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Summary 

 

Introduction  

These last years have seen the emergence of a wealth of genetic information at the molecular level. 

Some of the main recent breakthroughs in biology originate from this new knowledge, allowing 

application of new strategies in many fields of the biological research. Although approaches targeting 

the association between phenotypic characteristics and DNA variations have been successful, many 

elements in the genetic landscape of the studied traits are still unknown and uncharacterized. A track to 

new findings, potentially useful for a better understanding of complex determinisms, is the detection 

of interactions between genomic regions affecting the traits of interest rather than single locus 

associations. While the detection of such interactions has been the focus of many methods, and despite 

some successes of these methods to solve difficult problems and to detect some of these genetic 

interactions, there is currently no gold standard method able to detect interactions in all situations, and 

the relative performances of these methods remain largely unclear. This thesis is a contribution to this 

field of interactions mapping:in the first study, we propose a novel approach combining K-Nearest 

Neighbors (KNN) and Multifactor Dimensionality Reduction (MDR) methods for the detection of 

gene-gene interactions as a possible alternative to existing algorithms, especially in situations where 

the number of involved determinants is high. In the second study, we propose another strategy based 

on the principle of the aggregation of experts, where the experts would be a set of popular published 

methods. 

Results 

The results obtained in the first study on both simulated data and real genome-wide data demonstrate 

some of the features that make KNN-MDR interesting in terms of accuracy and power: in many cases, 

it significantly outperforms its recent competitors. More specifically, the analyses on a real large 

dataset demonstrate the feasibility of scans using a large number of markers, as opposed to MDR 

where the computer burden explodes with the number of markers (when it simply increases linearly 

with KNN-MDR). This might for example allow highlighting interactions between markers far apart 

on the genomic map (trans-interactions), while some strategies propose to restrict the scans to close-by 

markers (cis-interactions) or to markers with significant marginal effects to reduce the amount of 

computations.  

For the second study, we also show that aggregating methods results is a strategy with interesting 

features for detecting epistatic interactions. Experimental results, based again on simulated and real 
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genome-wide data, show that the aggregated predictor can produce better performances, in terms of 

statistical power and false positive rates, than each individual predictor to detect genetic interactions. It 

is consequently a useful addition to the various methods available to tackle this complicated problem. 

Conclusion and Perspectives  

In this dissertation, we focused on investigating and developing non-parametric statistical methods 

aiming at the detection of genetic interactions. We have shown that our novel methods complement, 

and sometimes improve, existing approaches used to detect genetic interactions in simulated and real 

datasets. The presented methodologies (KNN-MDR and aggregation of experts) are valuable in the 

context of loci and interaction mapping and can enhance the understanding of the biological 

mechanism underlying traits of interest, including diseases. More precisely, the new knowledge gained 

using these methodologies can assist in the prediction of clinical diseases and can contribute to 

provide new therapeutic opportunities. 

To take further steps to these appealing perspectives, a first objective could be to implement a better 

version of the KNN-MDR software. The improvements could be on the overall performance of the 

software (optimization of the time-consuming parts of the program, parallelization), but also on the 

improvement of the “user-friendliness” of the program. This would involve an easier (and maybe 

automated) tuning of the parameters allowing an optimal detection power. These parameters include: 

the optimal sizes of the windows - which are dependent on the studied population, the markers density, 

the LD pattern, the optimal size of the neighborhoods to be considered, the pre-selection of markers in 

the early phase of large dataset analyses, the used distance measure or the adaptative selection scheme 

for the selection of markers in large studies, among others, the use of other types of genomic variants 

(microsatellites, copy number variations, sequencing data). 

Another potential track would be to use a priori information on the interactions: this could be by using 

the results of previous studies, or by exploiting the known information on gene networks. 
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Résumé 

 

Introduction  

Ces dernières années ont vu l'émergence de sources riches d'informations génétiques au niveau 

moléculaire. Certaines des principales percées récentes en biologie proviennent de ces nouvelles 

connaissances, permettant l'application de nouvelles stratégies dans de nombreux domaines de la 

recherche biologique. Bien que les approches ciblant l'association entre les caractéristiques 

phénotypiques et les variations de l'ADN aient été couronnées de succès, de nombreux éléments dans 

le paysage génétique des caractères étudiés sont encore inconnus et non caractérisés. Une piste 

potentielle vers de nouvelles découvertes, qui pourrait aider à mieux comprendre les déterminismes 

complexes, est de détecter les interactions entre les régions plutôt que les associations avec une région 

unique. Alors que de nombreuses méthodes ont été proposées pour détecter de telles interactions et 

malgré le succès de ces méthodes pour résoudre certains problèmes et détecter certaines de ces 

interactions génétiques, il n'existe actuellement aucune méthode de référence capable de détecter les 

interactions dans toutes les situations. De plus, les méthodes restent relativement peu efficaces. Cette 

thèse est une contribution au développement de méthodes dans ce domaine. 

Dans la première étude, nous proposons une nouvelle approche combinant les méthodes des K Plus 

Proches Voisins (KNN) et de Réduction Multidimensionnelle (MDR) pour détecter les interactions 

entre régions génomiques comme alternative possible aux algorithmes existants, notamment dans les 

situations où le nombre de déterminants impliqués est plus élevé que deux. Dans la deuxième étude, 

nous proposons une stratégie basée sur le principe de l'agrégation d'experts, où les experts seraient 

différentes méthodes de détection d’interactions validées et publiées dans des revues scientifiques. 

Résultats 

Les résultats obtenus dans la première étude à la fois sur des données générées par simulation et sur 

des données réelles à l'échelle du génome démontrent certaines des caractéristiques qui rendent 

l’application du modèle KNN-MDR potentiellement intéressante en matière de précision et de 

puissance : dans de nombreux cas, il surclasse nettement ses concurrents. De plus, des analyses sur un 

large ensemble de données réelles démontrent la faisabilité d'analyses utilisant un grand nombre de 

marqueurs, par opposition à la méthode MDR où la charge informatique explose avec le nombre de 

marqueurs (alors qu’elle augmente simplement linéairement avec KNN-MDR). Cela pourrait par 

exemple permettre de mettre en évidence des interactions entre des marqueurs éloignés sur la carte 

génomique alors que certaines stratégies proposent de limiter les scans aux marqueurs proches ou à un 

ensemble de marqueurs préalablement sélectionné pour réduire la quantité de calculs. 
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Pour la seconde étude, nous montrons aussi que la méthode de l'agrégation des résultats est une 

stratégie avec des caractéristiques intéressantes pour détecter les interactions épistatiques. Les résultats 

expérimentaux, basés à nouveau sur des données simulées et réelles à l'échelle du génome, montrent 

que le prédicteur agrégé peut produire de meilleures performances que chaque prédicteur individuel 

pour détecter des interactions génétiques, et est donc un complément utile aux diverses méthodes 

disponibles pour résoudre ce problème compliqué. 

Conclusions et Perspectives 

Dans cette thèse, nous nous sommes concentrés sur l'étude et le développement de méthodes 

statistiques non paramétriques pour la détection des interactions génétiques. Les méthodes que nous 

proposons sont présentées pour compléter et améliorer les approches existantes utilisées pour détecter 

les interactions génétiques dans des ensembles de données réelles et simulées. Les méthodologies 

présentées (KNN-MDR et agrégation d'experts) sont utiles dans le contexte de la cartographie des 

interactions et peuvent améliorer la compréhension du mécanisme biologique sous-jacent à divers 

caractères d'intérêt, y compris des maladies. L’acquisition de cette nouvelle connaissance, outre la 

compréhension fondamentale qu’elle implique, peut par exemple contribuer à la prédiction 

pronostique ou diagnostique des maladies étudiées, peut offrir de nouvelles possibilités thérapeutiques 

ou peut conduire à l’amélioration de caractères ayant un intérêt médical, agronomique, zootechnique 

ou autre. 

Pour aller plus loin par rapport à ces perspectives attrayantes, un premier objectif pourrait être de 

mettre en œuvre une meilleure version du logiciel KNN-MDR. Les améliorations pourraient porter sur 

la performance globale du logiciel (optimisation des parties chronophages du programme, 

parallélisation), mais aussi sur l'amélioration de la "convivialité" du programme. Cela impliquerait un 

réglage plus facile (et peut-être automatisé) des paramètres permettant une puissance de détection 

optimale. Ces paramètres comprennent: les tailles optimales des fenêtres - qui dépendent de la 

population étudiée, la densité des marqueurs, le modèle de LD, la taille optimale des voisins à 

considérer, la présélection des marqueurs dans la première phase des analyses de grands ensemble de 

données, la mesure de la distance utilisée ou le schéma de sélection adaptatif pour la sélection des 

marqueurs dans les grandes études, entre autres, l'utilisation d'autres types de variantes génomiques 

(microsatellites, variations du nombre de copies, données de séquençage). 

Une autre piste potentielle serait d'utiliser des informations sur les interactions: cela pourrait être 

possible en utilisant les résultats d'études antérieures, ou en exploitant les informations connues sur les 

réseaux de gènes. 
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Genetics laboratories activities have recently become more familiar in the public audience: forensics 

and DNA profiling are present in many prime-time shows and series, and genetic diseases research is 

nowadays largely advertised and sometimes supported through crowdfunding. The recent increase in 

the public interest for this science somehow reflects the huge advances made in genetics in the recent 

decades. Genetic technologies have indeed revolutionized our ability to explore the genetic 

architecture underlying complex traits and generated high (and sometimes exaggerated) hopes to 

understand the fundamental molecular mechanisms underlying biological processes, such as solving 

medical problems or improving the efficiency of bio-mechanisms underlying traits of economic 

importance. One of the disciplines involved to reach these long-term perspectives is positional cloning 

of genes. The aim of this technique is to identify genomic regions underlying traits of interest based 

only on the phenotypes and the genotypes of individuals for a panel of molecular markers. In this 

field, breakthroughs in the genotyping and sequencing technologies - such as DNA markers 

microarrays and NGS techniques - have made association studies based on the whole genome 

affordable in many species and populations. This new situation of large molecular data availability 

was promising and expectations were high that many new insights would readily become available to 

scientists. Despite many successes in the last two decades, much work remains to be done. As an 

example of the progresses to be made, the genetic variants identified to date in most genome-wide 

association studies only explain a small part of the total heritability of the studied traits. Although 

other explanations are possible, genetic interactions (epistasis) is one potential important source of 

unexplained variability. Consequently, further investigations in the field of interactions mapping in 

large-scale studies seems a reasonable avenue of promising research.  Our work is a contribution to 

this field. 

Throughout this thesis work, we have aimed at presenting statistical non-parametric methods for 

identifying potentially epistatic interactions from genomic (and sometimes genome-wide) data. We 

have assessed the mechanisms and the main characteristics of these new methods and we have tried to 

provide some evidence for the utility of these methods over simulated and real data. 

More specifically, in the first study, we propose a novel approach combining K-Nearest Neighbors 

(KNN) and Multifactor Dimensionality Reduction (MDR) methods for detecting gene-gene 

interactions. This method is an extension of the well-known MDR methodology. It increases the span 

of the possible situations where MDR can be useful to situations with large number of markers and 

when the number of underlying genetic determinants is potentially higher than two. The way we use 

the data in KNN-MDR is shown to have a positive impact on the computational burden, making 

accessible situations that could not be tackled using the classical MDR techniques. Furthermore, and 

as a side effect, the approach we propose is also shown to be more powerful and accurate in difficult 

situations where individual genes have only minor (or no) marginal effect and where genetic 

heterogeneity - i.e. different genotypic configurations leading to the same phenotype, and the same 
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genotype leading to distinct phenotypes - is present. A comparison of our method (KNN-MDR) to a 

set of the other most performing methods has been carried on to detect interactions using simulated 

data as well as real genome-wide data. Experimental results on both simulated data and real genome-

wide data show that KNN-MDR has, as mentioned, interesting properties in terms of accuracy and 

power, and that, in many cases, it performs better than its recent competitors. 

In a second study, we propose using a method based on the principle of the aggregation of experts, 

where the experts would be a set of popular published methods. The rationale of the aggregation 

strategy we propose is to benefit from the synergistic work of known methods, each with different 

strengths and weaknesses, to produce more reliable results than each of these individual methods. Our 

work shows that this strategy might lead to increases in both detection power and accuracy in the 

genetic interactions problem, while properly controlling for false discoveries.  

In summary, our contribution to the hunt for genomic interactions underlying phenotypic traits is to 

provide one non-parametric method and one strategy allowing to improve the detection characteristics, 

and to show how these approaches could be used on today large real datasets.   
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1. General introduction 

These last years have seen the emergence of a wealth of biological information and a steep increase in 

the rate of development of genomic and other basic biological research. Facilitated access to the 

genome sequence, along with massive data on genes expression and on proteins have revolutionized 

the research in many fields of biology (Visscher et al. 2012). The development of efficient genomic 

tools has allowed unraveling a large share of the molecular variation in many species, paving the way 

for studies aiming at associating genomic polymorphisms to phenotypic variation. An instance of this 

process is the use of panels of single nucleotide polymorphisms (SNPs) in large scales studies to track 

genes potentially involved in complex traits such as human, animal or plant diseases, for example 

(Kadarmideen 2014). Molecular analyses are nowadays commonly performed to examine candidate 

genomic regions or even the whole genome (in so-called “genome-wide association studies” (GWAS)) 

for causative genomic variants (Katsanis et al. 2013). The knowledge of these influential regions is of 

particular interest, since they are likely to harbor important genes involved in the onset of the disease 

and provide clues to the underlying mechanisms. Although these analyses are progressively becoming 

widespread, and despite successes in studies targeting for example diabetes (Frau et al. 2017) or Crohn 

disease (Libioulle et al. 2007), a large part of the genetic landscape of most traits is still unknown and 

uncharacterized, with in many cases the tested genetic variation only explaining  less than 5%-10% of 

the risk of the disease (Riancho 2012). (Visscher et al. 2012) (Korte et al. 2013) suggested that this 

low figure could be due to the presence of a large number of different genetic causes and to potential 

interactions between genes. Consequently, a deeper understanding of the genotype to phenotype 

relationships will necessitate much more work in many situations (Yee et al. 2016). 

In this thesis, we have tried to elaborate methods aiming at discovering simultaneous factors acting on 

the onset of the disease as an alternative to methods targeting single regions. Although we have 

focused on genomic regions, such methods could also encompass situations where genes and 

environment interact to produce the observed phenotypes. The main reason for that choice is that 

many signs indicate that interactions of several genes to underlie many traits might be the rule rather 

than the exception (Stanislas et al. 2017). Firstly, from a purely biological point of view, most genes 

are involved in complex networks where they interact with other genes; changes (mutations) in one 

gene might have or not an impact on the behaviour of the network, and several simultaneous mutations 

might be necessary to change the products of the network. Consequently, many scenarios are possible, 

some of which suggesting epistatic interactions between genes (Zou et al. 2017). Second, from a more 

pragmatic point of view, the mapping effort using single regions, although sometimes successful, have 

often failed to demonstrate genotype to phenotype relationship. This might be due to a lack of 

statistical power, as has been suggested, or to a poorly specified model (or to both): due to 
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interactions, a gene might mask the effect of another gene, preventing to associate clearly this second 

gene to the studied phenotype (Jung et al. 2016). The next section illustrates this situation. 

1.1. An example of interaction 

Various mechanisms of interactions exist and examples of each of these mechanisms can be found in 

the genetic literature (Costanzo et al. 2016).  We will use the “complementary gene action” to 

illustrate the principle and to explain the difficulties for gene mapping due to this determinism. A 

classic example of this type of interactions is the sweet pea flowers colour problem: when crossing 

two parental white coloured lines, researchers obtained a completely purple F1 line. Next, when 

generating the F2 line (i.e. crossing the F1 individuals), an unexpected ratio of 9:7 purple-coloured to 

white-coloured flowers is observed. The explanation is as follows: 

 The determinism involves two genes, with two alleles each, noted A and a for the first and B 

and b for the second. 

 The parental lines have (fixed homozygous) genotypes AAbb and aaBB, respectively. 

 All F1 individuals are thus AaBb. 

 If the genes are on distinct chromosomes (or sufficiently far apart on the same chromosome), 

four types of gametes are equally likely: AB, Ab, aB and ab. 

 These 4 gametes lead to 16 equally likely genotypes in the F2 population, summarized in the 

following table: 

 AB Ab aB ab 

AB AABB AABb AbBB AaBb 

Ab AABb AAbb AaBb Aabb 

aB AaBB AaBb aaBB aaBb 

ab AaBb Aabb aaBb aabb 

Table 1 - an example of interaction. Involved genes show a “complementary gene action”: both 

dominant alleles are needed to obtain one of the phenotypes (purple colour, here) 

So, obtaining the purple color necessitates that both A and B alleles be simultaneously present. The 

underlying genes are said to be “complementary”. This type of behavior has strong consequences on 

mapping experiments: imagine that a set of flowers is collected and that purple and white plants are 

genotyped in order to identify the genomic regions involved in the color determinism. Mapping single 

regions would probably fail to identify the individual genes (for example, some AA plants are white, 

but some other AA plants are purple), while using 2 simultaneous regions would probably identify the 

2 genes (all A-B- plants are purple, while all other genotypes lead to white flowers). 
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1.2. Definition of genetic interactions 

A gene interaction is an interplay between multiple genes that has an impact on the expression of an 

organism's phenotype (Costanzo et al. 2016). In this work, we will only consider interactions between 

genes, although other types of interactions are possible, such as for example the dominance 

(interaction between the alleles of a single gene) or interactions between proteins. The term gene-gene 

interaction is also known as epistasis or genetic interaction (Moore et al. 2005). We showed above an 

example of interaction, but various other types are possible. Three well-known examples are: 

 Recessive epistasis: when the recessive allele of one gene masks the effects of either allele of 

the second gene (Marcelo et al. 2005). An example of this is the coat colour in Labrador 

retriever (Schmutz et al. 2007): one gene codes for pigment production (B) and the other for 

diffusion of the pigment into the air shaft (E). Mutations in E (e) leads to no diffusion of the 

pigment in the coat, no matter whether black (B) or brown (b) pigments were produced: all 

individuals carrying the recessive ee genotype will end up as golden coat. This is summarized 

in Table 2. 

 BE Be bE be 

BE BBEE BBEe BbEE BbEe 

Be BBEe BBee BbEe Bbee 

bE BbEE BbEe bbEE bbEe 

be BbEe Bbee bbEe bbee 

Table 2 - an example of recessive epistasis. The possible genotypes are displayed 

and the background colour corresponds to the dogs coat colour. 

 

 Dominant epistasis: when the dominant allele of one gene masks the effects of either allele of 

the second gene (Marcelo et al. 2005). An example is the summer squash, where the colour of 

the plant is due to 2 genes. If the dominant allele of the second gene (B) is present, the squash 

will be white no matter the genotype at the first gene. If the genotype at the second gene is the 

recessive one (bb), then the colour will depend on the presence of the dominant allele at the 

first gene (A): homozygous (AA) or heterozygous (Aa) individuals will be yellow, while 

recessive homozygous (aa) plants will be green. This is summarized in Table 3. 

 

 

 AB Ab aB ab 

AB AABB AABb AaBB AaBb 

Ab AABb AAbb AaBb Aabb 
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aB AaBB AaBb aaBB aaBb 

ab AaBb Aabb aaBb aabb 

Table 3 - an example of dominant epistasis. The possible genotypes are displayed 

and the background colour corresponds to the summer squash colour. 

 Redundant genes: when a gene with a dominant allele is duplicated (and this is also true when 

genes are replicated several times), only double (multiple) recessive individuals will display 

the recessive phenotype (Nowak et al. 1997). An example is the snapdragon flower colour, 

which is red when a dominant allele is present, and white if not. This is shown in Table 4. 

 AB Ab aB ab 

AB AABB AABb AaBB AaBb 

Ab AABb AAbb AaBb Aabb 

aB AaBB AaBb aaBB aaBb 

ab AaBb Aabb aaBb aabb 

Table 4 - an example of redundant genes. The possible genotypes are displayed 

and the background colour corresponds to the plant flowers colour. 

1.3. Is epistasis important? 

There is a debate between those claiming that interactions contribute an important share to the genetic 

variation, and those who consider that the phenomenon is of minor importance to explain that 

variation. A first remark is that a distinction should be made between additive and total genetic 

variations (i.e. including non-additive effects, such as epistatic effects): the first leads to the so-called 

narrow-sense heritability  where  is the additive genetic variance and  is the phenotypic 

variance, and  where  is the genetic variance due to non-additive effects (dominance, 

epistasis) (Mackay and Moore, 2014). Therefore, the relative importance of the non-additive variance 

in the genetic determinism of the traits is debated. In (Hill et al., 2008), it is argued that most of the 

genetic variation is additive. Since additive effects are transmitted from each of the parents to the 

descendants, while non-additive affects are not (they are rebuilt from the new combinations arising 

from the new combination of gametes), this is of course of special importance for breeders, who will 

mostly select on additive values. Nevertheless, other authors show that considering non-additive 

effects could improve prediction accuracy in situations where the underlying determinism is largely or 

partially due to epistatic interactions (Morgante et al., 2018), (Carlborg and Haley, 2004). For most 

complex traits, the determinism is largely unknown and the presence of epistatic interactions cannot be 

a priori discarded. Consequently, our view is that unravelling such interactions might contribute, in 
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variable proportions, to a better knowledge of complex traits. This view has been illustrated in the 

previous section.  

1.4. Position of the problem. 

As mentioned above, the massive amount of available molecular information did not allow, in many 

applications, to unravel the exact relationship between the genomic configuration, including the 

interactions between the involved genes, and the phenotypic expression (Fuxman Bass et al. 2016). 

The failure of “simple” association models led to try to associate observed variations at the 

macroscopic level (phenotype) to identified variations and their interactions at the molecular level (Hu 

et al. 2011). 

This approach introduces at least two challenges:  

1. the genetics underlying most traits of interest is complex and probably involves most of the 

time many genes and many interactions between these genes, leading to a complex 

relationship between genomic variants and phenotypes. Properly modelling such intricate 

network of genes and interactions is a potentially very challenging task. Consequently, 

identification of every (or even of any) interaction is a potentially very difficult aim.  

2. from a more statistical point of view, fully modeling the underlying genetic complexity leads 

to models with large dimensionality, causing the well-known ‘curse of dimensionality’ 

problem: higher complexity corresponds to larger sets of parameters to estimate, to larger 

search spaces and to the need for huge collection of observations to efficiently scan these 

search spaces and accurately estimate the parameters with sufficient power.  

In our work, we have investigated the use of non-parametric modelling as an alternative to parametric 

methods to solve these problems. One of the reasons under this choice is that many methods, described 

below, have been developed with some success using that approach. Another one is that the problems 

linked to the estimation of the parameters in parametric approaches could make these estimations less 

affordable in models involving interactions, and therefore render the use of such models more 

questionable (Ma et al. 2011).  

Note nevertheless that increasing the number of parameters to be identified, although potentially 

making the power issues developed above even more critical, might also lead to more accurate models 

of the underlying genetics by introducing interactions (Maity et al. 2011). Better models of the 

underlying genetics might in turn improve the detection power of the effects of interest. Consequently, 

it is not necessarily obvious that interaction models will present poor power when compared to non-

interaction ones, which should motivate more research on this subject. 
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1.5. Interest of the work 

The knowledge of the relationship between variations at the molecular or cell level and phenotypic 

variation is of major importance from various points of view. It is of fundamental interest to 

understand how subtle molecular variations lead to various phenotypes and to be in a position to 

dissect complex mechanisms into small manageable pieces, allowing to cope with the inherent 

complexity underlying a trait of interest. Applied aspects are most of the time at least as important as 

fundamental ones: a better understanding of the genetic components and of the mechanisms leading to 

some diseases might give some keys to potential therapies, and the discoveries of molecular 

mechanisms at the root of quantitative traits of interest, such as pathogen resistance or animal 

production, might assist the breeders in the production of more robust and sustainable animals or 

plants. 

1.6. Biological background 

 

Unlike Mendelian diseases, in which disease phenotypes are largely driven by mutations in one or two 

gene loci, complex diseases such as rheumatoid arthritis and many cancers are influenced by a 

complex interplay of genetic and environmental factors (Quintana-Murci 2016). The examples 

provided above should have explained what makes the interacting factors hard to discern, and this gets 

of course even truer when the interacting genes are unknown.  

Genome-wide association studies (GWAS), in which several hundred thousands to more than a million 

single nucleotide polymorphisms (SNPs) are assayed in thousands of individuals, represent a powerful 

tool to study the genetic architecture of complex diseases (Visscher et al. 2012). During the past few 

years, these studies have identified hundreds of genetic variants associated with complex diseases and 

have provided valuable insights into the complexities of their genetic architecture (Manolio et al. 

2009). Nevertheless, most variants identified so far have been found to confer relatively small 

information about the relationship between the genomic variants and the phenotypes because of a lack 

of reproducibility of the findings, or because these variants most of the time explained only a small 

proportion of the underlying genetic variation (Fang et al. 2012). This observation has been quoted as 

the ‘missing heritability’ problem (Manolio, et al. 2009). Moreover, hundreds of studies have searched 

for gene-gene and gene-environment interaction effects in GWAS data with the underlying motivation 

of identifying or at least accounting for potential biological interactions. So far, this quest has been 

mostly unsuccessful (Aschard 2015). We therefore developed statistical methods to contribute to 

address this problem. 

1.6.1. Molecular markers 

Genetic mapping models rest on molecular markers to serve as proxies of neighbouring genes: 

detected significant interactions between markers will be interpreted as potential interactions between 
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genes close to these markers (Moore et al. 2005). In this context, “close to a marker” means “in 

linkage disequilibrium (LD) with the marker” (although other reasons, such as genetic drift or 

selection, might also lead to LD without the need for the gene and the associated markers to be 

physically close). Any DNA polymorphism is eligible as a molecular marker. This includes 

microsatellites, copy number variations, insertions/deletions, single nucleotide polymorphisms, among 

others. We next describe a few of these polymorphisms. 

1.6.1.1. Single nucleotide polymorphisms 

A single nucleotide polymorphism, or SNP (pronounced "snip"), is a variation at a single nucleotide 

position in a DNA sequence, as exemplified in Figure 1: the DNA sequences in the 2 pieces of DNA 

are identical except for a nucleotide, where they differ. Most SNP are biallelic, with a vast majority 

exhibiting either C/T alleles or A/G alleles. These distinct alleles can be present in a single individual 

(making this individual heterozygous for the SNP) and/or throughout the population. The frequency of 

the minor allele (the less frequent one) varies from SNP to SNP, with values ranging from close to 0 % 

up to values close to 50 %. On average, human DNA consists of a SNP for every 300 bases, meaning 

that, for the whole genome (3 billion bases), there would be roughly 10 million SNPs (Liu et al. 2015).  

 

 

Figure 1 - a SNP. The two molecules of DNA only differ at one nucleotide 

1.6.1.2. Microsatellites 

A microsatellite, or Single Sequence Repeats (SSRs), is a group of repetitive DNA in which certain 

DNA motifs (1 to 10 nucleotides) are repeated, typically 5–50 times. They tend to occur at thousands 

of locations within an organism's genome. They have also a higher mutation rate and a higher genetic 

diversity than other areas of DNA, which makes them a good candidate as a genetic marker (Vieira et 

al. 2016). 
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 Figure 2 - a microsatellite marker. The number of copies of the  

CA nucleotides tandem varies from copy to copy. 

1.6.1.2. CNV (Copy Number Variations) 

A copy number variation is a phenomenon in which large regions of the genomes are either duplicated 

or deleted, creating structural variant regions. The supplementary copies can involve fairly large 

stretches of DNA (sometimes thousands of nucleotides). The regions with such variations cover a 

relatively large portion of the genome (up to 10% of the human genome, for example) (Thapar et al. 

2013). These structural variants provide a support for the evolution of genes to new functions, but can 

also be causative of disease. 

 

Figure 3 - a Copy Number Variation.  

1.4.1.2. Insertions and deletions (INDELs) 

Small insertions or deletions - commonly called INDELs - are another important source of genetic 

polymorphisms. In terms of base pairs of variations, INDELs cause similar levels of variation as SNPs 

(Mullaney et al. 2010).  
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Figure 4 - INDELs. Using the first sequence as a reference (“wild type”) sequence, 3 base pairs (AAA, 

in blue) have been deleted in the second sequence (deletion), and 4 base pairs (TGTG, in red) have 

been inserted in the third sequence. 

1.7. Statistical background 

A statistical model is an attempt to provide a mathematical abstraction of the mechanisms that 

produced the observations. The model makes some assumptions and some simplifications of the 

reality in order to make things still manageable in terms of the involved mathematics and of the 

computing burden while still providing a hopefully useful view of the studied phenomenon (Calzone 

et al. 2015). The goal is to be able to properly describe the state of nature and to make accurate 

predictions. In our mapping context, the models should be able to identify pieces of the genome that 

are involved in the studied trait. Although several taxonomies exist for the models, we will concentrate 

in the following paragraph on the distinction between parametric and non-parametric models, which is 

important to describe our work.  

1.7.1. Parametric models 

A parametric model is a family of distributions such that each member of the family can be described 

using a finite set  of parameters and all the parameters are in finite-dimensional parameter spaces.  

An example of such families is the normal family, indexed by the 2 parameters µ (the mean, which is 

also the expected value of the modeled variable) and  (the standard deviation, the squared root of the 

expected squared distance to the mean). The classical normal distribution formula: 

 

where µ can take any real value and  can take any positive value, thus defines a family of 

distributions, used  to model a variable (and, more generally, a set of variables) assumed to originate 

from the well-known bell-shaped distribution. Such models are widely used, including in the field of 

genetic mapping. Most common applications targeting genes and quantitative trait loci mapping 

strategies include linear regression, logistic regression, classical and generalized mixed models, among 

others (Howard et al. 2014).    

Common features of parametric models are: 

 The data is summarized by a fixed set of parameters (Jackson 2016).  
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 They perform correctly with relatively small dataset and can avoid overfitting due to the a 

priori imposed structure (Sun et al. 2017).  

 They are optimal (“best”) when correct parameters are chosen (Elster et al. 2005).  

 Although they make stronger assumptions about the data, they work well if the assumptions 

are correct (Goodrich 2012).  

These models generate several statistical challenges. For example, in the “genomic selection” 

procedures, the phenotypes of interest are modeled as a sum of marker effects added to a sum of other 

(non-genetic) effects. Since many markers (p)  are available on a restricted set of (n) individuals, 

leading to much more unknown than data points, techniques such as the LASSO (Least Absolute 

Shrinkage and Selection Operator) or Bayesian techniques must be used to solve such problem, 

leading to more difficult interpretation of the effects of the variables (Howard et al. 2014). Another 

challenge is that traditional parametric methods need strong model assumptions to model interactions, 

such as assuming linear G×G interaction. This assumption, however, could be easily violated due to 

the underlying nonlinear machinery between the genetic factors. As mentioned above, misspecification 

in parametric models could lead to large bias (Ma et al. 2011, Maity et al. 2011). 

1.7.2. Non-parametric models 

Unlike parametric models, non-parametric models are not based on parameterized families of 

probability distributions. Nonparametric statistics make no assumptions about the probability 

distributions of the variables being assessed, and they can take big dimensional parameter spaces (Li et 

al. 2013). 

In short, in non-parametric models: 

 The data is summarized using an unknown set of parameters (Hamilton et al. 2017).  

 Some of the original data must be kept to make predictions or to update the model 

(Ghahramani 2012).  

 No assumption is made about probability distributions (Ghahramani 2012).  

 Models are generally slower, but potentially more accurate, especially when the assumptions 

made in parametric models are questionable (Ho et al. 2017).  

In the interaction mapping field, many non-parametric methods have been devised (Support Vector 

Machine, Neural Networks, Random Forest, k-nearest neighbors algorithms, ...). These nonparametric 

models have the potential to bring new solutions for the challenges in the domain (Gianola et al. 2006) 

because of their ability to handling multiple genetic variants with the consideration of possible high-

order G-G interactions, and because they do not make any assumption on the disease models (Li et al. 

2013, Howard et al. 2014, Li et al. 2014). 



Chapter 1                                                                                                                                                                     Introduction 

 

 

20 

 

1.7.3. Modelling interactions 

The regulatory interactions in genetic networks form a complicated system and an important objective 

of systems biology is to model and infer these interactions. Proper modeling and inference of these 

genetic interactions requires understanding of the distinction between  biological and statistical 

interactions (Forsberg et al. 2017). 

1.7.3.1. Statistical interactions 

The most common statistical definition of interaction relies on the concept of a linear model 

describing the relationship between some outcome variable and some predictor variable(s). The case 

of statistical interaction potential arises when there are two or more independent variables. The 

simplest case is when the effect of each independent variable is completely separate from the other 

independent variables. In this “no interaction” setting, the effects of the different independent variables 

act just additively. A more complicated situation arises when the effect of one independent variable 

depends on other independent variable(s). This is referred to as an  "interaction" situation (Moore et al. 

2005, Cordell 2009). Since, in this context, the effect of a variable cannot be obtained  without 

considering other potentially interacting variables, it turns out that this situation can significantly 

complicate certain types of multivariate analyses with respect to situations where variables are 

assumed to be independent of each other (Yi 2010). 

1.7.3.2. Biological interactions 

Examples of biological interactions have been presented in a previous section. In our genetic mapping 

context, biological interactions mean in the widest sense the effect of a particular genotype on the 

phenotype depends on the genetic background. It can be defined in a simple, as the phenotypic effect 

of one locus depends on the genotype at the second locus (Carlborg and Haley, 2004). Also, it can be 

defined in a general, as the effect of a gene on a phenotype is dependent on the configuration of one or 

more other genes (Moore et al. 2005). In this context, many epistasis were detected as responsible for 

differences in phenotype such as comb type in chickens and coat color in various animals (Carlborg 

and Haley, 2004). 

2. Use of non-parametric statistical methods in genetic interaction mapping applications 

Various non-parametric methods have been used in genetic problems. In this section, we will review 

some of the most important methods in this field. Although notations in the following descriptions are 

mostly borrowed from the papers at the roots of the described methods, the data structures used by the 

methods are similar:  
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 A set (ranging from a few hundreds to a few thousands, in most situations) of observations, 

each observation corresponding to a subject (human, animal or plant) used in the experiment.  

 For each subject (i.e. observation), we have at least: 

o A phenotype, to be seen as the dependent variable of interest. This phenotype, 

measured on the subject, can either be discrete (as, for example, in case-controls 

experiments, where the phenotype is either 0 (control) or 1 (case)) or continuous 

(blood pressure, or annual milk yield, for example). 

o Genotypes, to be considered as the putative explaining variables. These genotypes 

have been obtained from the laboratory based on DNA samples originating from the 

subjects of the experiment. These genotypes are coded as discrete values representing 

the various possible genotypic configurations. For example, a SNP genotype could be 

coded as 0, 1 or 2 to represent the various possible genotypes (AA, AB or BB) for 

that SNP. The number of genotypes, typically corresponding to the number of 

markers used in the experiment, is generally large (from a few dozens to a few 

millions) and, in most situations, larger than the number of subjects. 

One of the goals of the experiment is then to try to identify the set of genotypes with a significant 

impact on the studied .phenotype. 

2.1. Support Vector Machines 

Support vector machines (SVMs) are supervised non-parametric statistical learning techniques that 

analyze data and recognize patterns. They are used for classification and regression analyses. There is 

no assumption made on the underlying data distribution, which is utilizing hyperplanes in high 

dimensional spaces (Mountrakis et al. 2011). 

2.1. 1. Methodology of Support Vector Machine 

Let us assume an input (features) - output (classes) process producing paired data  where  is 

a p-dimensional vector of features measured on a sample,  that has been classified into a class (coded -

1 or 1) represented by  , .   The training process of a (linear) support vector machine aims 

to find a linear separating hyperplane  with the maximal margin (2 , the distance 

between  and ) under the classification conditions:  
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Figure 5 - Linear SVM with maximum-margin hyperplane (Agrawal, et al., 2012). 

In Figure 5, a hyperplane  separates the two classes of input, where  is the normal 

vector,  is the bias, and “ ” is the dot product (Chen et al. 2008) (Koo et al. 2013).  

Two additional hyperplanes separate the data from the previous hyperplane (defined by ) 

with no data between them. The additional hyperplanes are located at a maximum distance (known as 

margin) from the separating hyperplane. These hyperplanes have equations  and 

, and are such that all points for which   are from the first class and those 

for which    are from the second class. 

Furthermore, in Figure 5, the distance between two hyperplanes is equal to  , and the offset of 

the separating hyperplane from the origin along the normal vector  is determined by . Overall 

equation for the additional hyperplane can be written as  

When the data points clouds overlap, a solution is to map the input vector data into higher dimensional 

space, known as the feature space, so that the linear separation can be achieved within that space (Koo 

et al. 2013).  

SVM can also be extended to non-linear separating hyper surfaces using “the kernel trick”:  the 

original input  space is mapped into a high dimension space (the feature space) using a kernel 

function that is defined as  where  is kernel function that map input space 

into feature space (Sheng et al. 2014) and SVM is applied to these transformed couples.  

Several kernel functions have been proposed in SVM to obtain the optimal solution; the most 

frequently used such kernel functions are  (linear kernel is the simplest kernel 

function, given by the inner product (x,y)),  (polynomial kernel is a non-
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stationary kernel that it is well suited for problems where all the training data is normalized and where 

(the polynomial degree) and  are kernel parameters (Chen et al. 

2008) and (Sheng et al. 2014)), and  (radial basis function)). 

2.1.2. Application of Support Vector Machines to the detection of gene-gene interactions 

SVM have been used to predict genetic interactions, which can be learned from the features of known 

genetically interacting pairs in order to predict which other pairs genetically interact. 

In order to achieve this, the training data consists of two sets of features vectors, each set labelled as 

either positive (corresponding to the presence of genetic interaction) or negative (corresponding to the 

lack of genetic interaction). Each features vector characterizes a pair of genes rather than a single 

gene. When the features are mapped into a high-dimensional space, the SVM constructs a separating 

hyperplane that maximizes the margin between the features of genetically or not genetically 

interacting pairs. For this mapping, (Koo et al. 2013) used kernel function such as polynomial or radial 

basis. 

In (Fang and Chiu, 2012), the authors have proposed an extended SVM method and a SVM based 

pedigree-based generalized multifactor dimensionality (PGMDR) for detecting gene-gene interactions 

in the absence or presence of the main effects of genes with an adjustment for covariates and on a 

limited sample of families. The results show that the proposed approaches of SVM and SVM-based 

PGMDR have higher power than other methods (PGMDR and FAM-MDR (family-based multifactor 

dimensionality reduction)) used for comparisons. In addition, although more computationally 

expensive than the other methods, these methods show higher prediction accuracy and power, making 

them valuable for the interactions detection problem.  

In (Fang et al. 2013), the authors have also developed a novel approach named "backward support 

vector machine (BSVM)-based variant selection procedure" to identify informative disease-associated 

rare variants. The idea of this approach is that the rare variants are weighted and selected according to 

their positive or negative associations with the disease. The results on both simulated and real data 

show that the proposed BSVM approach is more powerful than the other approaches used in this study 

(such as set Kernel Association Test (SKAT)) . 

In (Chen et al. 2008), the authors have also proposed SVM methods in various situations to detect 

gene-gene interactions and compared this approach to MDR (MDR is described below). The results 

show that SVM methods are a useful tool for the identification and characterization of high order 

gene-gene and gene-environment interactions but is computationally more costly than MDR. 

2.1. 3. Strengths of Support Vector Machine 

(i) SVM can deal with high dimension data set (Upstill-Goddard et al. 2013). 

(ii) SVM can be utilized to classify complex biological gene expression data (Ban et al. 2010). 
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(iii) SVM is robust to noise and not prone to overfitting (Ozgur et al. 2008).  

2.1. 4. Weaknesses of Support Vector Machine 

(i) SVM is restricted to pairwise classification (Chen et al. 2008). 

(ii) SVM cannot be directly used for features selection (Mountrakis et al. 2011). 

(iii) The power of SVM might be reduced in the presence of genetic heterogeneity (Chen et al. 

2008). 

(iv) Computationally intensive (Wang et al. 2008). 

2.2. Neural Networks 

Another computational approach proposed for the study of disease susceptibility genes is neural 

networks (NN). Neural Networks are a class of pattern recognition methods developed in the 1940's to 

model the neuron, the basic functional unit of the brain. Neural networks process information in a way 

similar to the human brain. It  consists of a large number of highly interconnected processing units 

(neurons) working in parallel to solve a specific problem (Motsinger-Reif et al. 2008). 

2.2. 1. Methodology of Neural Networks 

Single neuron model (also known as perceptron) is the basic neural model in neural networks. In this 

basic model, a neuron consists of a set of weighted inputs  producing a single 

output. In Figure 6, the model is represented through multiple inputs, sent through connections 

providing the weighting ……, )  (Koo et al. 2013). 

 

Figure 6 - Basic neural model (Koo et al. 2013). 

The generated output is computed in two steps. A weighted sum of the inputs is first calculated using:  

                                                             (1) 

Next, the weighted sum is compared to a threshold. For example, a F(x) Heaviside activation function 

is used when the weighted sum of inputs is compared to a null threshold, where F(x) is defined as 
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                                                 (2) 

The perceptron, classifying individuals (represented by an input vector) into an output class (0 or 1 in 

the example given above), can serve as the basic building block for an artificial neural network 

(ANN), which is a more general classifier 

As a simple example of ANN, a feed-forward network was the first type of used artificial neural 

network. It contains multiple neurons (perceptrons) arranged in layers. Perceptrons from adjacent 

layers have connections or edges between them Figure 7. All these connections have weights 

associated with them (Konomi et al. 2017). 

 

Figure 7 - An example of feedforward neural network. 

From Figure 7, the outputs from the input layer are used as inputs for each node in the hidden layer. 

Similarly, the outputs of the nodes in the intermediate layer(s) serve as inputs for the next layer, 

propagating the signal down to the output layer. Classically, multilayer ANN consist of three layers or 

more, including an input layer, an output layer, and one or more hidden layers. Each node in one layer 

connects with varying weights to every node in the following layer, and the transfer function F(x) is 

very commonly a sigmoid function. Note that in the example presented here, the information moves in 

only one direction (feed forward). No cycle sending information from outputs to previous layers of the 

neural network is included. 

2.2. 2.  Application of Neural Networks in the detection of gene-gene interactions 

Neural network methods are used to identify disease susceptibility genes in both linkage and 

association analyses. Although both types of analyses have the same objective - i.e. identifying 
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markers significantly associated to loci involved in the trait of interest -, the approaches differ: in 

linkage analysis, information from the pedigree and from the genotypes is used to follow the 

segregation of the trait in the pedigree and detect associations between the genotypes and the trait. In 

association analyses, this link is sought using individuals randomly sampled from the investigated 

population, and no pedigree is used. In disease mapping experiments, the sampling is stratified and 

samples are collected in cases and controls sub-populations (Curtis 2007). A consequence is that 

regions detected using association analyses are generally smaller than those detected using linkage 

analyses, but require denser markers maps. In general, in the genetic mapping context, the genotypes 

serve as input and the phenotype is the output of the neural network (Koo et al. 2013). 

Various coding schemes are possible for the inputs and output of ANN. For example, the inputs can be 

the presence or absence of a specific marker allele (a value of 1 would represent the presence of the 

allele, and a value of 0 an absence of the allele). Another common encoding strategy for the inputs of a 

neural network is to use identity-by-descent (IBD) status of the genotypes: variable  is set to 1 when 

the alleles in a genotype are supposed to be IBD, to −1 when not and to 0 when the genotype is 

uninformative. On the other side, several coding are also possible for the outputs of neural networks. 

For example, the output could be the disease status, in which a value of 1 would represent a case 

whereas a value of 0 would indicate a control (Motsinger-Reif et al. 2008). 

In (Tomita et al. 2011), the authors have proposed artificial neural networks (ANN) for the detection 

of gene-gene interactions. The idea of this study is based on the use of artificial neural networks with 

the parameters decreasing method (PDM). The procedure of PDM begins by excluding one SNP from 

the total number of SNPs and constructs a model containing the remaining SNPs. In turn, each SNP is 

deleted from the total number of SNPs and with the remaining SNPs a model is constructed. The 

results demonstrate that the artificial neural network approach had more power than logistic regression 

(LR) to characterize the development of complex diseases such as an allergic disease. 

In (Gunther et al. 2009), the authors  have also proposed neural networks for the detection and the 

modelling of various types of gene-gene interactions. In their study, the authors used feed-forward 

multilayer perceptron (MLP) as a neural network, given that this method is able to approximate 

arbitrary functional relationships between covariates and response variables. The results on simulation 

data demonstrate that neural networks have more ability to detect and model different types of 

biological gene-gene interactions than others methods (logistic regression and MDR) which were used 

for comparison in the study. 

2.2. 3. Strengths of Neural Networks 

(i) NN are able to model the relationship between disease and single nucleotide 

polymorphism (SNP) (Tomita et al. 2011). 

(ii) NN can make prediction on data where the disease outcome is unknown by learning the 

outcome given on a dataset (Basheer et al. 2000). 
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(iii) NN can deal with large volumes of data (Ritchie et al. 2003). 

(iv) NN are still efficient in the presence of genetic heterogeneity, high phenocopy rates, 

polygenic inheritance, and incomplete penetrance (Motsinger-Reif et al. 2008). 

2.2. 4. Weaknesses of Neural Networks 

(i) NN work as a black box (Motsinger-Reif et al. 2008).  

(ii) Difficult to list out all possible NN architectures, which causes the difficulty to find the 

optimal architecture (Basheer et al. 2000). 

(iii) Result of NN are hard to interpret due to the dimensionality problem (Ritchie et al. 2003) 

(Curtis 2007).   

2.3. Multifactor Dimensionality Reduction 

MDR has enjoyed great popularity in the field of interaction mapping and a vast amount of extensions 

and modifications of the original method (Ritchie et al. 2001) have been suggested and applied, 

building on the general idea (Gola et al. 2015). It is a data mining approach for detecting and 

characterizing combinations of attributes or independent variables that interact to influence a 

dependent or class variable (complex gene–gene and gene–environment interactions) (Martin et al. 

2006). The MDR method is nonparametric (i.e., no hypothesis about the distribution of statistical 

parameters is made), is model-free (i.e., it assumes no particular inheritance model), and is directly 

applicable to case-control and discordant-sib-pair studies (Manuguerra et al. 2007).  

2.3. 1. Methodology of Multifactor Dimensionality Reduction 

Figure 8 demonstrates the process for the MDR algorithm. Before the MDR analysis begins, the data 

set is divided into multiple partitions for cross-validation. Cross-validation is an important part of the 

MDR method, as it aims to find a model that not only fits the given data, but can also predict on 

future, unseen data (Ritchie et al. 2006). 
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Figure 8 - Steps of the MDR (Motsinger-Reif, 2008) 

A summary of the general steps needed to implement the MDR method detailed in (Ritchie et al. 

2006) are as follows: 

1. In step one, the data is divided into k (typically, 10) random subsets. (k-1) of the subsets make 

up the “training set” while the last subset becomes the “testing set” (see also step 6, “cross-

validation”). 

2. In step two, a set of f factors is then selected from the pool of all factors. These factors can 

include both genetic and environmental data. There is no predefined limit on the number of 

independent variables that can be examined. However, limits due to computation time may 

arise, especially when the number of potential factors is high. For example, in genetic 

interactions mapping problems, if m markers are used, the number of possible configurations 

that could be tested is of the order of m
f
. Since m could easily be from several thousands to 

several millions in today applications, the search space can become intractable for values of f 

larger than 2 or 3.  In Figure 8, f is equal to 2. 

3. In step three, the f factors and their possible multifactor cells are represented in f-dimensional 

space, with all possible multifactorial combinations represented as cells in the table. The 

number of cases and controls for each locus combination are counted.  

4. In step four, each multifactor cell in the n-dimensional space is labelled as high risk if the ratio 

of affected individuals to unaffected individuals exceeds a threshold of one (dark grey 

background cells), and low risk if the threshold is not exceeded (light grey background cells).  
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5. In steps five and six, the classification performances are estimated using the “testing set” data 

for each of the tested set of f factors.  

6. The six steps are repeated using the k possible partitions of the original dataset into “training” 

and “test” sets. 

7. The model with the best average performances is selected and the prediction error of the 

model is estimated using the independent test data.  

Commonly, the classification performances are assessed using a ”balanced accuracy” criterion where 

the balanced accuracy is computed as a simple average of the sensibility and the sensitivity of the 

classifier. Repeating this procedure over all possible markers sets allows obtaining the best model, 

which is defined as the set of markers providing the best allocation performances. Significance for the 

optimal model can be obtained through a permutations test, in which the potential links between the 

individuals’ genotypes and the phenotypes are disrupted by randomly shuffling the phenotypes. The p-

values obtained using this test have then to be corrected for multiple testing, where multiple tests are 

due to the number of models that are successively tested. 

2.3. 2. Application of Multifactor Dimensionality Reduction to the detection of gene-gene 

interactions 

A lot of applications use the principles of MDR, only a few of them will be mentioned below. 

In (Calle et al. 2008), the authors have proposed a novel approach of MDR named “Model-Based 

Multifactor Dimensionality Reduction (MB-MDR)”. MB-MDR aims at identifying specific multi-

locus genotypes associated with a disease susceptibility while allowing to adjust for marginal effects 

and confounders. Another difference between MB-MDR and MDR is that just those cells exhibiting 

significant evidence of (high or low) risk will be merged. The other cells which either show no 

evidence of association or have no sufficient sample size are included in an additional category, that of 

no evidence of risk. The results show that MB-MDR has improved power over MDR in the presence 

of genetic heterogeneity. 

In (Cattaert et al. 2010), the authors have proposed an approach named “FAMily Multifactor 

Dimensionality Reduction (FAM-MDR)” for detecting gene-gene interactions. This method combines 

features from the genome-wide rapid association using mixed model and regression approach 

(GRAMMAR) (Aulchenko et al. 2007) with the approach (MB-MDR). The applications of this 

approach are on continuous traits, however it can be used for any type of binary traits. The result 

shows that FAM-MDR has improved power over the approach Pedigree-based Generalized MDR 

(PGMDR) in most of the simulations using continuous traits. 

In (Yang et al. 2013), the authors have also proposed balancing functions for adjusting the ratio in risk 

classes and classification errors for Imbalanced cases and controls using multifactor dimensionality 

reduction (MDR-ER) as a novel method to improve MDR. The difference between MDR-ER and 
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MDR is that the former detects the high or low risk cells through a comparison of the percentages of 

cases in case data and of controls in control data rather than using the raw numbers. The authors 

concluded that MDR-ER can be useful for detecting gene-gene interactions in imbalanced data sets. 

In (Gui et al. 2011), the authors have developed still another approach called “Robust Multifactor 

Dimensionality Reduction (RMDR)” for detecting gene-gene interactions. The main difference 

between RMDR and MDR is the use of Fisher’s Exact Test by RMDR to identify whether sets of 

genotype combinations must be listed in MDR model. The authors concluded that RMDR is more 

robust than MDR in both simulated and real data. 

2.3. 3. Strengths of Multifactor Dimensionality Reduction 

(i) The main strength of the MDR is that it facilitates the detection and characterization of 

multiple genetic loci associated with a trait by reducing the dimensionality of the 

multilocus data (Ritchie et al. 2001) (Fang et al. 2012). 

(ii)  MDR is also non-parametric, since no parameters are estimated, which eliminates the 

uncertainty introduced by the parameter estimates of parametric methods, such as logistic 

regression (Ritchie et al. 2006). 

(iii) Theoretically allow to highlight gene–gene interactions of any order (Mahachie John et al. 

2011).  

2.3. 4. Weaknesses of Multifactor Dimensionality Reduction 

(i) MDR can be computationally intensive, especially when more than 10 polymorphisms 

need to be evaluated (Ritchie et al. 2001). 

(ii) The MDR method can fail in finding the correct models, because it assumes that there is 

no genetic heterogeneity, as in situations where a group of cases are explained by a 

combination of loci different from the one that explains another group of cases 

(Manuguerra et al. 2007).  

(iii)  Some important interactions could be missed (Cattaert et al. 2011). 

(iv)  Lack of adjustment for main effects (Calle et al. 2008).  

(v)  Lack of adjustment for confounding factors (He et al. 2009). 

(vi)  Low power under genotyping error, missing data, phenocopy and genetic heterogeneity 

(Calle et al. 2008). 

2.4. Boosting 

Boosting is a machine learning ensemble meta-algorithm for reducing bias in supervised learning. It 

has been introduced by (Schapire 1990). Boosting is a technique for combining multiple base 

classifiers whose combined performance is significantly better than that of any of the base classifiers 
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by combining many weak classifiers - i. e. classifiers that perform poorly, barely better than by chance 

only - to produce a powerful committee (Timo et al. 2011). It is mainly utilized in high-dimensional 

data (Binder et al. 2008). 

2.4. 1. Methodology of Boosting 

Theoretically, any method performing an aggregation of weak classifiers to output a strong classifier 

could become a boosting algorithm. Many proposals have been made in this spirit. In this text, we will 

use one of the most famous developed algorithm, named AdaBoost, to explain the methodology. 

AdaBoost is the first algorithm that could adapt to the weak learners. It iteratively generates a robust 

final hypothesis by giving increased weight to misclassified training samples from previous learning 

rounds (Liu et al. 2003).  The way this is done is briefly provided, using a derivation from (Rojas 

2009):  

1. Assume we have a dataset with N (sets of) features  and the corresponding categories  

( . We have also a set of L (weak) classifiers  such that 

. 

2. We aim at building a composite (strong) classifier based on a linear combination of the weak 

classifiers. After (m-1) updates, the current composite classifier C is therefore: 

, where the constants , , . . . ,  

are the weights we assign to each classifier 

3. In the next iteration, we want to progress from  to , with: 

 . We thus need to choose the next classifier and the 

corresponding weight. 

4. It is easy to show that the classifier with the lowest weighted errors ( , where the sum 

extends over the misclassified points and where ) is optimal (i.e. makes 

the exponential loss function minimal). So this classifier becomes km. 

5.  It is also shown that the corresponding optimal coefficient  can be computed as: 

 

where  is the ratio of the weights of the misclassified points to the weights of all the points: 
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2.4. 2. Application of Boosting to the detection of gene-gene interactions 

In (Wan et al. 2009), the authors have proposed an alternative learning approach (MegaSNPHunter) to 

detect disease predisposition SNPs and high level interactions in genome wide association studies. 

MegaSNPHunter uses a hierarchical learning approach to discover multi-SNP interactions. It takes 

case-control (potentially genome-wide) genotype data as input and produces a ranked list of multi-

SNP interactions as output. More precisely, the whole genome is first partitioned into multiple short 

subgenomes where each subgenome covers a genomic area representing possible haplotype effects in 

practice. For each subgenome, MegaSNPHunter builds a boosting tree classifier where nodes represent 

markers and paths represent interactions, and measures the importance of SNPs on the basis of their 

contributions to the classifier. The method keeps the SNPs from all subgenomes that reach a 

predefined threshold and lets them compete with each other in the same way at the next level. The 

competition terminates when the number of selected SNPs is less than the chosen size for subgenomes. 

At the last step, MegaSNPHunter extracts and reports the valuable multi-SNP interactions. To handle 

the multiple test issue, an extra permutation-based test at the chromosome level on both single SNP 

and SNP interactions is used to correct P values. The results in the paper show that MegaSNPHunter is 

useful in handling large-scale SNP data and performs better on both simulated data and real data than 

another approach (BEAM) used for comparison in this study. 

In (Li et al. 2011), the authors have also used an ensemble method based on boosting for detecting 

epistasis. The idea in this study based on the AdaBoost algorithm was to combine an intuitive 

importance score with Gini impurity (see the definition in the paragraph on decision trees) to select 

genotype data. The results on both simulated data and real data show that the proposed approach is 

valid and more powerful than other approaches (RFs and BEAM) used for comparison in the study. 

In (Pashova et al. 2013), the authors have proposed a novel approach of boosting based on another loss 

function. This method, referred to as L2 boosting has advantages in high dimensional problems and 

can potentially detect small effects due to combinations of environmental variables with a genotype on 

a phenotype. L2 boosting is based on a functional gradient descent algorithm with the L2 (squared 

error) loss function. The study concluded that L2 boosting is particularly useful to pick out ensembles 

of weaker effects of SNP that interact with another phenotype than other methods such as AIC and 

BIC on both simulated data and real data. 

2.4. 3. Strengths of Boosting 

(i) Very simple to implement (Wang et al. 2010). 

(ii)  Feature selection on very large sets of features (Lubke et al. 2013). 

(iii) It has a learning strategy allowing to extract both local SNP interactions and global gene 

interactions in an efficient manner without exhaustive enumeration (Wan et al. 2009). 
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2.4. 4. Weaknesses of Boosting 

(i) Suboptimal solution (Ganatra et al. 2010). 

(ii) Can overfit in presence of noise and outliers (Sariyar et al. 2014). 

(iii) In applications such as MegaSNPHunter, boosting requires that the marginal effects of 

SNP be above the median of the marginal effects of the subgenomes they reside on (Wan 

et al. 2009). 

2.5. Decision Tree  

A Decision Tree (DT) is one of the most often used non-parametric method to solve a classification 

and regression problem. The decision tree can be used in high-dimensional data to facilitate the 

decision by choosing the most appropriate one to reach a goal (Motsinger-Reif et al. 2010). Various 

algorithms targeting an optimal tree (defined as a tree that accounts for most of the data, while 

minimizing the number of levels) have been devised, including the classical ID3 (Quinlan 1986) and 

CART (Breiman et al. 1984). 

2.5. 1. Methodology of decision trees 

 

Figure 9 - A first step in the construction of a decision tree on a case-control problem. The data in the 

top node are split into child nodes according to each of the possible values A, B and C of a given 

attribute. An index (GINI here, see text) is computed to evaluate the “purity” of each node (lower 

values of GINI means “higher purity”). 

The dataset is made of a list of N items, represented individually by a vector of attributes xi and a class 

yi (in Figure 9, yi is either “Case” or “Control”). This dataset is firstly divided into a “training set”, 

used to build the tree, and a “test set”, used to prune the tree to avoid overfitting. Decision trees are 

built in a top-down manner (Li et al. 2011). The top node gathers the whole training set data. A scan of 

the various attributes of the node items allows obtaining the attribute leading to the “purest” children 
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Controls: 50 
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nodes when the data is split according to the attribute values. For example, in Figure 9, the tested 

attribute takes 3 values A, B or C, leading to the 3 child nodes gathering 10, 30 and 60 items from the 

100 items present in the parent node. In this context, “purest” means “showing the lowest variability 

for the classification variable”. Various measures can be used to measure the (im) purity, including 

entropy measures and Gini coefficient. Figure 9 shows the value of the Gini coefficients computed in 

each node as: 

                (1) 

where  is the proportion of cases in the node,  is the proportion of controls,  is the number of 

cases in the node,  is the number of controls in the node and  is the total number of individuals 

in the node. This coefficient is a measure of impurity since pure nodes (only one class present) would 

lead to GI = 0, while a completely mixed node, with half of the individuals being cases and the other 

half being controls would lead to the maximal value GI=0.5. Consequently, a possible criterion to 

choose the “best” attribute (i. e. the one leading to the “purest” child nodes) could be to select the 

attribute leading to the largest reduction in GI, computed as: 

                                                       (2) 

Where, n(d) is the number of individuals at a child node d, N is the number of individuals at the parent 

node p, GI(d) is the Gini impurity of node d, and x is the tested attribute. 

In the example in Figure 9, the reduction in GI can be calculated:  

Gain = (0.5 − 0.1 * 0.32 − 0.3 * 0.5 − 0.6 * 0.44) = 0.054. 

The decision tree can be grown using recursively the procedure described above, until a stop criterion 

is met. Alternatively, the tree can be fully grown to obtain exclusively pure nodes, and subsequently 

pruned to avoid overfitting. Various techniques and algorithms exist to perform the pruning. 

2.5. 2. Application of decision trees for the detection of gene-gene interactions 

In (Estrada-Gil et al. 2007), the authors have proposed a novel approach named “Genetic 

Programming based on a Decision Tree (GPDTI)” for the detection of gene-gene interactions. The 

strategy used in this method to complete the tree is to use a cross-validation strategy and classification 

error to avoid overfitting and take the best estimates. The authors concluded that GPDTI can be useful 

for detecting gene-gene interactions in big datasets and leads to an easy interpretation of the results. 

In (Motsinger-Reif et al. 2010), the authors have developed a novel approach using decision trees, 

named “Grammatical Evolution Decision Trees (GEDT)”, for the detection of genetic interactions. A 

difference between (GEDT) and traditional decision trees is the genome representation, which is split 

by (GEDT) into logic expressions. The results on simulated data show that the proposed novel 

approach (GEDT) is useful and more powerful than a traditional decision tree approach in detecting 

gene-gene interactions with and without main effects. 
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2.5. 3. Strengths of Decision Tree  

(i) Decision trees can handle large quantities of data in reasonable computation time (Yoo et al. 

2012). 

(ii) Decision trees inherently include an interaction between feature subset search and a 

classification model (Huang et al. 2009). 

(iii) Decision trees are simple and the resulting tree can be interpreted as a series of IF-THEN rules 

that are easy to understand (Moore et al. 2010). 

2.5.4. Weaknesses of Decision Tree  

(i) Decision trees may not be able to discover particular important interactions because of 

limitations imposed by the stopping rules, the competitive importance of the variables and/or 

the pruning procedure (Barnholtz-Sloan et al. 2011). 

(ii) Possibility of duplication with the same sub-tree on different paths (Guy et al. 2012). 

(iii) Decision trees rely on modest marginal effects to construct data learning (Guy et al. 2012). 

2. 6. Random Forest 

Random Forests (RF) or random decision forests are a non-parametric method, based on Decision 

Trees (DT). Random Forests are also an ensemble learning method grouping Decision Trees (Winham 

et al. 2012). Since fully-grown DT tend to over-fit the data and provide variable results in the deep 

nodes, an idea would be to obtain a reduction of this variance by averaging several trees created on 

independent training sets. This idea is at the root of RF. 

2. 6. 1. Methodology of Random Forest 
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Figure 10 - Random Forest 

A RF is a collection of individual decision tree classifiers, where each tree in the forest has been 

trained using a bootstrap sample of instances (i.e. subjects) from the data, and each attribute in the tree 

is chosen from among a random subset of attributes (Breiman 2001). Classification of instances is 

based upon aggregate voting over all trees in the forest (Moore et al. 2010). The methodology of 

Random Forest can be described as follows (Koo et al. 2013): 

1- Grow many trees using bootstrap samples from the training data. 

2- The data from the training data and not present in the bootstrap sample is named OOB (“out-

of-bag”) data and can used to estimate the prediction error. 

3- Each node in the tree is split by taking the best among a randomly chosen subset of predictors 

at the node. 

4- Use OOB error rate from each tree to measure the prediction error and to get an unbiased 

measure of the accuracy of the model over test data. 
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2. 6. 2. Application of Random Forest for detecting gene-gene interactions 

In (Lunetta et al. 2004), the authors have proposed an approach of Random Forest to detect gene-gene 

interactions associated to a complex disease using SNPs genotypes. The method uses variable 

importance to determine the sets of SNPs that are important in the prediction. The results show that 

this approach is useful in selecting a set of SNPs associated with an increased risk from a large number 

of SNPs. The authors also show that their method has advantages over other methods (logistic 

regression, Fisher Exact) used for comparison in the study. 

In (Jiang et al. 2009), the authors have developed a Random Forest method to reduce the number of 

combinations of genetic variants into a small number, which can be controlled in the search for the 

interactions. The idea behind this method is to use a sliding window sequential forward feature 

selection (SWSFS) algorithm to take the sets of SNPs able to minimize the classification error. The 

results in the paper show that this approach is useful in handling large-scale SNP data and identify the 

epistatic interactions on both simulated data and real data, and performs better than other approaches 

(BEAM, logistic regression, Chi-squared test) used in this study. 

2. 6. 3. Strengths of Random Forest 

(i) RF detect gene-gene and gene-environment interactions without a strong marginal effect 

(Winham et al. 2012, Botta et al. 2014).  

(ii) RF reduces the overfitting data, and are therefore more accurate (Jiang et al. 2009). 

2. 6. 4. Weaknesses of Random Forest 

(i) Bootstrapping and random feature selection make RF look more like a black box 

(Winham et al. 2012). 

(ii) RF difficult to scale up to GWAS data (Upstill-Goddard et al. 2012) . 

3. Bayesian methods 

Although inherently parametric, Bayesian methods are important in the field of genetic interaction 

mapping and have been used for comparison and as candidates in some of our procedures. 

Consequently, we will say a few words on these methods. 

Bayesian statistics is at the root of many machine learning methods; based on the famous Bayes 

theorem due to Thomas Bayes (1701-1761), the Bayesian methods combine prior information to 

sample information from the data to obtain a so-called posterior distribution from which inference and 

conclusions can be drawn. Bayesian methods provide a big flexibility to treat and analyze any type of 

problem, partly because they can be used cumulatively across progressive experiments (Sebastiani et 
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al. 2003) and also because they lend themselves to the use of nowadays efficient computational tools 

and algorithms. 

3. 1. Methodology of Bayesian methods 

The general idea in Bayesian methods is that the data (noted x) we collect transforms the prior 

information we have on a set of parameters (noted ) into a posterior information integrating both 

(prior and collected) types of information. This transformation takes a rough and nice form, usually 

referred to as Bayes theorem: 

 

In this expression,  is the ‘prior distribution’ of the parameters vector, representing the 

information we have (or we assume) before starting the experiment,  is the conditional 

distribution of the observations, given a set of parameters, most often called the ‘likelihood’,  is 

the ‘posterior distribution’ of the parameters vector, from which we would like to draw inferences on 

the parameters values, and  means that both sides are equal up to a constant. 

The posterior distributions will include all the current information about the parameters and can be 

updated as new information accumulates. The main objective of Bayesian inference is to explore the 

full posterior distributions of all the parameters. Even in the situations where the posterior 

distributions cannot be identified as a known distribution, inference using that distribution can be 

carried out using computational algorithms such  Markov chain Monte Carlo (MCMC) algorithms 

(Liu 2013). 

In short, typical Bayesian methods can be described in these steps (Glickman et al. 2007): 

1- Select a suitable probability model for the data. 

2- Select a prior distribution, which can be selected from past information, or chosen to present a 

balance among outcomes when no information is available. 

3- Create the likelihood function, which is depended on the data and the probability model. 

4- Construct the posterior distribution, which is combining the likelihood with the prior 

distribution. 

5- Extract statistical results based on the posterior distribution. 

3. 2. Application of Bayesian methods in the detection of gene-gene interactions 

Various methods have been devised using Bayesian approaches. We will restrict ourselves to a more 

detailed description of only one recent application to show an application using the Bayesian 

framework. One reason for this choice is that the chosen method is representative of the proposed 

approach. The other reason is that we have been using that method in our work (for comparison or as 

part of an aggregation method).  
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In (Wang et al. 2015), the authors have proposed a novel approach named “Bayesian High-order 

Interaction Toolkit (BHIT)” for detecting high-order gene-gene interactions on both discrete and 

continuous phenotypes.  

In this study, the data is made of a set of phenotypes Y measured on G individuals and, for each of 

these individuals, a set of R genotypes X. The goal of the algorithm is to associate subsets of X to 

distinctive patterns of the phenotypes. To that end, they define a vector I, of length R, where Ij should 

provide the subset number for marker j, which is number between 1 and H. Consequently, solving the 

problem corresponds to finding I and H, which are therefore the parameters in this Bayesian problem: 

we want to infer . 

Using the Bayes theorem, this distribution can be inferred as: 

 

Now, , the likelihood can be further detailed into: 

 

The first factor is the probability of the phenotypes given a partition of the genotypes; it can be 

modelled using (for example) multivariate Gaussian distributions, introducing the need for distinct 

means, standard deviations and correlations as new parameters for these normal distributions. The 

second factor is the probability of the genotypic configuration given a partition of the genotypes. This 

can be modelled as a multinomial distribution, with unknown probabilities. Therefore, these 

probabilities used in the multinomial distributions act as new parameters, which are supposed to arise 

from a Dirichlet distribution (see the paper for details). 

Sampling from the joint posterior distribution can be done using a Metropolis-Hastings algorithm: 

after burn-in iterations, new configurations (I) are sampled, and the joint posterior probability of this 

new configuration PN is compared to the probability of the previous configuration PP: the new 

configuration is accepted if PN ≥ PP. If PN < PP, the new configuration is accepted with a probability 

equal to PN / PP. 

The results on both simulated data and real data demonstrate that the performances are better than the 

other approaches (BEAM and BEAM2, also using a Markov-Chain Monte-Carlo partitioning strategy) 

used for comparison in this study. 

Researchers have constructed other Bayesian strategies. For example, (Yi et al. 2011) have used 

Bayesian models to detect main effects of locus, gene-gene and gene-environment interactions in case-

control studies. Their approach uses Bayesian generalized linear models with Student-t prior 

distributions in different situations. The results obtained on simulated data and real data show that the 

approach is potentially useful to detecting gene networks underlying complex diseases. 

Another example is (Liu, et al., 2015). The authors have used a Bayesian hierarchical mixture model 

for detecting gene-gene and gene-environment interactions in the same model. The results on 

simulation data and real data demonstrate that this method is useful to detect gene-gene and gene-
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environment interactions in various situations and has more power than the logistic regression used for 

comparison in this study. 

3. 3. Strengths of the Bayesian methods 

(i) They can efficiently explore high-order interactions (Wang et al. 2015). 

(ii) They can accurately deal with missing data and genotyping errors (York et al. 2005). 

(iii) They can be used as variable selection methods (Isci et al. 2014). 

3. 4. Weaknesses of the Bayesian methods 

(i) Uninformative prior probabilities may be difficult to specify (Yang et al. 2012). 

(ii) They require high computational resources for big dataset (Wang et al. 2015). 

(iii) They use stochastic way and are therefore not guaranteed to find the optimal solution 

(Chris et al. 2015). Actually, they can easily get stuck in a reduced portion of the 

parameters space. 

 



 

41 

 

 

  

Objectives 



Chapter 2                                                                                                                                                                       Objectives 

42 

 

The main objective of this thesis was to develop statistical non-parametric methods allowing to detect 

genetic interactions. This is an important part of the job aiming at a better understanding of the 

relationship between genomic configuration and phenotypic expression. 

As parts of this main objective, we have several more specific objectives: 

 Understanding the mechanisms of nonparametric statistical methods and working on the 

development of these methods. 

 Entering the world of ‘big data’ and discovering tools helping to handle, manage and analyze 

large data sets such as the ones met in genome-wide association studies. 

 Understanding mechanisms of genetic interactions and finding methods and algorithms to 

discover them. 
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Study 1: KNN-MDR: a learning approach for improving 

interactions mapping performances in genome wide association 

studies 
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Preamble 

 

In this study, we propose the main contribution of this PhD thesis: a novel approach combining K-

Nearest Neighbors (KNN) and Multifactor Dimensionality Reduction (MDR) methods for detecting 

gene-gene interactions as a possible alternative to existing algorithms, especially in situations where 

the number of involved determinants is high. This method illustrates how taking into account the 

physical nature of the problem - the markers present on today dense maps are physically linked on a 

chromosome, introducing a disequilibrium between close markers due to linkage - allows introducing 

more information in existing methods, and how this can be used to improve these methods. In our 

case, we have demonstrated that KNN-MDR is more computationally efficient than other exhaustive 

strategies, using windows of linked markers instead of single markers, which is facilitating the 

analysis of large-scale data sets with potentially genome-wide SNPs. The improvements on the 

efficiency of the method make it eligible for the detection of higher-order interactions, although this 

would admittedly remain a notably challenging task. Another reason making KNN-MDR useful is its 

ability to detect interactions in the absence of marginal effects. Several methods use marginal effects 

to pre-filter the data, assuming that only markers showing some effect individually are likely to be 

involved in interactions. We have considered this as an excessive assumption, and consequently 

developed a strategy where this assumption is not necessary. Relaxing this assumption in our 

simulations has proved that KNN-MDR performed generally better than concurrent methods in this 

context.  Although we have demonstrated some of the advantages of the method, we are aware that 

improvements are possible, and some ideas in that direction are proposed in the perspectives. These 

perspectives could render the method more useable for external users and increase its use. 
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Abstract  

Background 

Finding epistatic interactions in large association studies like genome-wide association studies 

(GWAS) with the nowadays-available large volume of genomic data is a challenging and largely 

unsolved issue.  Few previous studies could handle genome-wide data due to the intractable 

difficulties met in searching a combinatorial explosive search space and statistically evaluating 

epistatic interactions given a limited number of samples. Our work is a contribution to this field. We 

propose a novel approach combining K-Nearest Neighbors (KNN) and Multifactor Dimensionality 

Reduction (MDR) methods for detecting gene-gene interactions as a possible alternative to existing 

algorithms, especially in situations where the number of involved determinants is high. After 

describing the approach, a comparison of our method (KNN-MDR) to a set of the other most 

performing methods (i.e. MDR, BOOST, BHIT, MegaSNPHunter and AntEpiSeeker) is carried on to 

detect interactions using simulated data as well as real genome-wide data. 

Results 

Experimental results on both simulated data and real genome-wide data show that KNN-MDR has 

interesting properties in terms of accuracy and power, and that, in many cases, it significantly 

outperforms its recent competitors. 

Conclusions 

The presented methodology (KNN-MDR) is valuable in the context of loci and interactions mapping 

and can be seen as an interesting addition to the arsenal used in complex traits analyses. 

Keywords 

Gene-gene interaction - Epistasis - Single Nucleotide Polymorphism - Genome-wide association study 

- Multifactor Dimensionality Reduction - K-nearest neighbors. 
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Background  

These last years have seen the emergence of a wealth of biological information. Technical 

improvements in genotyping and sequencing technologies have facilitated the access to the genome 

sequence and to massive data on genes expression and on proteins. This large availability of molecular 

information has revolutionized the research in many fields of biology. In parallel to these technical 

developments, methodological advances are needed to address the various questions of scientific 

interest that have been targeted when developing these new molecular tools. For example, the 

identification of up to several millions genomic variations in many species and the development of 

chips allowing for an effective genotyping of SNPs panels in large cohorts have triggered the need for 

statistical models able to associate genotypes from individuals and interacting SNPs to phenotypic 

traits such as diseases, physiological and productions traits (Wu et al. 2010). Our paper is a 

contribution to this association problem.  

The systematic exploration of the universe of variants spanning the entire genome through genome-

wide association studies (GWAS) has already allowed the identification of hundreds of genetic 

variants associated to complex diseases and traits, and provided valuable information into their genetic 

architecture (Wu et al. 2010) while allowing to improve prediction of phenotypic outcomes (Wei et al. 

2014). Nevertheless, most variants identified so far have been found to confer relatively small 

information about the relationship between changes at the genomic locations and phenotypes because 

of the lack of reproducibility of many of these findings, or because the identified variants most of the 

time explain only a small proportion of the underlying genetic variation (Fang et al. 2012). This 

observation, quoted as the ‘missing heritability’ problem (Manolio et al. 2009) of course raises the 

following question: where does the unexplained genetic variation come from? Several authors have 

postulated that many genes and mutations could be involved, with individual small effects, resulting 

into a low detection power in most of the performed studies, but with large collective effects (Visscher 

et al. 2012). Another tentative explanation is that genes do not work in isolation, leading to the idea 

that sets of genes (“gene networks”) could have a major effect on the tested traits while almost no 

marginal effect is detectable at individual locus level. Note also that this gene network hypothesis is a 

potentially credible explanation to the lack of reproducibility of obtained positive results (Boos et al. 

2011), due to situations where different mutations or mutations combinations within the network 

(within the same genes or on different genes in the networks) could lead to similar phenotypic effects 

(Manceau et al. 2010).  

Consequently, an important question still remains about the exact relationship between the genomic 

configuration, including the interactions between the involved genes, and the phenotypic expression. 

The major idea in this respect is to try to associate observed variations at the macroscopic level 

(phenotype) to identified variations and their interactions at the molecular level. 
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This view introduces at least two challenges. First, the genetic mechanisms underlying most traits of 

interest are complex and probably involve most of the time many genes and many interactions 

between these genes, leading to a complex relationship between genomic variants and phenotypes. So, 

modeling and identification of every, and even of any, interaction is a potentially very challenging task 

(Marchini et al. 2005). Second, from a more statistical point of view, fully modeling the interactions 

leads to models with large number of parameters to be estimated and large search space, leading to the 

well-known ‘curse of dimensionality’ problem (De los Campos et al. 2010). Furthermore, increasing 

the number of parameters to be estimated potentially makes the power issues mentioned above even 

more critical. Nevertheless, introducing interactions into the model might lead to a more accurate 

model of the underlying genetics, which in turn might improve the detection power of effects of 

interest. So it is not obvious that interaction models will present poor power when compared to non-

interaction ones, which should motivate more research on the subject. 

In the literature, various statistical methods have been used to detect gene-gene or gene-environment 

interactions (Koo et al. 2013), (Millstein 2013). Many of these statistical methods are parametric and 

rely on large samples properties (Park et al. 2008), (Usai et al. 2012). On the other hand, 

nonparametric methods have generated intense interest because of their capacity to handle high-

dimensional data (Musani et al. 2007). In order to limit the size of the search space, many of the 

proposed approaches may have missed potential interactions by only considering variants that have a 

significant genetic marginal effect as, for example, in the logistic regression method proposed by 

(Fang et al. 2012), where the model relates one or more independent variables (i.e. main effects for 

genes) and their corresponding interaction terms (i.e. gene-gene interaction effects) to a discrete 

dependent variable (e.g. disease status). Because of issues linked to the dimensionality, models such as 

the logistic regression are limited in their ability to deal with interactions involving many factors 

(Ritchie et al. 2003). In response to these limitations, novel methods for detecting interacting variants 

have been designed, such as neural networks (Gunther et al. 2009), random jungles (Schwarz et al. 

2011), random forests (Winham et al. 2012), BOOST ‘‘BOolean Operation-based Screening and 

Testing’’ (Wan et al. 2010), support vector machine (Ban et al. 2010), MegaSNPHunter (Wan et al. 

2009), AntEpiSeeker (Wang et al. 2010) or odds ratio (Wu et al. 2010). 

One of the most successfully used family of methods in the gene-interactions problems is multifactor 

dimensionality reduction (MDR) (Ritchie et al. 2003). The MDR method is nonparametric (i.e., makes 

no hypothesis about the distribution of the statistical parameters), model-free (i.e., it assumes no 

particular inheritance model), and directly applicable to case-control and discordant-sib-pair studies 

(Ritchie et al. 2001). The main idea in MDR is to reduce the dimensionality of multi-locus data to 

improve the ability to detect genetic combinations that confer disease risk (Ritchie et al. 2001). MDR 

has been proposed to identify gene–gene or gene-environment  interactions when marker and/or 

environment information is available (Ritchie et al. 2006). An advantage of the MDR methods is, as 
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pointed out in (Mahachie John et al. 2011), that, due to their nature, they theoretically allow to 

highlight gene–gene interactions of any order (Manuguerra et al. 2007). 

Refinements of the method have been proposed to deal with potential limitations. (Cattaert et al. 2010) 

has proposed a novel multifactor dimensionality reduction method for epistasis detection in small or 

extended pedigrees, FAM-MDR. (Cattaert et al. 2011) and (Calle et al. 2008) have also developed 

Model-Based Multifactor Dimensionality Reduction (MB-MDR), a MDR-based technique that is able 

to unify the best of both nonparametric and parametric worlds, allowing to include corrections for 

cofactors, as in parametric models, while using the flexible framework of non-parametric MDR 

analyses. Another extension is Generalized MDR (GMDR), a version of the MDR method that permits 

adjustment for discrete and quantitative covariates and is applicable to both dichotomous and 

continuous phenotypes (Lou et al. 2007). 

Although applied to numerous genetic studies (Collins et al. 2013), (Gui et al. 2011), MDR faces 

important challenges. First, MDR can be computationally intensive, especially when a large number of 

markers needs to be tested (Ritchie et al. 2001). Second, the interpretation of MDR results is difficult, 

for example in situations where  a strong marginal effect makes the effects of the other polymorphisms 

in the interaction questionable (Calle et al. 2008). Third, the MDR method can fail in finding the 

correct models, because it assumes that there is no genetic heterogeneity, as in situations where a 

group of cases are explained by a combination of loci different from the one that explains another 

group of cases (Cattaert et al. 2011). Lastly, the number of possible combinations explodes 

exponentially with the number of interacting factors, which makes the approach impractical in terms 

of needed cohorts sizes and computing time in situations where large numbers of genetic and/or 

environmental determinants are involved, another instance of the ‘curse of dimensionality’ problem. 

In this paper, we propose a novel MDR approach using K-Nearest Neighbors (KNN) methodology 

(KNN-MDR) for detecting gene-gene interaction as a possible alternative to current MDR methods in 

situations where the number of involved determinants is potentially high and the number of tested 

markers is large. After explaining the rationale of our method, we will provide results on the 

comparison of KNN-MDR to a set of competitor methods on both simulated and real datasets. 

Methods 

KNN method 

KNN stands for “K Nearest Neighbors” and is one of the most popular algorithms for pattern 

recognition and classification. Roughly, classification of an observation can be made using a majority 

vote within the K nearest neighbors of the observation (Aci et al. 2010), where the neighborhood is 

based on a defined distance between observations. Although simple, many researchers have found that 

the KNN algorithm accomplishes very good performance in their experiments on different data sets 

(Suguna et al. 2010). Also, KNN is a multivariate method that retains the variable relationships seen in 
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the data because the logical relationships among response variables will be maintained (Ver Hoef et al. 

2013), a feature of importance in our genetic context. The flexibility of KNN is also a great advantage 

and this technique helps to alleviate the curse of dimensionality by shrinking the unimportant 

dimensions of the feature space, bringing more relevant neighbors close to the target point (Aci et al. 

2010).  

MDR method 

The method will be described for dichotomous traits for the sake of simplicity, but could be extended 

to other situations using the approach described for GMDR (Lou et al. 2007). The Multi-Dimensional 

Reduction (MDR) method is designed to replace large dimension problems with reduced dimension 

ones, allowing to make inferences based on a smaller set of variables. In the context of genomic 

studies, the idea in (Ritchie et al. 2001) is to replace the high dimensional problem arising from 

considering several markers simultaneously, with one unique variable (for example, a status) that can 

take only 2 values (for example, ‘high risk’ or ‘low risk’). To illustrate, if a set of N SNP markers is 

used in a case-control study to define the multi-locus genotype, 3
N
 genotypes are possible. Each of 

these genotypes can be mapped to a status with only 2 values (case or control) using a majority vote 

on the statuses of the training set individuals falling into that genotype. The classification 

performances of any set of markers used to define the genotypes can then be assessed, typically using 

a cross-validation procedure, where the performance is estimated on a test set for each partition trough 

a measure involving sensitivity and/or sensibility of the classifier, and averaged over all partitions. For 

all computations reported in this paper, we have used a 10-fold cross-validation procedure and 

assessed the performances using ‘balanced accuracy’, which is a simple average of the sensibility and 

the sensitivity of the classifier. Repeating this procedure over all possible markers sets allows 

obtaining the best model, which is defined as the set of markers providing the best allocation 

performances. In practical situations, the potential number of tested markers sets might be huge: if an 

exhaustive search is to be performed on all P-markers interactions in a GWAS with M markers, about  

M!/[P!*(M-P)!] ~ M
P
/P! combinations would need to be checked, a huge number with nowadays 

available markers panels.  Significance for the optimal model can be obtained through a permutations 

test, in which the potential links between the individuals’ genotypes and the phenotypes are disrupted 

by randomly shuffling the phenotypes. The p-values obtained using this test have then to be corrected 

for multiple testing, where multiple tests are due to the number of models that are successively tested.   

KNN-MDR method 

Although a widely used and well-established technique, MDR faces several problems, as detailed 

above. The computational load described in the previous section remains a major issue. Although 

recent publications (Lishout et al. 2015) have provided some tools to achieve low order interactions 
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screening in a GWAS, the task will remain very challenging for larger order interactions and for larger 

markers sets, such as sequencing data, and alternative approaches reducing the computer burden 

remain desirable. Another problem linked to the MDR methodology arises when a test set individual’s 

multi-locus genotype has not been observed in the training set, making it impossible to classify the 

newcomer. Furthermore, in situations where very few training individuals share the same multi-locus 

genotype as the tested one, the accuracy of the assignment can also be questioned.  Since the number 

of multi-locus genotypes explodes exponentially when the number of markers in the markers sets 

increases, this problem becomes rapidly critical, and could finally render the approach inaccurate (few 

individuals are used to classify) or even unusable (no individual useable to classify) in situations 

where more than 3-4 markers are to be used simultaneously and with classical cohorts’ sizes. Another 

consequence of the limited number of markers that can be considered simultaneously in MDR is that 

the genomic regions involved in interactions will most of the time be represented through a single 

marker, although, due to linkage disequilibrium, considering several linked markers might increase the 

association signal intensity, and consequently improve the detection power. 

Our proposal is therefore to slightly modify MDR to allow facing some of the shortcomings of the 

method. The only modification is in the status allocation procedure: while MDR uses a majority vote 

among the (potentially scarce or empty) set of individuals sharing the same multilocus genotype as the 

tested individual, we propose to use a majority vote within a set of the K nearest neighbors of the 

tested individual. This procedure has the obvious advantage to eliminate the problem of potentially 

scarce or empty genotypic configurations mentioned above. On the other hand, this strategy introduces 

the need to define the neighborhood: a “distance” between individuals based on the genotypic 

configurations at the selected markers will be needed, and the size K of the neighborhood will have to 

be provided. These parameters of the method - the chosen distance, K - are further discussed in the 

discussion section. A second advantage of our approach is that more markers can be considered at 

once than in the classical MDR strategy. The idea, also detailed in the discussion section, is thus to 

replace the sets of single markers used in MDR by sets of windows spanning several markers: the M 

markers are split into W windows of contiguous markers, where the choice of the windows sizes and 

positions could use genetic criteria explained in the discussion section, and the distances used in KNN-

MDR are based on these windows.  All the other steps are similar to the classical MDR steps 

(partitioning for the cross-validation, performance and significance assessments, best model selection). 

Note that the number of windows W might be much smaller than the number of markers M, as 

explained below. Consequently, the proposed approach might greatly reduce the needed amount of 

computations, and consequently make higher-order interactions more affordable. Although alternatives 

are possible, we have used Mahalanobis distances in our analyses because of its numerous advantages 

in our setting (see the discussion).  

Note that, in KNN-MDR, the computer burden scales quadratically with the number of individuals 

since the distances between pairs of individuals are needed, but is less sensitive to the number of 



Chapter 3                                                                                                                                       Experimental Section - Study 1 

 

53 

 

markers since markers are pooled into windows. So, the important parameter from a computing point 

of view is the number of windows W, which does not necessarily increase when the number of 

markers increases.  

Competitor methods 

After designing our method, we needed to compare the performances of our approach to some of the 

other proposed algorithms. Since many methods are available (Wei et al. 2014), we decided to 

consider four of the most popular ones to be used in the comparison, namely: MDR, BOOST, 

MegaSNPHunter and AntEpiSeeker. The rationale for choosing this set of methods is the following:  

 AntEpiSeeker (Wang et al. 2010) and BOOST (Wan et al. 2010) have been recommended as 

efficient and effective methods in the comparative analysis of (Shang et al. 2011), 

 MDR (Ritchie et al. 2001) is one of the most famous methodologies for detecting interactions 

(Wei et al. 2014), 

 MegaSNPHunter (Wan et al. 2009) is targeting high level interactions, one of the potential 

advantage of KNN-MDR. Also, a method for exploiting large genotypes sets is provided, 

which is another objective of our algorithm, 

 All these methods have been applied successfully to real datasets, 

 These methods have different search strategies: exhaustive search (MDR, BOOST), stochastic 

search (MegaSNPHunter) and heuristic search (AntEpiSeeker), 

 Software implementing the methods is available. 

Simulation 

In order to assess the performances of the proposed method, we have simulated various situations and 

ran MDR, BOOST, MegaSNPHunter, AntEpiSeeker and KNN-MDR on the same datasets to compare 

the performances in terms of detection power and accuracy. The generation of the simulation datasets 

will be described in the following lines.  

One of the aims of our study was to assess the performance of the methods to unravel gene-gene or 

gene-environment interactions in the absence of large marginal effects. The reason for that choice was 

that many methods are able to detect such large marginal effects and to infer interactions within a 

limited set of loci selected on that basis. Accordingly, we wanted to devise an approach that is able to 

detect interactions even in the absence of marginal effects. For that reason, efforts have been devoted 

to generate datasets with interacting genes in the absence of significant marginal effects. Furthermore, 

heterogeneity between samples has been shown to be a major source for the non-reproducibility of 

significant signals (Yang et al. 2009). We have modeled heterogeneity by associating penetrances to 

the multi-locus genotypes underlying the simulated binary trait. The data generation algorithm 

proceeds along the following lines: 
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(1) To obtain a linkage disequilibrium (LD) pattern similar to patterns that can be observed in 

humans, SNPs spanning the human chromosome 9 (HSA9) have been obtained from a study 

on Crohn disease in Caucasians (Gori et al. , Lou et al. 2007) for 197 individuals. 2000 

markers with minor allele frequencies (MAF) above 0.3, and no missing genotype have been 

selected. Hardy-Weinberg equilibrium tests have been performed on the genotypes for these 

markers, and the high MAF threshold has been chosen to select informative markers among 

the complete list of markers, to compensate for the information loss resulting from discarding 

the other available markers to decrease the computational load. Nevertheless, since 

experimental data has been used, genotyping errors might be present. Presence of LD in the 

data was checked using simple association tests between consecutive markers (data not 

shown). 

(2) Since many different individuals are needed in the simulations, we used a trick similar to 

(Chen et al. 2011) to generate new individuals based on the few available genotypes: each 

individual genotype was chopped into 10 SNP windows, leading to 200 windows with 

(maximum) 197 different 10 loci genotypes. Each simulated individual genotype was then 

built by randomly sampling a genotype for each window and concatenating the 200 genotypes 

into a new complete genotype with 2000 markers. This technique allows for 197
200

 potentially 

different individuals while conserving some LD. 

(3) G SNP were then randomly chosen as having an effect on the simulated phenotype, where G = 

2, 3, 4 or 5. Since SNP selection is random, SNP might be linked or not. 

(4) Selected SNP genotypes were then used to generate the binary phenotypes. More details of the 

algorithm are given in an appendix (see Appendix 3 (Additional file 8)), but roughly: 

a. A penetrance is computed for each multi-locus (G SNP) genotype in such a way that 

each of the G SNP shows no marginal effect:  

P( A | Gi = 0) = P( A | Gi = 1) = P( A | Gi = 2) = P 

where  Gi denotes the genotype for locus i (i = 1, 2, …, G), 0, 1, 2 are the number of 

instances of the minor allele in the SNP genotype, A means Affected, P( A | Gi ) is the 

penetrance for genotype Gi, and P is the prevalence of the disease in the sample (since 

we used a more or less balanced case-control design, we used a prevalence of P = 0.5). 

b. The multi-locus penetrances MP = P( A | G1 = k, G2 = m, …) where k, m, … = 0, 1 or 

2 are obtained to meet the requirement of no marginal effect (see previous step). An 

algorithm to compute these penetrances is provided in the Appendix 3 (Additional file 

8). 

c. The phenotypes (i.e. affected or non-affected status) are then obtained by randomly 

sampling a uniform distribution between 0 and 1 and comparing the obtained deviate 

d to the multi-locus penetrance MP: if d < (>) MP, the individual is (not) affected. 
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(5) One SNP out of 2 consecutive SNPs was then randomly discarded, leaving 1000 markers for 

the analyses. The rationale of this selection is that causative mutations might nowadays be 

present or not in the genotyped variants. This will also be the case in our simulations. 

(6) Genotypes and corresponding phenotypes were generated for each simulation, and the 

obtained datasets were studied using all four methods. KNN-MDR windows size was set to 10 

markers, leading to 100 non-overlapping windows, and K value was set to 10. The parameters 

for the other methods were chosen so that resolution was almost similar for all methods.    

(7) Finally, 100 permutations of the phenotypes were performed for each simulation (unless 

otherwise stated) and the resulting datasets were analyzed using the four methods in order to 

assess significance. Although this number of permutations is too low for routine work, it was 

used to reduce the computing burden and help us to discriminate between results clearly non-

significant (i.e. p > 0.05) and those potentially significant (i.e. p < 0.05). When a higher 

precision was needed for the p-values (see below), an adaptative permutations scheme was 

used, in which windows not reaching a pre-determined p-value threshold are progressively 

abandoned in the permutations scheme since these windows are very unlikely to finally reach 

a significant result (Purcell et al. 2007). 

Real data 

Analyses using real data have also been performed. Rheumatoid arthritis (RA) genotype data on 1999 

cases and 1504 controls have been obtained from WTCCC (Wellcome Trust Case Control 2007, Wang 

et al. 2015). Genotypes from the Affymetrix GeneChip 500K Mapping Array Set have been filtered 

using the usual quality controls tests on DNA quality (percentage of genotyped marker for any given 

individual above 90 %), markers quality (percentage of genotyped individuals for any given marker 

above 90 %), genotypes frequencies (markers with a p-value below a Bonferroni adjusted 5% 

threshold under the hypothesis of Hardy-Weinberg equilibrium in the controls cohort have been 

discarded). Missing genotypes for the GeneChip markers have been imputed using impute2 software 

(Howie et al. 2009, Lishout et al. 2015). This procedure led to 312583 SNP to be analyzed for the 2 

cohorts. (Zhang et al. 2012) and (Shchetynsky et al. 2015) also used this dataset to infer potential 

interactions. These studies will therefore serve as a comparison for the results obtained with our 

approach. 

Working on large datasets 

When working on large sets of markers, such as for example those commonly met in GWAS analyses, 

splitting the complete set into a reasonable set of windows could necessitate including large numbers 

of markers in each window, which would eventually swamp the signals of interest, as explained in the 

discussion section. An alternative is to pre-select a subset of markers (for example, taking one marker 

every N markers) and to define a first set of windows based on these markers. This strategy would 
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allow windows to cover potentially large regions while preserving some detection power. After a first 

run of KNN-MDR using this subset, the detected combinations (i.e. those departing significantly from 

the distribution of the results, assuming that most combinations do not have an effect on the studied 

trait, and that this distribution accordingly corresponds to the distribution of the used measure under 

the null hypothesis) would be used for a second round of KNN-MDR runs. In this new round, the 

markers hidden in the first round could be partially or totally recovered for each of the identified 

regions, and the same approach as in the first round could be used recursively on these new regions. 

The sequential detection of progressively denser regions could continue down to single markers. An 

example of this strategy in a GWAS study is provided in the of “Results on WTCCC data” section. 

Results 

Results on simulated data 

Since performing classical MDR analyses on a large number of markers is not an obvious task, 

especially when the number of putative involved SNPs (noted G) is 3 or more, we restricted our 

analyses to G = 2 and G = 3 to make comparisons to other methods feasible. We have defined the 

“power” as the proportion of simulations where an association signal was detected (p < 0.05), and the 

“corrected power” as the proportion of simulations where the association was detected and involved 

the causal SNP (i.e. a rough measure of accuracy). The comparison of the five tested methods is 

presented for situations where G = 2 in Table 5 and for G = 3 in Table 6 (data sets used to generate 

these 2 tables are provided as additional files (1 and 2) and more details on the comparisons of the 

methods results are provided in Appendix 2 (Additional file 7).  

Method MDR AntEpiSeeker BOOST MegaSNPHunter KNN-MDR 

power 0.68 0.88 0.76 0.84 0.81 

corrected power 0.56 0.39 0.48 0.20 0.71 

Table 5 - Simulation results when G = 2 and the number of cases and controls is 500 

 

As can be seen from Tables 5 and 6, KNN-MDR seems to show reasonable power when compared to 

its competitors. More importantly, corrected power of the method is significantly better than for the 

other tested methods (after 100 simulations, p = 0.0143 when comparing KNN-MDR to its closest 

competitor for G = 2 and p = 7.23e-7 for G = 3).  

Method MDR AntEpiSeeker BOOST MegaSNPHunter KNN-MDR 

power N/A 0.65 0.67 0.80 0.74 

corrected power N/A 0.15 0.28 0.12 0.63 

Table 6 - Simulation results when G = 3 and the number of cases and controls is 500 

 



Chapter 3                                                                                                                                       Experimental Section - Study 1 

 

57 

 

A short literature survey (Prabhu et al. 2012, Upstill-Goddard et al. 2013, Li et al. 2014, Wei et al. 

2014) leads to the conclusions that many of the methods seem to be marred by high false positive 

rates. To test that, we have simulated situations where no SNP was involved in the generation of the 

phenotypes, so that SNP detection by the algorithms would correspond to false positives. Table 7 

shows the results of these simulations. 

We ran another set of simulations to assess the respective effects of the sizes of the windows and of 

the number K of neighbors on the (corrected) detection power. Results of these simulations are 

reported in Table 8. 

Results on WTCCC data  

Since working on such a large dataset (> 300k SNP) is very demanding in terms of computing time, 

we proceeded as follows: 

1- 20k SNP were first extracted from the data. Although several selection procedures could be 

applied, we simply selected 1 SNP every 15 SNP.  

2- We divided the data into 200 windows of 100 SNP each. 

3- We then tested each of the 19900 possible pairs of windows (sets of 200 SNP) using KNN-

MDR. 

4- We extracted the 83 sets for which the p-values were lower than 2.5e-6 (a threshold obtained 

after Bonferroni correction at level 0.05). To reach that significance level using a permutations 

procedure, we used the following adaptative scheme: after 100 permutations performed on the 

19900 possible pairs of windows, only those reaching the 0.05 level were considered for the 

next round of permutations, assuming that those not reaching that level of significance were 

very unlikely to reach the desired significance at the end of the process. This left us with 2319 

combinations. In the next round, 900 more permutations were performed, and only the 

combinations reaching the 0.005 level were kept (i.e. 1207 combinations). Repeating this 

procedure for 1.0e4, 1.0e5, 1.0e6 and 2.0e6 permutations, and respective thresholds equal to 

5.0e-4, 5.0e-5, 5.0e-6 and 2.5e-6, we ended up with the 83 sets cited above. 

5- The SNP hidden in step 1 were then recovered, leading to 83 sets of 3000 SNP (i.e. 200*15). 

6- KNN-MDR was applied on every set from step 5: the sets were divided into 30 windows of 

100 SNP and all 435 combinations of windows pairs in each set were considered by KNN-

MDR.  

7- We kept the 241 sets of 200 SNP with a p-value < 1.15e-4 (Bonferroni correction at level 

0.05). 

8- MDR was then used for the sets from the previous step, leading to examine 19900 SNP-SNP 

interactions for each set.   
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9- The interactions with a p-value < 2.51e-6 (Bonferroni correction at level 0.05) were then 

considered as significant. 

Results from this analysis are presented in Table 9. The full version of Table 9 is provided in a 

supplementary file. Figure 11 provides a view of the significant results at the chromosome level for 

our study as well as for 2 other similar studies on this dataset ((Zhang et al. 2012) and  (Shchetynsky 

et al. 2015)). 

Discussion 

This paper has introduced a new MDR approach to find markers interactions in genomic scans. It 

could also be used for other attributes than markers, such as environmental factors, leading to a gene-

environment interaction search method. Due to the proposed strategy relying on the MDR approach, 

and in parallel with a recent study (Chen et al. 2011) using (“simple”) MDR as a reference strategy, 

we have compared our proposed method’s performances to this reference and other reference methods 

(MegaSNPHunter, AntEpiSeeker, BOOST), and tried to show that our method could have benefits 

compared to these methods. Of course, other algorithms might have been tested, such as the recent 

Bayesian High-order Interaction Toolkit (Wang et al. 2015) which is proposing a MCMC approach to 

scan the very large search space of potential sets of markers (incidentally, this algorithm has also been 

tested on a smaller set of simulations, and its power has been found significantly lower than KNN-

MDR on this dataset). Our point in this respect was not to be exhaustive, but simply to show that the 

approach we propose can bring some more information than other popular methods, and might be a 

useful addition to the arsenal developed to tackle genomic interaction problems.   

Method MDR AntEpiSeeker BOOST MegaSNPHunter KNN-MDR 

Power (p-value <0.05) 0.18 0.45 0.19 0.38 0.07 

Table 7 - Simulation results when G = 0 and the number of cases and controls is 500 

The results obtained through the simulations demonstrate some of the features that potentially make 

KNN-MDR helpful. More specifically, the simulations show the feasibility of scans using large 

number of markers, as opposed to MDR where the computer burden explodes with the number of 

markers (when it simply increases linearly with KNN-MDR). This might allow to highlight 

interactions between markers far apart on the genomic map (trans-interactions), while some strategies 

proposed to restrict the scans to close-by markers (cis-interactions) to reduce the amount of 

computations.  

We now discuss some of the features of the method: 

 

 



Chapter 3                                                                                                                                       Experimental Section - Study 1 

 

59 

 

Number of interacting loci 

In this paper, although the algorithm given in the appendix can be used for G larger than 3, only 3 

markers have been used to generate the phenotypes. Nevertheless, in practical applications, it is not 

unlikely that situations involving more than 3 loci might exist. These situations might increase the 

interest of using methods such as KNN-MDR. Indeed, when more regions are involved in the 

phenotype, this could decrease the distance measure between individuals sharing some or all of these 

regions and better cluster individuals sharing the same status. Conversely, in MDR, discovering such 

complex patterns would likely necessitate to increase the number of loci scanned simultaneously, 

which would make computations even more difficult. Also, increasing the number of loci increases the 

number of cells with no (or very few) observations, making status allocation potentially inaccurate or 

even impossible. 

Parameter settings 

We mentioned earlier that parameters setting in KNN-MDR mainly involves defining the sizes, 

positions and the number of windows, the number K of neighbors and the distance measure. All 

parameters are problem dependent, making it difficult to devise general rules. Nevertheless, some 

guidelines might be given. 

 
W= 

 
5 10 15 20 

K= 

5 
71 68 62 52 

65 62 51 38 

10 
70 66 64 56 

60 53 51 43 

15 
71 65 59 58 

59 49 47 44 

20 
69 60 56 53 

67 55 52 45 

Table 8 - Power (above) and corrected power (below) when the parameters K (number of markers) and 

W (windows size) are varied in 100 simulations with 500 cases  and 500 controls and G = 2. 

 

In all the analyses performed in this study, we have only used Mahalanobis distances, as already 

mentioned. The reason was that this distance allows to take into account potential correlations between 

attributes (typically, linkage disequilibrium between close markers) and because it makes it possible to 

weight the attributes in the sum (for example to take into account that similarity for rare alleles is more 

informative that on frequent ones).  In our studies, only SNPs have been used, for which the distance 



Chapter 3                                                                                                                                       Experimental Section - Study 1 

 

60 

 

proposed in the Mahalanobis measure makes sense, with D(AA,AB) = D(AB,BB) = 0.5* D(AA,BB), 

where AA, AB and BB are the three possible SNP genotypes. This might be different and might need 

more investigations if other types of genetic variants are used. Note also that, in most computations, to 

reduce the computational burden, the correlation between neighboring markers has not been estimated 

but set to 0 (i.e. we used the normalized Euclidean distance), which might potentially affect the power. 

Although we did not explicitly test this, we expect that including the correlations would lead to better 

take into account the linkage disequilibrium, which should have a positive effect on the detection 

power. So, using this information might be favorable in terms of power, but at the cost of an increase 

in the computation time. Note also that using this kind of distance makes less sense when working 

with markers with more than 2 alleles, unless it can be postulated that the distance between, for 

example, alleles 1 and 3 is roughly twice the distance between alleles 1 and 2. An easy to compute and 

similar distance measure would then be to square the number of differing alleles (0, 1 or 2) between 

two compared genotypes, to normalize as for the Mahalanobis distance, to sum over all markers in the 

window and to take the square root of the product. This “binary” distance is implemented in our KNN-

MDR software. 

 

SNP Position Testing balanced accuracy P-value 

rs10979420,rs778980 9:108634242 , 19:5863725 0,894054 2.51*10
-6

 

rs10979420,rs778982 9:108634242 , 19:5866574 0,894054 2.51*10
-6

 

rs6781338,rs778982 3:180060018 , 19:5866574 0,88983 2.51*10
-6

 

rs778980,rs17325560 19:5863725 , 20:2614933 0,88983 2.51*10
-6

 

rs4979291,rs10979420 9:107732763, 9:108634242 0,88983 2.51*10
-6

 

rs561259,rs10979420 2:79014325 , 9:108634242 0,88983 2.51*10
-6

 

rs1862333,rs17325560 5:181066946, 20:2614933 0,888751 2.51*10
-6

 

rs1862333,rs485409 5:181066946 ,18:28918712 0,888751 2.51*10
-6

 

rs571307,rs578044 13:29942173,18:28918696 0,887092 2.51*10
-6

 

rs1169565,rs571307 2:71196518 , 13:29942173 0,880437 2.51*10
-6

 

Table 9 - The 10 most significant results of the analysis on the RA dataset from WTCCC 

 

For the windows dimensions, our idea is to use the assumption that individuals sharing mutations 

responsible for the trait should look more similar in the surroundings of these mutations than those not 

sharing these mutations. The resemblance should thus extend to neighbouring markers, where the 

neighbourhood size is a function of the linkage disequilibrium (LD) in the region. In situations where 

LD increases (due to the studied population and/or the markers density), distance between individuals 

sharing genomic regions (including the causal regions) should decrease and detection power should 

increase. Note that this genomic feature is ignored in the other tested methods. Accordingly, the 

windows sizes W should ideally be defined to capture the local linkage disequilibrium. Since the 
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measurable LD is dependent on the population history and on the markers density, assessment of this 

measure should first be made in order to have reference dimensions for the various windows to be 

used in KNN. Note that the extent of LD need not be the same across the whole genome: accordingly, 

the size of the windows might be varied along the genome to better reflect the underlying structure and 

better capture the relevant information. 

To illustrate that expected behavior, we have performed the simulations leading to Table 8. As visible 

from that table, the powers decrease when the windows sizes increase. Our interpretation of this result 

is that, due to the way the simulated data are generated, chunks of five linked (i.e. showing some LD) 

markers are used, which should restrict the signal caused by LD to five markers. Adding more markers 

to the windows adds noise, and consequently reduces the resemblance between the composite pieces 

of chromosomes harboring the causative mutations, and thus the power. 

Next, the number K of neighbors should somehow reflect the number of individuals sharing regions 

harboring causal mutations. This number is of course unknown and difficult to evaluate a priori 

because it is dependent on various population and trait parameters such as the history of the population 

or the genetic heterogeneity of the trait. Furthermore, it might vary from region to region, making it 

difficult to devise general rules allowing to infer relevant values of K. Possible “brute force” 

approaches would be to rerun the algorithm with varying number of neighbors (grid search) or to use 

bootstrap methods (Hall et al. 2008). This strategy could allow to capture regions of interest while 

integrating potential sources of variations, at the cost of supplementary computer burden. Another 

point of view is that the corrected powers do not significantly (at the 5% level) disagree between the 

various K values for the tested windows sizes, which indicates that the results might not be very 

sensitive to this parameter, at least in our simulations. For this reason, we used K = 5 or K = 10 in our 

computations. Note also that odd K values might facilitate the majority vote. 
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Figure 11 - Comparison of the inter-chromosomal interactions detected on the RA dataset by KNN-

MDR and other interaction methods using this same dataset as example (Shchetynsky et al. (2015); 

Zhang et al. (2012)) 

False positive rates 

Our simulations have shown that, as reported in other studies, results are often penalized by high false 

positive rates (Table 7). One obvious reason is multiple testing: the large number of performed tests 

necessitates that the significance threshold be properly adapted, which is not always easy to do. 

Another reason in our study is the way we have performed the simulations. Indeed, we have managed 

to have epistatic interactions with little marginal effects in order to avoid the easier situations where 

individual loci can be identified in a first step, followed by the identification of interactions between 

these loci identified first in a second step. To obtain these situations, we have used multi-locus 

prevalences, which has led to some kind of genetic heterogeneity: a same multi-locus genotype could 

simultaneously be present in cases and in controls, making it harder to identify these loci. These 

complicating factors have been associated to higher false positive rates in other studies, along with 

other design factors such as the number of cross-validation subsets (Winham et al. 2010, Cattaert et al. 

2011, Li et al. 2014). Our model might be less sensitive to these factors: looking for neighbors might 

allow selecting the individuals sharing the relevant features in a heterogeneous set of individuals. 
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Also, decreasing the number of tests (in comparison to MDR, for example), might also lead to 

somehow relaxing the penalty arising from multiple testing. 

Power and corrected power 

The reason for the drop in the power of the alternative methods when considering the accuracy is not 

completely clear, but we can suggest a tentative explanation.  

As can be seen from Table 7, all methods show high rates of false positive results, while KNN-MDR 

seems to behave reasonably well from that point of view. Although this is no definite proof, this is an 

indication that the high power observed in the simulations for the alternative methods is probably due 

to false positive results. Correcting for the accuracy (using “corrected power”) therefore eliminates 

most of these false positive results, so drastically reducing the observed power. 

A potential criticism on our “accuracy measure” is that using windows sets makes it more likely to 

cover the culprit regions, and so this “accuracy” measure is biased in favor of KNN-MDR. For that 

reason, and to make the comparison fair between the methods, we have chosen the parameters to end 

up with similar number of markers in the finally selected markers sets in each approach. Note 

nevertheless that the resolution of KNN-MDR could eventually be increased in these analyses, for 

example using the strategy described for large datasets in the material and methods section. 

Figure 11 shows that no combination at the chromosome level is consistent across our study and two 

other similar studies on the same dataset ((Zhang et al. 2012) and  (Shchetynsky et al. 2015)) while 

other significant results are specific to one or two methods. Some results from KNN-MDR are 

consistent with those obtained by Shchetynsky, others are consistent with those of Zhang while no 

corresponding results between Zhang and Shchetynsky studies could be found. Power and false 

positive issues might potentially explain these discrepancies, although no definite proof can be put 

forward based on these preliminary analyses. 

So, in our study as in the other ones, statistically significant SNP interactions have been identified 

using KNN-MDR and MDR in a genome-wide association study. Their biological relevance is 

obviously not clear at this stage and needs more investigations in the future. We can nevertheless say 

that some of our results are consistent with other results in the domain of  Rheumatoid Arthritis 

((Zhang et al. 2012), (Wan et al. 2010), (Hua et al. 2012)) and that, in addition, new candidates 

contributing to the etiology of this disease have potentially been identified. This result shows that, as 

suggested in the simulations, differences in the approaches and potential differences in the respective 

powers of the used methods might lead to new insights in the etiology of the disease. This observation 

should trigger more research on the use of composite methods, combining the qualities of several 

approaches. 
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Computer resources 

In our results, the comparisons between (MegaSNPHunter, AntEpiSeeker , BOOST, MDR) and KNN-

MDR in terms of computer resources has not been fully addressed. Nevertheless, it has been shown 

how and why KNN-MDR decreases the computer load with respect to MDR, making it a potential 

candidate to analyze large datasets, as shown for the RA data. To be fair, it should be mentioned that 

computing nearest neighbors is more computer intensive than a majority vote in the subset sharing the 

same multi-locus genotype. Nevertheless, as shown in the simulations, and as can be understood from 

the previous discussion, computations remain more affordable in KNN-MDR than in MDR and the 

other methods for similar scans. Furthermore, strategies could also be devised to make KNN-MDR 

efficient, such as pre-computing distances for windows and using distance additivity properties to 

compute distance over several windows. 

Another point that might be worth adding is that, although KNN is natively a classification method, 

we have used it here in a detection context. KNN-MDR could nevertheless as well be used as a 

classification tool: to that end, the best model (i.e. the best set of markers) could be used to compute 

the neighborhood of a new individual and classify the latter in one or the other category. 

Conclusions 

In summary, KNN-MDR is an alternative to existing methods for detecting epistatic interactions, with 

interesting features. Among these, we have demonstrated that KNN-MDR is more computationally 

efficient than other exhaustive strategies, facilitating the analysis of large-scale data sets with 

potentially genome-wide SNPs. The method is also capable to detect high-order interactions and to 

take into account linkage disequilibrium (LD). Another advantage is that it is able to detect 

interactions between SNPs even in the absence of marginal effects. Also, the method is non-

parametric: no prior distribution is assumed, unlike many parametric-statistical methods. Nevertheless, 

parameters (distances, number of neighbors, windows definition) are available to allow some 

flexibility in the search strategies, which could help to render the method useful in other classification 

contexts. 

Although KNN-MDR is potentially beneficial for epistasis detection, several aspects would 

nevertheless deserve more investigations. For example, the burden associated to the computation of 

the K nearest neighbors could become an issue when the dataset is very large. Since the load increases 

quadratically with the number of individuals, and linearly with the number of markers, improving the 

computational performances of the method could necessitate some code optimization to make the 

program more efficient. Another point necessitating more work is the tuning of the parameters 

allowing an optimal detection power. This includes the optimal sizes of the windows - which should 

be dependent on the studied population, the markers density, the LD pattern, the optimal size of the 

neighborhoods to be considered, the pre-selection of markers in the early phase of large dataset 
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analyses, the distance measure or the adaptative selection scheme for the selection of markers in large 

studies, among others. 
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Additional files 

Additional file 1 – The data set(s) supporting the results of Table 5. 

Additional file 2 – The data set(s) supporting the results of Table 6. 

Additional file 3 – The data set(s) supporting the results of Table 7. 

Additional file 4 – The data set(s) supporting the results of Table 8. 

Additional file 5 – Table 9 complete. 

Additional file 6 – KNN MDR user's guide. 

Additional file 7 – Competitor methods. 

Additional file 8 – Computing multi-locus penetrances. 

 

Note: the additional files (1-5) can be found on: 

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1599-7 

The other additional files are available as Appendices 1-3 of the present work. 



 

72 

 

 

 

Study 2: Aggregation of experts: an application in the field of 

“interactomics” (detection of interactions on the basis of genomic data) 
 



Chapter 3                                                                                                                                       Experimental Section - Study 2 

 

73 

 

 

Preamble 

The main idea of this study, on the aggregation of methods, is a more general concept: grouping 

various methods results might lead to improvements over the individual results. We have illustrated 

this concept in the field of interactions mapping and obtained results somehow confirming these 

improvements. In a field such as genetic mapping, where thousands of parallel tests are performed, 

false positives control is an important issue. False positives are likely to be numerous in these studies, 

meaning a potential waste of time, energy and money on non-reproducible results, which of course 

shed doubts on the utility of such studies. We hope that our work is again a step in the direction of an 

improvement in the perception of interaction studies: we have shown that using a small set of methods 

in a very simple aggregation strategy led to an increase in the detection power while properly 

controlling for the false positive rate. Above providing a framework for a joint - i.e. made with several 

methods - analysis of real datasets, we hope that such results will stimulate interest in the development 

of new methods: this would be beneficial for the field - new performing methods would be welcome - 

and for the aggregation strategy - adding more performing methods should enhance the performances 

of the aggregation strategy. The feasibility of using such methodology on real genome-wide datasets 

has been demonstrated on an example. This also calls for improvement in the future methods to be 

developed, because many methods in use today would not be able to manage large genome-wide 

datasets, which questions on their ability to detect interactions involving variants distantly located on 

the genome. 
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Abstract  

Background 

The last decades have seen major developments in the field of genetics. These advances have led to 

the emergence of a wealth of biological information, allowing new strategies to be applied in many 

fields of the biological research, such as new methods aiming at the genomic mapping of genes 

involved in traits of interest. Although these approaches have been successful, many elements in the 

genetic landscape of the studied traits are still unknown and uncharacterized so far. A potential track to 

new findings, potentially leading to a better understanding of complex determinisms, is the detection 

of interactions between regions rather than single region associations. While many methods aiming at 

the detection of such interactions have been proposed, and despite the success of these methods to 

solve some problems and to detect genetic interactions, there is currently no gold standard method able 

to detect interactions in all situations, and the relative performances of these methods remain largely 

unclear. Our work, which is an attempt to try to benefit from the various advantages of a set of 

methods, is a contribution to this field. 

Results 

Experimental results, based on simulated data and real genome-wide data show that the aggregated 

predictor can produce better performances in the detection of genetic interactions than each individual 

predictor can.  

Conclusions 

The presented methodology - an aggregation of experts as a tool to detect genetic interactions- is a 

potentially useful addition to the arsenal used in complex traits analyses. 

Keywords 

Gene-gene interaction - Epistasis - Single Nucleotide Polymorphism - Genome-wide association study 

- Multifactor Dimensionality Reduction - K-nearest neighbors. 
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Background  

The last years have witnessed an explosion in the availability of large datasets in various fields. This 

phenomenon, related to the rapid evolution in the communication facilities offered to a large share of 

the population, is also due to the technological developments in many other disciplines, such as 

satellite imaging or routine access to molecular data in biology laboratories. In the field of molecular 

biology, the wealth of nowadays available information - including genomic, transcriptomic, 

proteomic, metabolomic data among others - has led to shift the attention from the data acquisition 

processes to the understanding of the actual meaning of the individual elements of this data ocean: the 

exponential growth of data creates great challenges, not only in finding out how to store and access the 

data but also, and more importantly, how to process and make sense of it. Therefore, the development 

of efficient algorithms for processing big data and making good use of it is very important (Ulfarsson 

et al. 2016). 

In genetics, instances of this ’big data’ revolution can be found in the mapping activities: the 

researchers aiming at establishing the connections between the molecular information and the 

observed phenotypes (such as diseases, production traits in animals and plants, or morphological 

traits) have in their hands an extensive (and sometimes exhaustive) repertoire of the variations 

observed at the molecular level, and have to engage into the process of inventing new methods and 

new strategies to extract the relevant variants (Paixão et al. 2016). Since a large portion of the genetic 

landscape underlying many traits of interest in various organisms, including the human, is still 

unknown and uncharacterized, this field is a very active field of research (JYoun et al. 2016). In this 

domain, a classical approach is to use genome-wide association studies (GWAS), where the goal is to 

scan the whole genome using molecular markers densely populating the whole genome (most often, 

large sets of Single Nucleotide Polymorphisms (SNP), but not exclusively) to look for associations 

with the trait of interest. Although successful in many studies (Stranger et al. 2010), this approach has 

not been successful in many other cases, even when complete genomic information (i.e. sequence 

data) was available. Several reasons might be invoked to explain this situation, such as a small power 

to detect effects of modest size or oversimplified statistical models (Bashinskaya et al. 2015). If 

increasing the cohorts sizes used for mapping is difficult or useless, a possible track to tackle this 

“missing heritability” problem might be to fit more elaborate models, such as those introducing 

epistatic or gene-environment interactions (Lon et al. 2001, Phillips 2008). Genes interactions are 

interplays between two or more genes that have an impact on the expression of an organism's 

phenotype. They are thought to be particularly important to discover the genetic architecture 

underlying some genetic diseases (Lon et al. 2001, Phillips 2008). Consequently, there has been an 

increased interest in discovering combinations of markers that are strongly associated with a 

phenotype even when each individual marker has little or even no effect (Chen et al. 2011). This 

approach has to face at least two problems: first, modeling and identifying every (or even any) 
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interaction is a potentially very challenging task in today situations where very large sets of markers 

(up to several millions) are available. Second, from a more statistical point of view, fully modeling the 

complexity leads to models with large dimensionality, leading to the well-known ‘curse of 

dimensionality’ problem (Abo Alchamlat et al. 2017): in rough words, the accurate estimation of an 

increased number of parameters is hampered by the reduced sizes of the tested cohorts. Many methods 

(such as multifactor dimensionality reduction approach using K-Nearest Neighbors (KNN-MDR) 

(Abo Alchamlat et al. 2017), multifactor dimensionality reduction (MDR) (Ritchie et al. 2001), 

MegaSNPHunter (Wan et al. 2009), AntEpiSeeker (Wang et al. 2010), BOolean Operation-based 

Screening and Testing (BOOST) (Wan et al. 2010), Bayesian epistasis association mapping (BEAM) 

(Zhang et al. 2007), BHIT (Wang et al. 2015), Random forest (RF) (Breiman 2001), among others) 

have nevertheless been proposed for detecting such interactions. Despite some successes of these 

methods to unravel some genetic interactions (Bashinskaya et al. 2015), no unique method was able to 

detect most of the interactions so far. Furthermore, the relative performances of these methods remain 

largely unclear and necessitate more investigations. As a step in that direction, we propose using a 

method based on the principle of the aggregation of experts, where the experts would be a set of 

popular published methods. In parallel, we highlight some of the features of the individual methods 

and discuss possible aggregation strategies. 

Methods 

Methods of aggregation are not new and have been used extensively to improve classification (Gerardi 

et al. 2009, Tsyganok 2010). They are one of the hot research topics in supervised learning and seen as 

methods useful for constructing good ensembles of classifiers (Dietteric 2000). In our study, we aim to 

combine the results of various popular methods to potentially obtain improved performances in the 

field of gene-gene interactions mapping. The idea of the method is to extract information from a few 

experts in order to create new knowledge. When knowledge is generated from multiple experts, it is 

necessary to combine the various sources of expertise in order to arrive at a consensual knowledge 

base (MAK et al. 1996). Aggregation of experts, an example of the larger class of ensemble methods 

where aggregation is the technique allowing to combine information from multiple sources, has been 

shown to yield more accurate and robust predictions than individual experts on a variety of 

classification problems (Titov et al. 2010). Using this approach, it is often possible to decrease the 

amount of redundant data, to filter the wrong results, which include false positive and false negative, 

and to increase the accuracy of the result (Choi et al. 2014). In this paper, we investigate the 

aggregation of experts, using published gene interactions mapping methods (described below) as the 

experts. As can be found in the literature, each of the potential methods that could be used has pros 

and cons, and no unique method is uniformly better than the others to detect genetic interactions. Our 

objective when turning to the aggregation of experts was therefore to obtain a comprehensive method 

able to detect more interactions than each individual method by combining the strengths of these 
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individual approaches while potentially better avoiding false positive results. The very simple idea is 

therefore to let each method run independently, to finally come up with a final decision based on a 

consensus obtained from the individual methods results. An easy example within the possible 

approaches to this consensus is to use the most frequent opinion as the aggregated expert’s opinion. 

We have used this approach in our experiments. One of the objectives of the aggregation is to increase 

the power to detect real interactions with respect to the individual methods embedded in the 

aggregated expert. We can obtain, using some assumptions, a rough estimate of the power as follows.  

 
Aggregated power 

pi Q = 2 Q = 3 Q = 4 Q = 5 Q = 6 

0.1 0.010 0.028 0.052 0.081 0.114 

0.2 0.040 0.104 0.181 0.263 0.345 

0.3 0.090 0.216 0.348 0.472 0.580 

0.4 0.160 0.352 0.525 0.663 0.767 

0.5 0.250 0.500 0.687 0.812 0.891 

0.6 0.360 0.648 0.821 0.913 0.959 

0.7 0.490 0.784 0.916 0.969 0.989 

Table 10 - Aggregated power as a function of the individual methods power pi (assumed identical) and 

the number Q of methods. 

Assume runs are performed on Q (≥ 2) methods, where each method has a power pi, i = 1, ..., Q. If we 

assume that the methods are independent (in the sense that results obtained using one method gives no 

indication on what can be expected from another one; this assumption will be discussed below): 

 the probabilities pi can be multiplied to model situations where two or more methods correctly 

identify a combination underlying the phenotype, 

 it is unlikely that 2 or more independent methods would identify the same false positive 

combination, given that the number of potential combinations is huge in most practical 

situations. 

Using the second assumption, we will then consider that an interaction is detected as soon as at least 2 

of the Q methods detect the same combination. Next, if we consider that 2 results are possible for each 

method (correct identification of a causative combination = 1, incorrect identification of the causative 

combination = 0), 2
Q
 situations are possible for the aggregated expert: (0, 0, ..., 0), (1, 0, ..., 0), ..., (1, 

1, ..., 1). Each of these k situations (s1, s2, ..., sQ) has a probability  and 

the power of the aggregated method is obtained by summing these Pi over the set  of all situations 

where at least 2 methods are successful: 

 (1) 
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Table 10 illustrates this result in (theoretical) situations where all the individual methods have the 

same power. 

In this table, the independence assumption penalizes the aggregated expert in situations where the 

number Q of methods is low and the individual powers are low (these situations correspond to the 

grayed cells). On the other hand, adding methods increases substantially the power, especially when 

the individual powers are high. It can be anticipated that if a supplementary method is not independent 

from the previous set, the power gain could be different, but it is not clear how this would change the 

results. Consequently, the performance of the aggregated method will depend on the individual 

methods performances, on the number of methods but also on the correlation between the methods 

results. These correlations can be assessed using simulations, either directly – by counting situations 

where methods provide concordant results above what is expected by chance only – or indirectly – by 

comparing the simulations results to what is expected under the hypothesis of independent methods 

(Table 10). A correlation measure could be based on Cohen’s kappa measure(McHugh 2012): 

 

where  is the number of simulations where methods i and j simultaneously provide a 

positive result,  is the number of simulations where methods i and j provide a non-

positive result, N is the number of simulations, and  and  are the powers of methods i and j, 

respectively. 

In order to cover a range of situations where aggregation could be useful (see Table 10), our work is 

based on six methods that have been published and used to detect interacting genetic loci involved in 

the genetic determinism of a trait. A short description of each of these methods is given below, and 

details can be found in the corresponding publications:  

1- MDR: The Multi-Dimensional Reduction (MDR) method is designed to replace large 

dimension problems with reduced dimension ones, allowing to make inferences based on a 

smaller set of variables (Ritchie et al. 2001). 

2- KNN-MDR is an approach combining K-Nearest Neighbors (KNN) and Multifactor 

Dimensionality Reduction (MDR) for detecting gene-gene interactions as a possible 

alternative, especially when the number of involved determinants is high (Abo Alchamlat et 

al. 2017). 

3- BOOST (Boolean Operation-based Screening and Testing), is a two-stage method (screening 

and testing) using Boolean coding to improve the computational performances (Wan et al. 

2010).  

4- MegaSNPHunter (MSH)uses a hierarchical learning approach to discover multi-SNP 

interactions (Wan et al. 2009). 
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5- AntEpiSeeker (AES) is an heuristic algorithm derived from the generic Ant Colony 

Optimization family (Wang et al. 2010).  

6- BHIT uses a Bayesian model for the detection of high-order interactions among genetic 

variants in genome-wide association studies (Wang et al. 2015).  

Of course, more and/or other methods could have been used.  

Since we wanted to assess the performances of the aggregation method and compare them to the 

individual methods, we have performed simulations that will be described next.  

Simulations 

One of the aims of our study was to assess the performances of the methods to unravel gene-gene (or 

gene-environment) interactions in the absence of large marginal effects. The reason for that choice was 

that many methods are able to detect such large marginal effects and to infer interactions within a 

limited set of loci selected on that basis. Accordingly, we wanted to devise an approach that is able to 

detect interactions even in the absence of marginal effects. For that reason, efforts have been devoted 

to generate datasets with interacting genes in the absence of significant marginal effects. Furthermore, 

heterogeneity between samples has been shown to be a major source for the non-reproducibility of 

significant signals (Can et al. 2009). We have modeled heterogeneity by associating penetrances (i.e. 

Pen = probabilities of a phenotype given a genotype) to the multi-locus genotypes underlying the 

simulated binary trait. Consequently, individuals carrying the causal alleles could be affected (with a 

probability equal to Pen) or not. 

 

Figure 12 - Genotypes generation using a real dataset. 
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The process can be split into 4 steps: 

1. Genotypes generation (see Figure 12). 

(1) Genotyping data from a study on Crohn disease in Caucasians (Gori et al. In Press) has been 

obtained for 197 individuals. 

(2) SNPs spanning a combination on chromosome 9 (HSA9) have been extracted, and, to decrease 

the computational requirements of the simulations, a subset of 2000 informative markers has 

been selected for our simulations. In order to recover a large part of the information lost in 

subselecting markers, only markers with a MAF > 0.3 and no missing genotypes have been 

selected. Subsequent tests (Hardy-Weinberg equilibrium, recovery of a significant linkage 

disequilibrium) have been carried on to validate the finally used subset (data not shown). 

(3) Since many different individuals are needed in the simulations, we have used a trick similar to 

(Chen et al. 2011) to generate new individuals based on the few (i.e. 197) available genotypes: 

each individual genotype was chopped into 10 SNP windows, leading to 200 windows. 

Consequently, each window has (maximum) 197 different 10-loci genotypes. We then built 

each simulated individual genotype by randomly sampling one of the 197 possible 10-loci 

genotype for each of the 200 windows and concatenating the 200 10-loci genotypes into a new 

complete genotype with 2000 markers. This technique allows for 197
200

 potentially different 

individuals while conserving some LD. 

 

Figure 13 - QTL (Q1, Q2) used as a basis to generate the interaction. 
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2. Phenotypes generation (see Figure 13). 

 

(4) 2 SNP were then randomly chosen as having an effect on the simulated phenotype, more 

complex patterns, i.e. with more involved loci, might be tested but this was not considered in 

this study. Note that, since SNP selection was random, SNP could be linked or not. 

(5) Selected SNP genotypes were used to generate the binary phenotypes. The details of the 

algorithm are given in (Abo Alchamlat et al. 2017), but, in summary, after generating 2-locus 

penetrances (Pen) leading to approximately no marginal effect, a uniformly distributed 

random number R is sampled between 0 and 1 and compared to the penetrance Pen of the 

simulated 2-locus genotype: if R < Pen, the simulated individual is supposed to be a case (1). 

If not, it is a control (0) 

(6) One SNP out of 2 consecutive SNPs was then randomly discarded, leaving 1000 markers 

genotypes for the analyses. The rationale of this selection is that causative mutations might 

nowadays be present or not in the genotyped variants. This will also be the case in our 

simulations (see Figure 13). 

 

 

Figure 14 - An example with 20 SNP (represented by squares) partitioned into 4 groups (represented 

by the colours) of 5 SNP. The causative are marked with a black star. All combinations of one or two 

groups are then shown, those harbouring one of the causative mutations are signalled using a small red 

arrow and the (optimal) one harbouring both mutations is shown using a big red arrow. 

 

3. Statistics computation and significance assessment. 

 

(7) The genotypes and corresponding phenotypes were then studied using all 6 methods.  

a. KNN-MDR splits the 1000 SNP into 100 sets of 10 consecutive markers and measures 

the association between each combination of 1 (100 tests) or 2 sets (4950 tests) with 

the phenotype using balanced accuracy (Abo Alchamlat et al. 2017).  Among all 

possible combinations, the one considered as optimal is the one containing both 
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causative SNP (see Figure 14). The other approaches use their own statistics to rank 

the tested combinations associations with the phenotype from strongest to weakest 

(see (Ritchie et al. 2001), (Wan et al. 2009), (Wang et al. 2010), (Wan et al. 2010), 

(Wang et al. 2015) for details). 

(8) We assessed significance using 100 permutations of the phenotypes for each simulation. 

Permutation of the phenotypes with respect to the genotypes breaks the potential relationship 

between phenotypes and genotypes. Accordingly, analyses on permuted data correspond to 

analyses under the null hypothesis of no association. We kept the highest value of the statistic 

obtained in each permutation to build the distribution under the null hypothesis, and then 

compared the statistics obtained with the real (i. e. non permuted) data to this distribution to 

obtain a p-value for the tested combinations. Although this number of permutations is too low 

for routine work, it was used to reduce the computing burden and help us to discriminate 

between results clearly non-significant (i.e. p > 0.05) and those potentially significant (i.e. p < 

0.05). When a higher precision was needed for the p-values (see below for real data), an 

adaptative permutations scheme was used, in which windows not reaching a pre-determined p-

value threshold are progressively abandoned in the permutations scheme since these windows 

are very unlikely to finally reach a significant result (Purcell et al. 2007). 

 

4. Aggregation of the results. 

 

(9) After completing the simulation and the permutations for each method, we performed a 

majority vote among the obtained optimal combinations. If one combination obtained the 

majority, it became the aggregated method’s chosen combination. When no majority could be 

obtained, the aggregated method failed to obtain a solution (see simulation in Table 11 as an 

example). 

In each simulation, we generated genotypes and phenotypes to obtain 500 cases and 500 controls 

and analyzed the simulated data using the approach described above.  

This whole process was repeated 1000 times in order to obtain an accurate estimator of the 

corrected power, where the “corrected power” is estimated as the proportion of situations where 

the methods (including the “aggregated expert”) identify the correct combination. Table 11 

illustrates the decision scheme using 6 individual methods and the aggregation method on the few 

first simulations. 
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Causal 

SNP 

Causal 

combination 
Individual methods best combination 

 

Sim 

# 
1 2 

 
BHIT 

KNN-

MDR 
MDR BOOST MSH AES 

Aggregated 

methods 

1 75 541 819 110 
 

819 3474 
 

819 819 

2 587 811 4212 4212 4212 4212 4212 3161 4212 4212 

3 845 964 4942 4942 4942 4942 4942 3943 3128 4942 

4 488 626 3738 
       

5 124 982 1308 1308 1308 1308 1308 1308 1308 1308 

6 434 794 3490 2013 3490 3490 3490 1923 2060 3490 

7 483 962 3772 
       

8 229 460 2070 602 2070 241 803 164 218 
 

9 268 348 2357 1245 
  

2357 2357 104 2357 

10 464 675 3640 3640 3640 2514 2752 3640 2487 3640 

Estimated corrected power 
 

0.60 0.50 0.50 0.30 0.30 0.70 

Table 11 - A sketch of the results from ten simulations. 

Real data 

Analyses using real data have been performed on a Rheumatoid arthritis (RA) genotype dataset 

involving 1999 cases and 1504 controls obtained from WTCCC (C 2007). Genotypes from the 

Affymetrix GeneChip 500K Mapping Array Set have been filtered using the usual quality controls 

tests on DNA quality (percentage of genotyped marker for any given individual above 90 %), markers 

quality (percentage of genotyped individuals for any given marker above 90 %), genotypes 

frequencies (markers with a p-value below a Bonferroni adjusted 5% threshold under the hypothesis of 

Hardy-Weinberg equilibrium in the controls cohort have been discarded). Missing genotypes for the 

GeneChip markers have been imputed using impute2 software (Howie et al. 2009). This procedure led 

to 312583 SNP to be analyzed for the 2 cohorts. Working with such a large panel remains quite 

challenging for several of the methods we have been using in this study. Therefore, we decided to 

reduce the number of SNP to about 52.000 by roughly considering the SNP with the highest MAF in 

each window of 6 successive SNP. Of course, in future studies, when more performant methods will 

be available (such as KNN-MDR, among others), the complete set of  SNP could be considered again. 

Alternatively, after targeting some combinations with the reduced set of SNP, the discarded SNP could 

be reintroduced in order to refine the location of the combinations of interest. 

Next, we used each method described above on this dataset as follows: 

 MDR tested all combinations of 2 SNP (i.e. more than 1.350.000.000 combinations) and 

sorted the results by decreasing balanced accuracies. To obtain significance, we used a 

Bonferroni correction as is done in the MDR package: we kept the first 5000 highest balanced 
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accuracy results, and used the corresponding 5000 combinations to perform the permutations. 

The number of permutations was conservatively based on the total number of tests, leading to 

a corrected p-value equal to 3.698225× 10
-11

. This necessitated to perform 10
11

 permutations. 

 KNN-MDR has been used first on 1000-SNP windows, leading to 1326 tests involving 2 

windows. Using an adaptative permutations scheme as is done in (Abo Alchamlat et al. 2017), 

and progressively decreasing the windows sizes, we ended up with a set of 33 windows 

containing 50 SNP each. Finally, a MDR approach was performed involving all combinations 

of 2 SNP from this set of 1650 SNP (i.e. 1.360.425 combinations). 

 MegaSNPHunter has been used with the same parameters and using the same approach as has 

been done in a previous GWAS study (Wan et al. 2009), and the results have been sorted by 

decreasing χ² values. To obtain significance, we performed a Bonferroni correction for the 

first 5000 results, similarly to what has been done for MDR. 

 AntEpiSeeker has also been used with the same parameters and using the same approach as 

been done in a previous GWAS study (Wang et al. 2010), and the 5000 larger χ²  were kept to 

perform the simulations as done in MDR. 

  BOOST has also been used with the same parameters and using the same approach as as been 

done in a previous GWAS study (Wan et al. 2010), with the results sorted by decreasing 

values of Kirkwood superposition approximation (KSA). To obtain significance, we 

performed a Bonferroni correction for the first 5000 results, and then used the same 

permutations approach as for the other methods. 

Results 

Results on simulated data 

Power 

Figure 15 shows the estimations of the corrected power as a function of the simulation number. After a 

few hundreds simulations, the estimations stabilize and the relative ranking of the methods in terms of 

corrected power becomes fixed. The aggregation method is more powerful than any of the 6 other 

methods in our simulations. Another more detailed representation of the results is provided in Figure 

16. Since the representation of more than 5 simultaneous methods is difficult and of no visual help, we 

have omitted the results involving MegaSNPHunter in the figure. 
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Figure 15 - Estimations of the corrected power for the 6 individual methods and the aggregation 

method. 

 

In the setting used to obtain the Figure 16 results (i.e. using 5 individual methods), the highest 

empirical power (0.664) is obtained for the aggregation expert involving the 5 methods. The power of 

the individual methods used in the theoretical predictions obtained using (1) are the empirical powers 

of these methods, explaining why these are equivalent in the two graphs. It can also be observed that 

all powers of the aggregated methods involving only two methods are higher than expected. When 

three methods are involved, the powers are sometimes higher, sometimes lower than expected under 

independence. For four or five methods, the powers are constantly lower than expected, although 

higher than for any individual method when the five individual methods are aggregated (and even 

higher for six methods, 0.678, as mentioned on Figure 15).  

Figure 6 17 shows the number of simulations (within the 1000 simulations) where only single method 

discovered the proper combination. Consequently, for these few (12 among the 1000 simulations) 

simulations, aggregation strategies performed less efficiently than stand-alone methods, especially 

KNN-MDR. 
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Figure 16 - Power (in ‰) of 5 individual methods (KNN, MDR, BOOST, AntEpiSeeker, BHIT) and 

of the 26 possible combinations of aggregated methods. The left diagram shows the results obtained in 

the simulations, while the right diagram shows the expected results under the hypothesis of methods 

independence (i.e. using formula (1) given above, where the Pi are the empirical powers of the 

individual methods. Note that the later does not necessarily correspond to a majority vote. 

 

 

Figure 6  17  - Positive results (in 1000 simulations) obtained using single methods, but not detected 

using aggregation. . Only stand-alone KNN-MDR (for 10 simulations) and BHIT (for 2 simulations) 

led to discoveries that combinations could not detect. 

 

False positive rates 

A second incentive for using aggregation is that false positive rates are likely to decline due to the use 

of a majority vote among parallel results: false positive results obtained using one method might not 

be obtained using a different method, with a different rationale. In our work, we have assessed two 

different kinds of false positive results: 
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 Either the methods identified an incorrect combination (note that these incorrect results are not 

included in the previous results on “corrected” power), generating an incorrect positive result. 

 Either they identified a combination when no combination had been simulated (i.e. found a 

“false positive” result).  

To test the first type of incorrect results, we have used the same set of simulations as for the power 

results and counted the number of incorrect positive results for each scenario. The combination 

identified as the most significant, if any, was taken as the solution for each of the methods, and the one 

with a majority vote, if any, for the aggregated method. The results are reported in Figure 18.  

 

Figure 18 - Incorrect positive results in 1000 simulations at the 5% threshold. 

 

To estimate the false positives rate, we have simulated 200 situations where no SNP was involved to 

generate the phenotype. Results are reported in figure 19. 

 

Figure 19 - Number of false positive results (significance threshold = 5%) in a set of 200 simulations. 

A second set of 500 simulations has been carried out. In these analyses, we kept up to the 5 most 

significant combinations to see whether checking more than “the best” combination allows improving 
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the (corrected) power without harming too much the false positives rate. Figures 20 and 21 present the 

results of these simulations.  

 

 

Figure 20 - Powers (in ‰) of 5 individual methods (KNN, MDR, BOOST, AntEpiSeeker, BHIT) and 

of the 26 possible combinations of aggregated methods when the number of kept significant 

combinations varies from 1 (top left) to 5 bottom right. 
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Figure 21 - False positive rates (in ‰) of 5 individual methods (KNN, MDR, BOOST, AntEpiSeeker, 

BHIT) and of the 26 possible combinations of aggregated methods when the number of kept 

significant combinations varies from 1 (top left) to 5 (bottom right). 

 

Correlation 

Correlations between the methods results have been computed using the Cohen’s Kappa approach 

described above. The results are presented in Table 12. The correlations have been computed for each 

combination of 2 methods, and for 1 to 5 kept top-ranked combinations. We have assessed the 

significance of these measures by permuting 1000 times the results (success or failure) for each 

method and computing the corresponding values of kappa. For all combinations of methods and sets of 

combinations, no permuted kappa reached the value obtained with the real data, indicating that all p-

values are lower than 0.001. Consequently, even when the methods show a slight agreement (κ < 

0.200), the methods are very significantly correlated.  
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Cohen κ 1 combination 2 combinations 3 combinations 4 combinations 5 combinations 

KNN-MDR 0.587 0.537 0.518 0.515 0.511 

KNN-BOOST 0.485 0.459 0.502 0.493 0.486 

KNN-AES 0.244 0.230 0.246 0.247 0.245 

KNN-BHIT 0.177 0.186 0.192 0.200 0.203 

KNN-MSH 0.179 0.159 0.152 0.147 0.156 

MDR-BOOST 0.608 0.512 0.497 0.507 0.469 

MDR-AES 0.354 0.357 0.353 0.349 0.345 

MDR-BHIT 0.238 0.255 0.263 0.270 0.275 

MDR-MSH 0.208 0.174 0.156 0.155 0.170 

BOOST-AES 0.343 0.287 0.277 0.287 0.283 

BOOST-BHIT 0.319 0.308 0.287 0.298 0.299 

BOOST-MSH 0.195 0.166 0.161 0.158 0.162 

AES-BHIT 0.443 0.418 0.406 0.388 0.386 

AES-MSH 0.468 0.454 0.415 0.415 0.431 

BHIT-MSH 0.312 0.301 0.302 0.308 0.290 

Table 12 - Cohen kappa coefficients for all combinations of methods using the approach given above. 

The last 5 columns correspond to situations where the number of considered regions for the majority 

vote increases from 1 to 5. All obtained correlations are highly significant (p < 0.001). 

Results on WTCCC data  

Performing genome-wide interaction association studies with several methods on the RA dataset 

remains a challenge, even after pruning the dataset as described in a previous section. Each of the 

methods discovered a large number of potential interactions when using the 5% threshold and the 

correction procedures described in the Methods section (ranging from 1805 for MSH to 3808 for 

MDR). In total, 1306 significant 2-SNP interactions were discovered by at least 2 methods: 12 by the 

5 methods, 19 by 4 methods (see Table 13), 476 by 3 methods and 799 by 2 methods only (see 

Supplementary material for a complete list). To obtain a ranked list of interactions, and although many 

sorting criteria could be used, we computed the rank of each interaction among the significant 

interactions of each method (the most significant interaction found using a given method was ranked 1 

for that method, the second was ranked 2, etc. Interactions not present in the list of the given method 

were ranked (N+1), where N is the number of significant interactions for that method). We then 

summed up the ranks obtained by each significant pair of SNP and sorted the list according to this sum 

(the smallest sum corresponding to the “best” interaction). The results for the 31 interactions detected 

by at least 4 methods are reported in Table 13. 
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Table 13 - List of the significantly interacting SNP in the WTCCC RA data. (The 31 2-SNP 

interactions found significant by at least 4 methods. The corresponding SNP names and positions are 

also reported. Ref 1 and Ref 2 (when any) refer to previous studies where the corresponding SNP were 

already reported. Gene 1 and Gene 2 (when any) are reported when the corresponding SNP are located 

file:///J:/Soumission_2017_11/Table%204.xlsx%23RANGE!_ENREF_30
file:///J:/Soumission_2017_11/Table%204.xlsx%23RANGE!_ENREF_32
file:///J:/Soumission_2017_11/Table%204.xlsx%23RANGE!_ENREF_11
file:///J:/Soumission_2017_11/Table%204.xlsx%23RANGE!_ENREF_11
file:///J:/Soumission_2017_11/Table%204.xlsx%23RANGE!_ENREF_11
file:///J:/Soumission_2017_11/Table%204.xlsx%23RANGE!_ENREF_11
file:///J:/Soumission_2017_11/Table%204.xlsx%23RANGE!_ENREF_32
file:///J:/Soumission_2017_11/Table%204.xlsx%23RANGE!_ENREF_35


Chapter 3                                                                                                                                       Experimental Section - Study 2 

 

93 

 

in a gene (in intronic, exonic or UTR regions). The methods for which the SNP were reported as 

significant are indicated by a colored cell. Furthermore, 3 rankings are also reported: the first one is 

the one used to rank the interactions in the Table and is described in the text. The second is the 

balanced accuracy computed by KNN-MDR. The third one is the rank of the average rank of the 

interaction computed over the methods for which this interaction was significant. ) 

 

 In total, the 31 2-SNP interactions detected by at least 4 methods involve 47 distinct SNP (36 SNP are 

involved in only one interaction, 10 are involved twice and 1 is present in 6 interactions, see Table 

13). Some interactions (12 out of 31) involve SNP on the same chromosome, while 19 involve SNP on 

distinct chromosomes. For intra-chromosomal interactions, the distance between the SNP ranged from 

very small (2 are smaller than 50kb), to very large (2 are larger than 10 Mb). This shows that the 

methods potentially reported interactions involving close windows, such as upstream regulatory 

regions of genes, as well as much more distant ones, including combinations of windows located on 

different chromosomes. Several of these interactions have already been reported in previous analyses 

(see Table 13), while others are new, to our knowledge (for example on chromosome 3), or might 

potentially be echoes of other more significant ones.    

Figure 22 provides another view of the results from this analysis (a supplementary file gives a more 

complete version of the results). On this figure, chromosomes are reported with a dimension 

approximatively proportional to their physical size, interacting sites are signaled through dashes 

corresponding to the location of the interacting SNP on the chromosome and the detected inter-

chromosomal interactions are reported using the dashed lines within the circle.  

Discussion 

The detection of genetic interactions is a notoriously difficult task, and, although numerous papers 

have been published in the field, a lot of work remains to be done to propose methodological advances 

allowing obtaining reliable and reproducible significant results in many gene-mapping studies. Our 

work aims to be a step in that direction. 

A first difficulty is the statistical power issue to detect epistatic interactions: even if epistatic effects 

are not necessarily more tenuous than main effects, the number of tested hypotheses increases at least 

quadratically, making multiple testing corrections potentially more penalizing. Therefore, strategies 

allowing obtaining reasonable power in such studies are desirable. This is one of the features of the 

approach we propose in this paper. As shown in the Materials and Methods and the Results sections, 

aggregation strategies provide some potential increases in the detection power. Even if power 

increases in the current study were rather modest, it has been shown that adding more methods in the 

aggregation has the potential to increase the overall power. In our study, the theoretical expectations 

are supported by the simulation results (e.g. Figure 16), with an improved power of the method 

aggregating the results of the 5 underlying methods with respect to the individual methods and to the 

methods aggregating less methods, although admittedly smaller than expected under the hypothesis of 
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methods independence. Note that the property of independence mentioned here means that the 

probability of finding a positive result for one method does not depend on the findings of another 

method: although this might be arguable for ‘easy to find’ interactions, this might be more plausible 

for less ‘visible’ interactions, especially when distinct methods rest on very different approaches. 

Nevertheless, in our study, although we have used methods covering various methodologies (multi-

dimensional reduction (MDR, KNN-MDR), exhaustive search (BOOST), empirical (AntEpiSeeker) 

and Bayesian (BHIT) approaches) and potentially hard to find interactions (small marginal effects, 

potentially heterogeneous situations, see the simulations description), we obtained significant 

correlations between the methods results (Table 12). Although the way these correlations affect the 

power is not clear, the global effect was a reduction of the obtained power compared to the 

expectation. 

Reproducibility is another problem in mapping studies. At least three reasons are at the root of this 

problem: a first reason is that many published results are probably false positives, partly due to 

improper correction for multiple testing. Another reason is that not every method is equally likely to 

detect any type of interaction, making detection not only a function of the variants to be highlighted, 

but also of the used method. And finally, and more fundamentally, it is to be expected that many 

phenotypes are under the control of many genes with intricate interaction networks. Consequently, 

involved interactions in one dataset, or even in subsets, might differ, increasing the heterogeneity of 

the underlying genetics and making detection of these interactions more complicated. Our approach is 

of interest for the two first problems. We have indeed shown that aggregating the positive results of 

various methods helps to control the false positive rates: false positives produced by one of the 

methods are not necessarily produced by the other used methods, and so will most of the time be 

discarded from the final results (Figures 18 and 19). On the other hand, positive results produced by a 

majority of methods - where the way this majority is defined is important - will pop us, allowing 

combining the detection skills of several methods rather than only considering individual methods 

results. 

Aside of these interesting properties, some difficulties have to be mentioned. An obvious disadvantage 

of the aggregation strategy is that several methods have to be mastered, installed on the computer 

facilities and run. This of courses increases the total computing time, which might be an issue when 

large datasets are considered. A possible solution would be to use the nowadays largely available 

parallel resources offered to most research centers: using several nodes to perform the tasks (run the 

programs implementing the various strategies, run the permutations when needed, etc.) should lead to 

a non-significant increase of the total observed run time, at the cost of the software implementation of 

this parallelization strategy.  

Another difficulty is the aggregation itself: the ranking of the interesting interactions is performed 

based on their significance. This leads to at least two problems: first, providing a clear ranking might 

be difficult; for example, when permutations are used, several interactions might easily end up with 
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the same significance, making subsequent ranking almost arbitrary. Next, even when an objective 

ranking has been obtained, the most interesting might not necessarily be the best-ranked ones. 

Although this point clearly deserves more investigations, one possible crude approach, used in this 

study, was to incorporate more than the top-ranked combinations in the aggregation. Figures 20 and 21 

show that this simple strategy has some merits, increasing the power while still controlling for the 

number of false positives when the number of kept top combinations increases from 1 to 5. 

In view of the main characteristics of our strategy, it was important to test the approach on real 

datasets to check whether new clues could be obtained from our analyses. Our results on the WTCCC 

Rheumatoid Arthritis data provides new information on potential new candidate regions. As shown in 

Table 13, several previously reported associations and interactions are also found in our study.  

Furthermore, interactions between previously identified genes and other genes or regulatory regions 

are also pointed out, which can possibly provide new and useful information on the molecular 

mechanisms leading to RA. Finally, entirely new interactions are also found significant in our study, 

which might point to new target genes to be investigated in future RA studies, although their 

biological relevance is obviously not clear at this stage.  

Figure 22 provides a view of the significant results at the chromosome level. This figure and Table 13 

show that some interactions involve SNP on 2 distinct chromosomes while other involve (sometimes 

closely) linked SNP. Although this might make biological sense (for example, regulatory regions 

might be close to the genes they influence), a potential bias of our method has to be mentioned. 

Indeed, BOOST tends to detect much more internal interactions than interactions between different 

chromosomes segments (Wan et al. 2010). Consequently, adding other (maybe less biased?) methods 

and/or somehow relaxing the unanimity vote criterion might allow to uncover (and maybe also 

exclude) other combinations. 
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Figure 22 - Results of the analysis on WTCCC data. The figure shows the chromosomes that are 

involved in interactions, and the approximate location of the involved regions on these chromomses. 

Conclusions 

In summary, the aggregation of methods is an approach with interesting features for detecting epistatic 

interactions. Integrating the results of parallel methods has been shown to increase the corrected power 

over the power of the individual methods while controlling the false positives rate. The feasibility of 

using such methodology on real genome-wide datasets has also been demonstrated, providing 

potential new insights in complex traits analyses. 
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GWAS: Genome-wide association study            KNN: K-nearest neighbors 

MDR: Multifactor dimensionality reduction       SNP: Single-nucleotide polymorphism 

BOOST: Boolean operation-based screening     MAF: Minor allele frequency 

LD: Linkage disequilibrium                                HSA9: Human chromosome 9 

FAM-MDR: Flexible family-based multifactor dimensionality reduction 

MB-MDR: Model-based multifactor dimensionality reduction 

GMDR: Generalized multifactor dimensionality reduction 

WTCCC: Wellcome trust case control consortium 

BHIT: Bayesian High-order Interaction Toolkit 
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Additional file 9 – The results of 6 individual methods and the aggregation method on the 1000 

simulations by taking the first significant combination. 

Additional file 10 – The results of 6 individual methods and the aggregation method on the 500 

simulations by taking the first 5 significant combinations. 

Additional file 11 – List of the significantly interacting SNP in the WTCCC RA data for the results 

found by every  method.



 

102 

 

 

 

  

Discussion - Perspectives 



Chapter 4                                                                                                                                                Discussion - Perspectives 

 

103 

 

General Discussion 

The two main themes of this thesis are the discovery of genetic interactions and the use of non-

parametric statistics. The main objective was therefore the development of statistical non-parametric 

procedures allowing a better detection of the relationship between genomic configurations and 

phenotypic expressions by taking into account interaction effects while keeping power high by 

controlling for the complexity of the model.  

Although other approaches exist - such as genomic selection, where the impact of genomic sections on 

the traits of interest is inferred with no particular interest for the causal genes and mutations, or 

classification methods where the goal is to obtain the more likely status of the tested individuals using 

similarities with other individuals with a known status and with no specific interest to the regions 

creating the similarity - we have considered that one of the major goals in genetic studies is the 

identification and characterization of the genetic interactions contributing to complex traits. Above the 

fundamental importance of such phenomenon to give clues to the genomic dissection of the traits, 

applied aspects, such as identification of pharmaceutical targets, should also be considered and 

generate interest in such techniques. Revealing each variant of importance, either directly or through 

interactions with other variants or with the environment, seems nowadays an unreachable goal in 

many cases. Nevertheless, untangling some of the main effects underlying traits of interest might be 

important for some of these. Furthermore, the corresponding reduction due to new discoveries might 

lead to an increase in the power to find other ones. In other words, although explaining completely the 

heritability (in the large) of a trait will be most of the time impossible, it can be hoped that techniques 

such as the ones presented in this thesis will contribute to a better knowledge in the genetics of various 

traits. One of the challenges in the epistasis mapping methods is linked to the “curse of 

dimensionality” problem: revealing interactions involving more than 2 or 3 variants might quickly 

become infeasible in terms of computing costs, but also in terms of size of the needed cohorts: indeed, 

the exponential increase in the number of tests to be realized will result into (corrected) thresholds so 

low that either the detected effects or the cohorts sizes will need to be huge.  The detection of multi-

ways (i.e. more than 2-ways) interactions has only been slightly studied in this thesis when providing a 

few results on KNN-MDR. Due to the difficulties cited above, not so many methods are available to 

tackle this very difficult problem. Large dimensionality problems are often attacked using Bayesian 

problems and we have grossly described such an approach (BHIT = Bayesian High-order Interaction 

Toolkit) in the introduction of this document. Although the performances of the program (provided as 

an add-on with the paper) on our simulated dataset have been disappointing, the used approach might 

potentially be reexamined and maybe improved to provide new insights in problems where larger 

dimensionality is needed. 

In our work, we have been using methods covering various methodologies (multi-dimensional 

reduction (MDR, KNN-MDR), exhaustive search (BOOST), empirical (AntEpiSeeker) and Bayesian 
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(BHIT) approaches), which have been proposed for detecting genetic interactions. Each methodology 

has its own merits and pitfalls. In the next section, we will discuss more systemically some important 

features and the contributions of our work to potential improvements for each of these aspects. 

Power 

The increase in power is one of the most important goals of all methods in this field. From this point 

of view, we note that KNN-MDR outperforms the other methods in situations that might be of interest 

to unravel new regions not previously detected. The reasons underlying that hope are that the method 

takes into account linkage disequilibrium (LD) - which many methods do not - and is able to detect 

interactions between SNPs even in the absence of marginal effects, which should provide benefits over 

the methods using these previously detected marginal effects as a basis for epistasis detection.  

The other methodology proposed in this work, the aggregation strategy, could also increase the power 

more than all the individual methods, although the power increases in this study were rather modest. 

One reason for the observed small gains in power is that the number of methods we used in our “proof 

of concept” study was rather modest, but the theoretical development made in the paper suggests that 

adding more methods should increase the advantage in terms of power. Admittedly, the rather naïve 

rationale used to provide an idea on the gains in power that could be expected might lead to an 

overestimation of the gains, but gains could nevertheless be achieved, making this approach 

potentially useful. A better estimation of the expected gains might maybe be better achieved by 

considering the correlation between the involved methods, a line of research that has been alluded to in 

the second paper, but that might deserve more investigations. 

False positive rates 

The false positive rate in KNN-MDR has been found to be less than the one obtained using other 

methods in our study. One obvious reason for that is the way we have performed the simulations. 

Indeed, we have engaged to have epistatic interactions with little marginal effects in order to avoid the 

trivial situations where individual loci can be identified in a first step, followed by the identification of 

interactions between the loci in a second step. To obtain these situations with no (or little) marginal 

effects, we have used multi-locus prevalences. Furthermore, we have introduced some kind of genetic 

heterogeneity: a same multi-locus genotype could simultaneously be present in cases and in controls, 

making it harder to identify these loci. These two features - little marginal effect and heterogeneity - 

greatly contribute to difficulties in mapping and are quite harmful for several methods. This is less the 

case for KNN-MDR partly because the use of a classification-like distance measure incorporating 

information from linkage disequilibrium. This procedure tends to discard spurious stochastic 

associations.  

The nature of the good performances with regard to the false positive rate with the aggregation 

strategy is different: the rationale here is that differing methods could produce different spurious 
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results. Consequently, a majority vote among the participating methods will lead to rejection of many 

spurious results, while true positives, hopefully detected by several methods, will be highlighted.  

Number of interacting loci 

We have already mentioned some difficulties linked to this feature in this discussion. Some more 

points can be added. First, as mentioned, methods such as MDR will have trouble to manage more 

than 2 or 3 interacting loci because of the high dimensionality and the corresponding excessive 

computing costs. But other difficulties might also appear: we mentioned, when describing the 

differences between MDR and KNN-MDR, that one of the advantages of KNN-MDR over MDR was 

to avoid the presence of empty (or with scarce observations) cells. This is ever more the case with 

more loci, and could lead to difficulties in the status attribution (no status can be given when no 

similar condition has been met in the learning sample, and status allocation might be unstable when 

very few observations are present in the concerned cell). Although KNN-MDR can be used with more 

than 3 interacting loci, only 3 markers have been used in this work. Nevertheless, in practical 

applications, it is not unlikely that situations involving more than 3 loci might exist. These situations 

might increase the interest of using methods such as KNN-MDR. Indeed, when more regions are 

involved in the phenotype, this could decrease the distance measure between individuals sharing some 

or all of these regions and better cluster individuals sharing the same status. Of course, increasing the 

number of loci will increase the computing load and strategies, similarly to what has been done in the 

KNN-MDR paper to work on the real dataset, will need to be designed. For the aggregation strategy, 

more than 2 interacting loci could be used, but the difficulty would arise from the need to use methods 

able to cope with the chosen number of loci. Although some methods are already available (KNN-

MDR, BHIT, ...), this might be an issue since the performances have been shown to improve when the 

number of methods is higher. 

Computer resources 

Computer time issues are scarcely discussed in this thesis. One obvious reason for the aggregation 

strategy is that parallel run of the various methods leads to a run-time equal to the run-time of the 

slowest of the used methods (except for the majority vote, whose run-time is negligible when 

compared to the individual methods). Consequently, better performances would necessitate 

improvements in the individual methods, which is clearly not the focus in this work (in the tested 

situations, several methods turned out to be slower than KNN-MDR). 

The obvious parallel nature of the aggregation method makes it suitable for an easy use on today 

widely spread parallel computers, which is fine (although not required). Note that “easy use” might be 

overstated: including more methods in the analyses necessitates proper installation and use of a (if 

possible) large panel of methods, which is not necessarily an easy task.  

KNN-MDR is more computationally intensive than the majority vote in the subset sharing the same 

multi-locus genotype used in MDR. Computation of distance matrices might be costly and increases 

quadratically with the number of individuals. The relationship between the computing time and the 
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markers number and positions is less clear and depends on population and map-dependent features. As 

mentioned, windows sizes should be adapted to capture linkage disequilibrium while avoiding taking 

too large windows in order to minimize the introduced noise. Parallelization of the permutations could 

also be used to decrease the total run time, as already suggested in the paper.  

Real data 

In view of the main characteristics of our work, it was important to test our approaches on real datasets 

to check whether new clues could be obtained from our analyses. Our results on the WTCCC 

Rheumatoid Arthritis data provides some results consistent with other results in the domain of 

Rheumatoid Arthritis and new information on potential new candidate regions, which might point to 

new target genes to be investigated in future Rheumatoid Arthritis studies, although their biological 

relevance is obviously not clear at this stage and needs more investigations in the future. Beyond these 

new results, we have presented a possible strategy to tackle large dataset using the tools we propose. 

For KNN-MDR, the strategy allows obtaining interesting results and could be applied similarly to 

other datasets. The problem is of course different for the aggregation strategy, where the limitations 

come from the used methods rather than from the aggregation strategy itself. Furthermore, the strategy 

we propose is not the only possible one and other approaches could be used, such as firstly filtering 

the dataset using one method, followed in a second step by the use of the aggregation strategy on the 

filtered data. Of course, issues on the choice of the method to be used first and on the filtering strategy 

have to be addressed before using such an approach. 
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Perspectives 

This thesis has attempted to provide new approaches for interactions mapping using non-parametric 

techniques. We are aware that the used approaches could be improved, and that other (parametric and 

non-parametric) techniques could have been used. This small paragraph lists a few options in these 

directions. 

A first idea would be to write a modified version of KNN-MDR to make it more user-friendly and, 

maybe, more efficient. Indeed, tuning the programs - i.e. using the best set of parameters - is not an 

obvious task and can affect the performances (power, false positive rate, speed, ...) of the method. A 

step in that direction would be to provide a companion tool allowing a definition of the markers 

windows. Indeed, these windows should capture linkage disequilibrium information, and an optimal 

size could be obtained from the data. Note that the size depends on various factors: globally, the 

studied population, and locally, the markers density and the linkage disequilibrium patterns. 

Accordingly, we can expect that, due to the variability of these factors along the genome, the windows 

sizes will vary (both in terms of genomic size and of number of markers), and this has to be taken into 

account in the program as well. Another potential improvement is on the neighborhood to be used (the 

parameter K in KNN-MDR). In the current version, a fixed value of K is provided and used for all the 

windows along the genome. New values of K necessitate a new run of the program. Eventually, 

several runs will lead to a globally optimal value of K, in the sense that this value leads to the best 

detection performances. An alternative approach would be to have a better strategy to find this optimal 

value of K. For example, pre-examining the distances between cases and the distances between 

controls at local scales (we could think about using the windows that have been defined in the linkage 

disequilibrium analyses) should lead to values of K that vary along the genome and provide a better 

tool to discriminate that the global values used in the current version. In other words, we would learn 

the optimal values for the windows sizes and the number of neighbors from the data. 

In large dataset analyses, a pre-selection of the markers is used to reduce the computing load, before 

progressively zooming on the complete set of markers. Although somehow successful in the results 

presented in the paper, there is no guarantee that the way the first set of studied markers has been 

selected is optimal, and other strategy selection could be applied: again, the presence of linkage 

disequilibrium could lead to use so-called “tag SNP” to represent a complete region as faithfully as 

possible, an obvious pre-filtering. Also, the approach used to better define the windows should be 

considered when pre-filtering. 

Other fields of KNN-MDR would deserve more attention. The way the distance between individuals is 

measured is an example: the allelic frequencies should be taken into account because obtaining two 

times a rare allele randomly is less expected than obtaining twice a more common allele, an obvious 

statement which is not taken into account in the current distance measure. Also, the distance between 

individuals could be measured on the basis of haplotypes (which would necessitate obtaining firstly 
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the genetic phase of the individuals) because important mutations are likely to be located on similar 

haplotypes, the similarity arising from the potentially common origin of the mutation in the tested 

population. Clearly, a distance measure accounting for the diversity of haplotypes would then need to 

be devised. The same holds true if other types of markers are considered, such as typically 

microsatellites, for which the number of alleles and of genotypes might be much larger than for SNP. 

The methodology of aggregation also offers perspectives. Since we only used a few methods in this 

thesis, many other methods have been developed for interaction mapping and a more extensive testing 

could lead to the discovery of sets of methods performing better together. This calls for a continuous 

development of a tool embracing the previously developed methodologies together with new methods 

popping up continuously. This development would include the capacity of a smooth integration of the 

heterogeneous results produced by the included methods: formats are generally different, ranking of 

the detected interactions might vary from method to method, etc.  

Above the two approaches developed in this thesis, other parametric and non-parametric approaches 

targeting genomic interactions would be necessary. One of the achievements of our work has been to 

show a way that information could be introduced in well-established methodologies to improve the 

method performances: introducing windows allowing to capture a part of the information on linkage 

disequilibrium has allowed to improve the performances of the multi-dimensional reduction (MDR) 

methods. The same improvements are also possible in other methods and could potentially offer new 

advantages to previously developed approaches such as support vector machines or random forests.  

Another perspective of this PhD work would be to investigate other possible ways to perform large-

scale hypothesis, as is the case in interaction mapping. For example, the false discovery rate (FDR) is 

a nowadays largely embraced statistical inference technique that could be used as a (probably better) 

alternative to classical testing in this context. 

Although the fundamental importance of genetic interactions to give clues to the genomic dissection of 

the traits, epigenetic causes are also gaining new perspectives in the diseases related to gene 

deregulation. Therefore, in the future, we must work more in this field either through the approaches 

in this thesis or through the development of other approaches. 

Finally, we can hope that our current developments and the future advances in the field of interaction 

mapping will yield new insights into real-life applications. Advances in genotyping/sequencing 

technologies have led to reduced genotyping costs which, in the near future, could provide numerous 

sufficiently large samples for genetic interaction analyses. Development of robust methods, providing 

stable and repeatable results, will therefore remain important for a deeper understanding of the 

diseases and traits underlying genetic mechanisms in the coming years. 
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Conclusions 

Throughout this thesis work, we have presented and demonstrated the utility of using non-parametric 

statistical methods as a tool for detecting genetic interactions. 

The introduction has hopefully made clear that important challenges remain in the mapping of genetic 

variants associated to traits of interest, such as diseases in human, animals and plants, or production 

traits in production animals and in crops. The long-lasting history of mapping methods has led to a 

profusion of methods, each with pros and cons. The work in this thesis is a contribution to this 

domain. In view of their robustness and their adaptability to a large set of situations, we have chosen 

to work on non-parametric methods because it has seemed to us that many advances were possible in 

that domain for genomic analyses, as is illustrated by the number of proposed approaches. A non-

exhaustive panel of methods in the field of genetic interactions mapping is briefly presented in the 

introduction of this thesis, as an illustration of the vigorous research in that domain. 

In the second chapter, we propose the main contribution of this PhD thesis: a novel approach 

combining K-Nearest Neighbors (KNN) and Multifactor Dimensionality Reduction (MDR) methods 

for detecting gene-gene interactions as a possible alternative to existing algorithms, especially in 

situations where the number of involved determinants is high. This method illustrates how taking into 

account the physical nature of the problem - the markers present on today dense maps are physically 

linked on a chromosome, introducing a disequilibrium between close markers due to linkage - allows 

introducing more information in existing methods, and how this can be used to improve these 

methods. In our case, we have demonstrated that KNN-MDR is more computationally efficient than 

other exhaustive strategies, using windows of linked markers instead of single markers, which is 

facilitating the analysis of large-scale data sets with potentially genome-wide SNPs. The 

improvements on the efficiency of the method make it eligible for the detection of higher-order 

interactions, although this would admittedly remain a notably challenging task. Another reason 

making KNN-MDR useful is its ability to detect interactions in the absence of marginal effects. 

Several methods use marginal effects to pre-filter the data, assuming that only markers showing some 

effect individually are likely to be involved in interactions. We have considered this as an excessive 

assumption, and consequently developed a strategy where this assumption is not necessary. Relaxing 

this assumption in our simulations has proved that KNN-MDR performed generally better than 

concurrent methods in this context.  Although we have demonstrated some of the advantages of the 

method, we are aware that improvements are possible, and some ideas in that direction are proposed in 

the perspectives. These perspectives could render the method more useable for external users and 

increase its use. 

The main idea of the third chapter, on the aggregation of methods, is a more general concept: grouping 

various methods results might lead to improvements over the individual results. We have illustrated 

this concept in the field of interactions mapping and obtained results somehow confirming these 
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improvements. In a field such as genetic mapping, where thousands of parallel tests are performed, 

false positives control is an important issue. False positives are likely to be numerous in these studies, 

meaning a potential waste of time, energy and money on non-reproducible results, which of course 

shed doubts on the utility of such studies. We hope that our work is again a step in the direction of an 

improvement in the perception of interaction studies: we have shown that using a small set of methods 

in a very simple aggregation strategy led to an increase in the detection power while properly 

controlling for the false positive rate. Above providing a framework for a joint - i.e. made with several 

methods - analysis of real datasets, we hope that such results will stimulate interest in the development 

of new methods: this would be beneficial for the field - new performing methods would be welcome - 

and for the aggregation strategy - adding more performing methods should enhance the performances 

of the aggregation strategy. The feasibility of using such methodology on real genome-wide datasets 

has been demonstrated on an example. This also calls for improvement in the future methods to be 

developed, because many methods in use today would not be able to manage large genome-wide 

datasets, which questions on their ability to detect interactions involving variants distantly located on 

the genome. 

In conclusion, we believe that these methods (KNN-MDR and aggregate expert) are valuable in the 

context of loci and interactions mapping and can be seen as an interesting addition to the arsenal used 

in complex traits analyses. The output of these methods can enhance the understanding of the 

biological mechanism of diseases and other traits, and this new knowledge can contribute to the 

prediction of clinical diseases, to the prevention of most common complex diseases, and to a better 

understanding of numerous traits. 
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Appendices (Additional files) 

Appendix 1 (Additional file 6): KNN MDR: user's guide 

Introduction 

KNN MDR is a fortran 90 software implementing the KNN MDR methodology detailed in (ABO 

ALCHAMLAT S. and Farnir F., 2017). The aim of the program is to help obtaining clues about the position of 

the genes involved jointly in a phenotype. One of the interests of the approach is that it is able to find interacting 

genes even in the absence of marginal effects. This capability, which was already present in other methods, such 

as MDR (Multifactor Dimensionality Reduction) is made available through KNN MDR for situations with more 

markers and more complicated interaction patterns than was feasible computer wise with "simple" MDR. The 

current version has been written for binary (0/1) traits and for SNP data, but could easily be extended to other 

traits/attributes. These options will be included in future versions of the software. 

Methodology 

This section shortly summarizes how the method works in order to understand the parameters that need to be 

provided to the software to obtain results. More details can be found in the original publication. Each data point 

is represented through a phenotype (0/1, where the meaning of these codes is problem  dependent) and a set of N 

attributes. As mentioned above, in the current version of the program, the attributes correspond to SNP 

genotypes. It will be assumed that these genotypes are available (through direct genotyping or through an 

imputation method) for all individuals. The idea behind the MDR methods is to reduce the very large 

multidimensional space faced in situations involving multiple loci (such as genetic interactions) to one 

dimensional space. 

In basic MDR, a status (0/1) is associated to each multi locus genotype through a majority vote performed on the 

individuals presenting this multi locus genotype in the training set; after that training stage, status (0/1) can be 

allocated to individuals from the test set on the basis of their multi locus genotype as well (provided similar 

genotypes were present in the training set). Accuracy of allocation can then be obtained by computing the false 

positive (i.e. 1) and false negative (i.e. 0) rates in both training and test sets. 

KNN MDR uses such a strategy. The difference with the basic MDR is that the allocation phase is performed 

through a K nearest-neighbors approach: a status is allocated based on the most prevalent status within the set of 

the K nearest neighbors of the tested individual. The neighborhood is defined using a distance, which, in the 

current version, is a simple Euclidian distance between the involved genotypes of both individuals for which a 

distance is computed. In our studies, only SNPs have been used, for which the distance proposed in the 

Mahalanobis measure makes sense, with D(AA, AB)=D(AB, BB)=0.5* D(AA, BB), where AA, AB and BB are 

the three possible SNP genotypes 

So, for a window embracing M markers, the distance between individuals i and j is: 

 

where  and  are the number of copies of the A allele at marker k for individuals i and j, respectively. 
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The advantage of such an approach is double: the distance can be easily (i.e. with not much effort computer 

wise) computed for any number of markers, and the allocation procedure works even in situation where no other 

individual in the training set has the same multi locus genotype. Note that both these points become more 

relevant as the number of involved markers increases, a practically frequent situation. 

An issue exists over the definition of the training and test sets. Again, KNN MDR mimics the approach followed 

in basic MDR using cross validation: the complete dataset is randomly split into V equally sized subsets, and 

each subset is sequentially considered as a test set, while the (V-1) other sets are used as training sets. Accuracy 

is computed for every configuration, and the final model accuracy is computed as the average of the obtained 

accuracies. In order to balance the true positive and true negative rates in the results, we used "balanced 

accuracy" as our accuracy measurement, where "balanced accuracy" is defined as the average of true positive 

and true negative rates. 

When looking for sets of genes involved in a phenotype, various attributes sets are usually tested in order to find 

the one best explaining the data, which is, in our approach, the one with the highest balanced accuracy on the test 

set. This "best" attribute set will be considered as our "best model". 

The last problem is to test the significance of the best model. This is done in our software through a permutation 

procedure: if a specific attribute set is associated to the phenotype, disrupting the association between 

phenotypes and genotypes should destroy this association. Consequently, by permuting randomly the phenotypes 

with respect to the genotypes, we create datasets where no association should exist, which corresponds to the 

null hypothesis we want to test. Comparing the truly obtained balanced accuracy to the ones obtained on the 

permuted datasets allows one to obtain an estimation of the p-value associated to our best model. 

Parameters 

Several parameters have been defined in the previous and can be transmitted to the program. These parameters 

are provided through a parameters file, which is invoked while calling the program, as follows:  

path/knn mdr <analysis name> 

In this command, "path" represents the eventual path leading to the executable, and "name" represents the name 

of the analysis. This name is used to provide the parameters file just discussed (named <analysis name>.prm) 

and to name output files (see below). The parameters file is a text file, where each line is used to specify the 

various options of the program. These options are: 

 ATT SET FILE file: this option is used to specify the file containing the list of attributes sets 

for which an evaluation is demanded. The best model will be chosen among these attributes 

sets. Attributes sets are specified on distinct lines of the file by providing a comma separated 

list of the positions of the attributes to be considered in the attributes file. When several 

consecutive attributes have to be used, the notation using the first and the last attribute 

separated with an hyphen can be used. For example, "1,3,7-10" means "use first, third, 

seventh, eighth, nineth and tenth attributes" of the attributes file. No default exists for this 

parameter. 

 ATTRIB FILE file: with this option, the file containing all attributes for all individuals in the 

analysis can be given. Again, "file" is a text file, with one line per individual, and at least as 

many blank separated columns as the number M of attributes. The attributes file also contains 
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a column with an individual identifier, and may also contain the (0/1) phenotype. Since 

attributes, in the current version, are SNP genotypes, these genotypes are assumed to be 

recoded genotypes: for each SNP, one of the allele is arbitrarily considered as the reference 

allele, and the recoded genotype is simply the number of occurrences of the reference allele in 

the genotype. Consequently, the allowed attributes values are either 0, 1 or 2. No default 

exists for this parameter. 

 HELP: this option is used to obtain an short reminder of the available options. 

 KLOWn: this option allows specifying the minimum number of neighbors to be used to 

allocate status to tested individuals. Default is KLOW = 5. 

 KHIGH n: this option allows specifying the maximum number of neigh bors to be used to 

allocate status to tested individuals. Default is KHIGH = 5. 

 MODEL model: with this option, a model can be specified. In the current version, the only 

available model is KNN.... Default is 'KNN'. 

 NB ATTRIB n: this option indicates how many attributes should be found in the data file. 

Default is NB ATTRIB = 1. 

 NB CROSS V n: this is used to provide the number V of cross-validation subsets. Default is 

NB CROSS V = 10. 

 NB INDIV n: this option indicates how many individuals should be found in the data file. 

Default is NB INDIV = 1. 

 NB PERM n: with this option, the number of permutations can be provided. Default is NB 

PERM = 0. 

 PHENO FILE file: with this option, the file containing the phenotypes for all individuals in 

the analysis can be given. As above, "file" is a text file, with one line per individual, one 

column with the 0/1 phenotype and a column with an individual identifier. This file may be 

the same as the attributes file. No default exists for this parameter. 

 POS FIRST ATTRIB n: with this option, the position (column number) of the first attribute 

to be considered can be provided. Default value is POS FIRST ATTRIB = 1. 

 POS LAST ATTRIB n: with this option, the position (column number) of the last attribute 

to be considered can be provided. Default value is POS LAST ATTRIB = 1. 

 POS ID ATTRIB n: this option allows providing the position (column number) of the 

individual identifier in the attributes file. Default is POS ID ATTRIB = 1. 

 POS ID PHENO n: this option allows providing the position (column number) of the 

individual identifier in the phenotypes file. Default is POS ID PHENO = 1. 

 POS PHENO n: this option allows providing the position (column number) of the phenotype 

field in the phenotypes file. Default is POS PHENO = 2. 
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 SEED s: since random choices (cross-validation subsets, permutations) are made, successive 

invocations of the program will not necessarily result in identical outputs. Identical (different) 

runs can be performed by specifying identical (different) seeds through this option. 

Example 

In this section, we show the use of the program on a simulated example. Twenty attributes are measured for 500 

cases and 500 controls. All data are included in one file, named 'sample.dat'. The individual identifier is the first 

field, followed by the 0/1 phenotype, and then by 20 attributes. An interaction has been introduced artificially 

between attributes 4 and 12 as follows: all genotypes at locus 4 are generated randomly, irrespectively of the 

status of the individuals. 

This should ensure that no marginal effect exists for this locus on the trait. 

Controls genotypes for locus 12 are also randomly allocated, but cases genotypes for locus 12 are copies of 

control ones. This creates an interaction between these two loci. 

Attributes and phenotype file  

As mentioned, the attributes and the phenotype are included in the same file, named sample.dat. The first and 

last 2 lines are provided below as examples of data lines: 

1 0 1 1 2 1 2 1 1 1 0 2 2 1 1 1 2 2 1 1 1 1 

2 0 1 2 1 1 2 1 0 2 1 1 1 0 1 1 0 0 1 2 1 1 

... 

999 1 0 0 0 1 0 0 1 2 1 0 0 1 0 0 0 0 0 1 2 2 

1000 1 2 1 1 1 1 0 0 0 2 0 1 1 0 1 1 1 1 2 2 1 

Attributes sets file  

The attributes sets file sample.set has been created to span the 20 attributes using 5 markers-wide windows. So 4 

single windows are first tested (markers 1-5, 6-10, 11-15 and 16-20). After testing single windows, all sets of 2, 

3 or 4 windows are considered. This leads to the following file: 

1-5 

6-10 

11-15 

16-20 

1-10 

1-5,11-15 

1-5,16-20 

6-15 

6-10,16-20 

11-20 

1-15 

1-10,16-20 

1-5,11-20 

6-20 

1-20 

Parameters file 
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The parameters file sample.prm is as follows: 

ATT_SET_FILE sample.set 

ATTRIB_FILE sample.dat 

KLOW 4 

KHIGH 5 

MODEL KNN 

NB_ATTRIB 20 

NB_CROSS_V 10 

NB_INDIV 1000 

NB_PERM 100 

PHENO_FILE sample.dat 

POS_FIRST_ATTRIB 3 

POS_LAST_ATTRIB 22 

POS_ID_ATTRIB 1 

POS_ID_PHENO 1 

POS_PHENO 2 

SEED 123 

Running the program 

To execute a run of the program, simply type: 

knn mdr sample 

The program starts running and show intermediate results on the screen. All reported results and more) are also 

reported to knn mdr.log file for further reference if needed. 

Interpreting the output 

Three output files are generated: <analysis name>.log, <analysis name>.cv and <analysis name>.perm. Let's first 

take a look at the 3 first and last lines of <analysis name>.cv. This file shows how the various individuals in the 

dataset have been allocated to the cross-validation subsets: 

Indiv 1 -> Subset 1 

Indiv 2 -> Subset 2 

Indiv 3 -> Subset 10 

... 

Indiv 998 -> Subset 10 

Indiv 999 -> Subset 9 

Indiv 1000 -> Subset 5 

The next file is the <analysis name>.perm file which shows the individual (i.e. for each cross-validation subset) 

and average (over the cross-validation subsets) balanced accuracies obtained for the real and permuted data. 

Again we show the few first and last lines of the file: 

0 1 0.61317408 0.57258689 

0 2 0.59042907 0.61969697 

0 3 0.57969087 0.56854343 

0 4 0.59012622 0.59803927 
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0 5 0.56991446 0.65815413 

0 6 0.59432721 0.53693694 

0 7 0.57333332 0.55000001 

0 8 0.58455396 0.53030300 

0 9 0.58904111 0.65914893 

0 10 0.58518159 0.61642408 

0 AVG 0.58697718 0.59098333 

1 1 0.49010193 0.51542205 

1 2 0.51209480 0.52012885 

1 3 0.51317942 0.50740135 

1 4 0.51018775 0.50146198 

1 5 0.48608297 0.51298702 

... ... ... ... 

100 5 0.51373267 0.47380954 

100 6 0.49153537 0.45833331 

100 7 0.50000000 0.47355768 

100 8 0.50441492 0.57211542 

100 9 0.52405810 0.48684210 

100 10 0.50578344 0.46470588 

100 AVG 0.49897560 0.50332409 

The first column represents the permutation number (permutation 0 corresponds to the real not permuted data), 

the second represents the cross-validation subset (AVG represents the average over all the subsets), the third and 

the fourth are the training and test balanced accuracies, respectively. Finally, the third file (<analysis name>.log) 

is the most important one, providing details on the execution of the program along with the main results. The 

content is given below: 

Starting the program... 

Time is 15:41:05 on January 09,2014 

Step 0: name of the analysis: sample 

Step 1: obtaining parameters 

KNN_MDR will be launched with following options: 

NB_INDIV 1000 

NB_ATTRIB 20 

ATTRIB_FILE sample.dat 

ATT_SET_FILE sample.set 

PHENO_FILE sample.dat 

POS_ID_ATTRIB 1 

POS_ID_PHENO 1 

POS_FIRST_ATTRIB 3 

POS_LAST_ATTRIB 22 

POS_PHENO 2 
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NB_CROSS_V 10 

NB_PERM 100 

MODEL KNN 

KLOW 4 

KHIGH 5 

SEED 123 

Step 2: reading data 

=> 1000 phenotypic values have been read 

=> 1000 attributes sets have been read 

Step 3: defining cross-validation subsets 

=> Allocation of CV subsets reported to sample.cv 

Step 4: defining attributes sets 

=> Number of attributes sets: 15 

Step 5: looping through attributes sets 

==> Attribute set 1: 1,2,3,4,5 

===> Average balanced accuracy for set 1 = 0.50148523 0.50684011 

===> Best balanced accuracy after set 1 = 0.50148523 0.50684011 

==> Attribute set 2: 6,7,8,9,10 

===> Average balanced accuracy for set 2 = 0.49123150 0.50559229 

===> Best balanced accuracy after set 2 = 0.50148523 0.50684011 

==> Attribute set 3: 11,12,13,14,15 

===> Average balanced accuracy for set 3 = 0.47580791 0.49732471 

===> Best balanced accuracy after set 3 = 0.50148523 0.50684011 

==> Attribute set 4: 16,17,18,19,20 

===> Average balanced accuracy for set 4 = 0.49637920 0.50071424 

===> Best balanced accuracy after set 4 = 0.50148523 0.50684011 

==> Attribute set 5: 1,2,3,4,5,6,7,8,9,10 

===> Average balanced accuracy for set 5 = 0.50194442 0.52629578 

===> Best balanced accuracy after set 5 = 0.50194442 0.52629578 

==> Attribute set 6: 1,2,3,4,5,11,12,13,14,15 

===> Average balanced accuracy for set 6 = 0.66471612 0.67562711 

===> Best balanced accuracy after set 6 = 0.66471612 0.67562711 

==> Attribute set 7: 1,2,3,4,5,16,17,18,19,20 

===> Average balanced accuracy for set 7 = 0.51523346 0.52965009 

===> Best balanced accuracy after set 7 = 0.66471612 0.67562711 

==> Attribute set 8: 6,7,8,9,10,11,12,13,14,15 

===> Average balanced accuracy for set 8 = 0.51154667 0.51678431 

===> Best balanced accuracy after set 8 = 0.66471612 0.67562711 

==> Attribute set 9: 6,7,8,9,10,16,17,18,19,20 

===> Average balanced accuracy for set 9 = 0.49743909 0.51876813 
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===> Best balanced accuracy after set 9 = 0.66471612 0.67562711 

==> Attribute set 10: 11,12,13,14,15,16,17,18,19,20 

===> Average balanced accuracy for set 10 = 0.50408757 0.50820243 

===> Best balanced accuracy after set 10 = 0.66471612 0.67562711 

==> Attribute set 11: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 

===> Average balanced accuracy for set 11 = 0.63244808 0.63826907 

===> Best balanced accuracy after set 11 = 0.66471612 0.67562711 

==> Attribute set 12: 1,2,3,4,5,6,7,8,9,10,16,17,18,19,20 

===> Average balanced accuracy for set 12 = 0.50658184 0.52353173 

===> Best balanced accuracy after set 12 = 0.66471612 0.67562711 

==> Attribute set 13: 1,2,3,4,5,11,12,13,14,15,16,17,18,19,20 

===> Average balanced accuracy for set 13 = 0.62913483 0.64112699 

===> Best balanced accuracy after set 13 = 0.66471612 0.67562711 

==> Attribute set 14: 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 

===> Average balanced accuracy for set 14 = 0.51725930 0.52325708 

===> Best balanced accuracy after set 14 = 0.66471612 0.67562711 

==> Attribute set 15: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 

===> Average balanced accuracy for set 15 = 0.58697718 0.59098333 

===> Best balanced accuracy after set 15 = 0.66471612 0.67562711 

Step 6: reporting the most significant attributes set 

p-value = 0.0000 

List of attributes: 1,2,3,4,5,11,12,13,14,15 

Now ending the program... 

Time is 15:45:20 on January 09,2014 

The content of this file is easily understandable. Step 6 reports that set 6, containing markers 1-5 and 11-15, is 

significantly associated to the phenotype, which is good news given the way the dataset has been generated... 

Note also that the p value equal to 0 is obtained through permutations and is only an estimator of the true one. 

Computing a confidence interval for this p value would lead to show that p is within [0; 0:036] with a 95% 

confidence level, so this seems to be a really significant signal! 
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Appendix 2 (Additional file 7): Competitor methods 

A short description of the use of each method 

In our study, the parameters have generally been set to their default values when using the various 

methods. 

Here we explain how the results are obtained in every method. 

KNN-MDR 

The best combinations, containing (10 or 20 or 30) SNPs, are selected as the solution. 

The raw power corresponds to the power obtained when the best combination(s) is (are) significant, 

regardless of if it (they) contains or not the causal SNPs. 

The corrected power is the power obtained when the best combination is significant and contains the 

causal SNPs. 

MegaSNPHunter 

There are four main parameters in the models, including the depth of trees, the threshold for selecting 

SNPs from trees, the subgenome size and the overlap between subgenome. 

1. The depth of trees indicates the depth of SNP interaction. Since most significant interactions are 

depth 2, so as long as the depth of trees is above 2, the results would not be changed. MegaSNPHunter 

uses 5 as default setting. 

2. The size of subgenome depends on the density of SNP data. Each subgenome should cover the 

genomic area of possible haplotype effects in practical. Before we start the experiment, we collect 

some statistics on how many SNPs are genotyped for one gene. This number will be used as the size of 

subgenome. 

3. The overlap between subgenomes is used to solve the boundary problem between genes. Half of the 

size of subgenome is the best choice. Both the size of subgenome and the overlap between 

subgenomes depend on the priori knowledge on epistatic interactions. 

4. The threshold for selecting SNPs from trees is a very critical parameter to the method. 

MegaSNPHunter could rank the importance of SNPs in each subgenome. A cut-off threshold can be 

used to choose the top ones. The selected SNPs from all subgenomes will first merge together and then 

compete with each other in the same way at the next level. By having all SNPs compete with each 

other in training classifiers, MegaSNPHunter reduces the large number of relevant SNPs into a very 

small set. 

The small set contains between 10 and 40 SNPs. 

The raw power corresponds to the power obtained when this small set is significant, regardless of if it 

contains or not the causal SNPs. 

The corrected power is the power obtained when the small set is significant and contains the causal 

SNPs. 
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AntEpiSeeker 

In AntEpiSeeker, a two-stage design of ACO (Ant Colony Optimization) is proposed. The first stage 

of AntEpiSeeker searches SNP sets of sufficient size (larger than the number of SNPs in a given 

epistatic interaction) using the above ACO, which results in a pre-defined number of highly suspected 

SNP sets determined by χ2 scores, and another SNP set of a pre-defined size, determined by 

pheromone levels. The second stage of AntEpiSeeker conducts exhaustive search of epistatic 

interactions within the highly suspected SNP sets, and within the reduced set of SNPs with top ranking 

pheromone levels. 

For our comparison, we took suspected SNP sets containing more or less 30 SNPs. 

The raw power corresponds to the power obtained when this suspected set is significant, regardless of 

if it contains or not the causal SNPs. 

The corrected power is the power obtained when the suspected set is significant and contains the 

causal SNPs. 

BOOST 

This method examines all two-locus interactions in a screening stage and the ones over a user-

specified threshold are then tested in the testing stage. 

In the testing stage, two statistic tests, i.e., likelihood ratio test and chi-squared test are conducted to 

determine whether the interactive effect of a SNP pair is significant. 

For our comparison, we took the first 20 SNPs pair, leading to more or less 30 different SNPs. 

The raw power corresponds to the power obtained when this SNP set is significant, regardless of if it 

contains or not the causal SNPs. 

The corrected power is the power obtained when the SNP set is significant and contains the causal 

SNPs. 
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Appendix 3 (Additional file 8): Computing multi-locus penetrances. 

Computing multilocus penetrances leading to the absence of marginal effects. This document 

describes the procedure when 2 interacting markers are considered. It can be extended to situations 

where more than 2 markers interact. We will use the following notations: 

   is the disease prevalence, 

  denotes a “multilocus genotype” where the first locus (noted ) has 

genotype i and the second locus (noted ) has genotype j, 

  is the frequency of the multilocus genotype , 

  is the “multilocus penetrance”, which is the probability that 

an individual carrying the multilocus genotype  be affected. 

An objective in the simulations is to choose the multi-locus penetrances to obtain no marginal effect at 

either locus: 

 for all i and j. 

To that end, we can write: 

 

 

In this expression, the  are the unknown penetrances and the  are known constants, 

dependent on the 2 loci involved in the interaction. The penetrance of any genotype can then be 

expressed as a function of the other genotypes frequencies and penetrances as: 

 

where the double sum corresponds to the double sum given above, but excluding the multilocus 

genotype . It is assumed that  is different from 0 (when = 0, no prevalence needs to 

be computed for that genotype). Note that: 

 The maximum value of  (written ) is obtained when all other penetrances are 

equal to their minimal value (written ): 

 

In the absence of other constraints, these minimal values are equal to 0, which leads to a 

maximum value of:  

.  
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When this value is larger than 1, the maximum penetrance is 1. 

 The minimum value of  (written ) is obtained when all other penetrances are 

equal to their maximal value (written ): 

 

 In the absence of other constraints, these maximal values are equal to 1, which leads to a 

minimum value of: 

 

. 

When this value is lower than 0, the minimum penetrance is 0. 

Example: assume a prevalence of 0.20 and the following frequencies configuration: 

A\B 0 1 2 Total 

0 0.04 0.32 0.14 0.50 

1 0.03 0.15 0.12 0.30 

2 0.03 0.13 0.04 0.20 

Total 0.10 0.60 0.30 1.00 

-------------------------------------------------------------------------------------------------------- 

The algorithm to obtain the multilocus penetrances leading to the absence of marginal effects is based 

on this last formula. It proceeds as follows: 

1. Set a range of allowable values for each genotype penetrance. This can be done using the 

formula above. 

Example (continued): this leads to the following tables of minimal and maximal prevalences: 

pm 0 1 2 

0 0.000 0.000 0.000 

1 0.000 0.000 0.000 

2 0.000 0.000 0.000 

 

pM 0 1 2 

0 1.000 0.625 1.000 

1 1.000 1.000 1.000 

2 1.000 1.000 1.000 

-------------------------------------------------------------------------------------------------------- 
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2. Next, the algorithm iterates over each genotype, considering first the ones with the smallest 

allowable penetrance range. A penetrance value is then randomly chosen for the selected 

genotype, and the minimal and maximal penetrance for that genotype is set to that value. The 

range for the remaining genotypes are then recomputed using the minimal and maximal values 

as described above. 

Example (continued): the smallest range is for genotype . Assume a value of 0.5 has been 

“randomly” chosen for that penetrance. If we want to compute, for example, , the formula 

becomes: 

  

and for , the formula becomes: 

 

Consequently, the range of the allowable penetrances for this genotype is left to [0,1]. The ranges for 

the other genotypes are computed similarly, leading to: 

pm 0 1 2 

0 0.000 0.500 0.000 

1 0.000 0.000 0.000 

2 0.000 0.000 0.000 

 

pM 0 1 2 

0 1.000 0.500 0.286 

1 1.000 0.267 0.333 

2 1.000 0.308 1.000 

Based on this table, the next penetrance to be set is for genotype (1,1). 

-------------------------------------------------------------------------------------------------------- 

 

The algorithm ends after all genotypes have been considered and all penetrances have been obtained. 

If the procedure fails (because no allowable value remains for one or several genotypes when using the 

sampled penetrance values for the preceding genotypes in the algorithm), the procedure can be 

restarted to obtain new penetrance values until a complete set of multilocus penetrances have been 

obtained.  
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Appendix 4 (Additional file 12): Definitions of some terms used within the 

text 

True positive rate (TP) = the proportion of subjects correctly identified as affected (“case”). 

False positive rate (FP) = the proportion of subjets incorrectly identified as affected (“case”). 

True negative rate (TN) = the proportion of subjects correctly identified as healthy (“control”). 

False negative rate (FN) = the proportion of subjects incorrectly identified as healthy (“control”). 

Sensitivity (SE): probability that an affected subject is classified as a case by the 

method.,Mathematically:SE = TP/(TP + FN) 

Specificity (SP): probability that a healthy subject is classified as a control by the method. 

Mathematically: SP = TN/(TN + FP)Accuracy (AC): probability that subjects are classified correctly. 

Mathematically: AC = (TP + TN)/(TP + TN + FP + FN) 

Power: probability that the best combination is significant. In the literature, this value is most often 

referred to as “rate of positive predictions” and is of limited utility because this rate integrates 

significant combinations not containing the causal mutations. 

Corrected power: probability that the best combination is significant and contains the causal SNPs. In 

the literature, this power is often called “the true statistical power”. 

 

 

 


