nodes pertaining to an object for each ms in theta cycles. On
Figure 3.9 we can see that “B” and “SECOND” are synchronized as well as “A” and
“FIRST”.

Figure 3.9 Plot of object firing density

3.3 Cross-Correlogram between firing times of
two objects nodes

-14-

1. Select the menu item “Crosscorrelations” in the Analysis menu. INFERNET ask you to
select one result file to analyze (Figure 3.10).

Figure 3.10 Selection of a result file to trace

2. A window called “Correlogram” appears (Figure 3.11). Select the two objects and click on
the button “Trace”.

Figure 3.11 Selection of objects to be involved in cross-correlation

3. Results appears in a new window (Figure 3.12).

Figure 3.12 Cross-correlogram between 2 objects nodes firing times.

-15-

4. Modifying a script by hand
1. Locate the script file and change the file type to TEXT with ResEdit or DataViz

FileView™ coming with macLinkPlus.

2. Edit the script with SimpleText or whatever text editor, and modify parameters as indicated
in Figure 4.1.

(progn
 (setf B '((5 0) (5 1) (5 2) (5 3) (5 4) (5 5) (5 6) (5 7) (5 8) (5 9) (5 10) (4 11)))
 (setf A '((4 0) (4 1) (4 2) (4 3) (4 4) (4 5) (4 6) (4 7) (4 8) (4 9) (4 10) (4 11)))
 (setf NEGATION '((3 0) (3 1) (3 2) (3 3) (3 4) (3 5) (3 6) (3 7) (3 8) (3 9) (3 10) (3 11)))
 (setf SECOND '((2 0) (2 1) (2 2) (2 3) (2 4) (2 5) (2 6) (2 7) (2 8) (2 9) (2 10) (2 11)))
 (setf FIRST '((1 0) (1 1) (1 2) (1 3) (1 4) (1 5) (1 6) (1 7) (1 8) (1 9) (1 10) (1 11)))
 (setf OR '((0 0) (0 1) (0 2) (0 3) (0 4) (0 5) (0 6) (0 7) (0 8) (0 9) (0 10) (0 11)))
 (setf *object-list* '(B ((5 0) (5 1) (5 2) (5 3) (5 4) (5 5) (5 6) (5 7) (5 8) (5 9) (5 10) (4 11)) A ((4 0) (4 1) (4 2) (4 3) (
(3 10) (3 11)) SECOND ((2 0) (2 1) (2 2) (2 3) (2 4) (2 5) (2 6) (2 7) (2 8) (2 9) (2 10) (2 11)) FIRST ((1 0) (1 1) (1 2) (1 3) (
(0 11))))
 (setf *random-state* (make-random-state t))
 (setf PiMsec 30)
 (setf prem 99)
 (setf padd 99)
 (setf twicecn 1)
 (setf absoluteThres 280)
 (setf conn_noise 11)
 (setf probnoisydelay 79)
 (setf nbank 9)
 (setf nodebybank 11)
 (setf nprojection 6)
 (setf *ltmpath* #P"Occam's Rasor:Languages:MCL 4.2:Developpement:InfSim:results:DISJ.ltm")
 (setf nexperiments 1)
 (setf DeltaWba 8)
 (setf PSPtoBaseRate 2)
 (setf *noisy* T)
 (setvar)
 (loop for expe fixnum from 0 to (- nexperiments 1)
 do (if (check-box-checked-p *urs*) (load-state expe))
 do (resetweight)
 do (handler-case (with-open-file (h *ltmpath*
 :direction :input
 :if-does-not-exist nil)
 (eval (read h))) (condition () (progn (format Console "~&Invalid LTM file!")
 (fred-update console)
 (CCL::WINDOW-SCROLL-TO-BOTTOM console))))
 (progn (thetacycleask (concatenate 'string ":results:bind" "-" (princ-to-string expe))
 (make-input-one (loop for x in (car '(((OR 0) (A 10) (B 25)))) collect (list (eval (car x))))
 (loop for x in (car '(((OR 0) (A 10) (B 25)))) collect (cadr x)) 10)
 (make-input-one (loop for x in (car '(((NEGATION 0) (B 5)) ((NEGATION 0) (A 5)))) collect (list (eva
 (loop for x in (car '(((NEGATION 0) (B 5)) ((NEGATION 0) (A 5)))) collect (cadr x))
 (set-mac-file-type (concatenate 'string ":results:bind" "-" (princ-to-string expe)) :BIND)
 (set-mac-file-creator (concatenate 'string ":results:bind" "-" (princ-to-string expe)) :INFT)
 (loop for q in '(((NEGATION 0) (B 5)) ((NEGATION 0) (A 5))) for ref from 1
 do (thetacycleask (concatenate 'string ":results:Question" (princ-to-string ref) "-" (princ-to-string expe))
 (make-input-one (loop for x in q collect (list (eval (car x))))
 (loop for x in q collect (cadr x)) 0) '#() 10 nil *noisy*)
 do (set-mac-file-type (concatenate 'string ":results:Question" (princ-to-string ref) "-" (princ-to-string exp
 do (set-mac-file-creator (concatenate 'string ":results:Question" (princ-to-string ref) "-" (princ-to-string
))))

This is the level to prevent
a spike by noise. 99 is a

null probability. Decrease
the value to increase the

probability

This is the level to provoke
a spike by noise. 99 is a

null probability. Decrease
the value to increase the

probability

This is the level to
decrease connection

weight by noise. 1 is a null
probability. Increase the

value to increase the
probability

This is the mimimum
threshold value for a
node to emit a spike

This is the level to increase
connection weight by noise.

1 is a null probability.
Increase the value to

increase the probability

This is the level of noise on
delays. 99 is a null

probability. Decrease the
value to increase the

probability

This is the number of
experiment repetitions

This is the learning
constant

This is the leaky factor

Figure 4.1 How to modify a script

3. Save the changes.

4. Locate the script file and change the file type with ResEdit or DataViz FileView™. Be
sure the file type is SRIT and the creator INF1.

