Non-local damage to crack transition framework for ductile failure based on a cohesive band model

Julien Leclerc, Van-Dung Nguyen, Ling Wu, Ludovic Noels

Computational & Multiscale Mechanics of Materials (CM3)
University of Liège, Belgium

VanDung.Nguyen@uliege.be

Ack.: The research has been funded by the Walloon Region under the agreement no.7581-MRIPF in the context of the 16th MECATECH call.
• **Goal:**
 - To capture the whole ductile failure process made of:
 • A diffuse stage
 - damage onset / nucleation, growth… followed by
 • A localised stage
 - damage coalescence
 - crack initiation and propagation
 - …
Two principal approaches to describe material failure:

- Continuous:
 - Damage models
 - Lemaitre-Chaboche,
 - Gurson,
 - ...

- Discontinuous:
 - Fracture mechanics
 - Cohesive zone,
 - XFEM
 - ...

Modeling strategy
• **Continuous approaches**
 – Material properties degradation modelled by internal variables ($\varepsilon = \text{damage}$):
 • Lemaitre-Chaboche models,
 • Gurson-based models,
 – Porosity evolution
 • ...

 – **Continuous Damage Model (CDM) implementation:**
 • Local form
 – Mesh-dependent
 • Non-local form needed [Peerlings et al. 1998]
• **Discontinuous approaches**

 – Similar to fracture mechanics
 – One of the most used methods:
 • Cohesive Zone Model (CZM) modelling the crack tip behaviour inserted by:
 – Interface elements between two volume elements
 – Element enrichment (EFEM) \cite{Armero} [Armero et al. 2009]
 – Mesh enrichment (XFEM) \cite{Moes} [Moes et al. 2002]
 • …

 – Consistent and efficient hybrid framework for brittle fragmentation: \cite{Radovitzky}
 • Extrinsic cohesive interface elements
 +
 • Discontinuous Galerkin (DG) framework (enables inter-elements discontinuities)
Modeling strategy

<table>
<thead>
<tr>
<th>Continuous: Continuous Damage Model (CDM)</th>
<th>Discontinuous: Extrinsic Cohesive Zone Model (CZM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Capture the diffuse damage stage</td>
<td>+ Multiple crack initiation and propagation naturally managed</td>
</tr>
<tr>
<td>+ Capture stress triaxiality and Lode variable effects</td>
<td></td>
</tr>
<tr>
<td>- Mesh dependency without implicit non-local</td>
<td>- Cannot capture diffuse damage</td>
</tr>
<tr>
<td>- Numerical problems with highly damaged elements</td>
<td>- No triaxiality effect</td>
</tr>
<tr>
<td>- Cannot represent cracks without remeshing / element deletion at $D \rightarrow 1$ (loss of accuracy, mesh modification ...)</td>
<td>- Currently valid for brittle / small scale yielding elasto-plastic materials</td>
</tr>
<tr>
<td>- Crack initiation observed for lower damage values</td>
<td></td>
</tr>
</tbody>
</table>

Continuous Damage Model (CDM)

Discontinuous: Extrinsic Cohesive Zone Model (CZM)
Goals of research

- **Goal:**
 - Simulation of the whole ductile failure process with accuracy

- **Main idea:**
 - Combination of 2 complementary methods in a single finite element framework:
 - continuous (non-local damage model)
 + transition to
 - discontinuous (cohesive model)

![Diagram showing the transition between CDM and CZM models](Image)
Discontinuous model here = Cohesive Band Model (CBM):

- **Hypothesis**
 - In the last stage of failure, all damaging process occurs in an uniform thin band

- **Principles**
 - Replacing the traction-separation law of a cohesive zone by the behaviour of a uniform band of given thickness h_b [Remmers et al. 2013]

- **Methodology [Leclerc et al. 2017]**
 1. Compute a band strain tensor $F_b = F + \frac{[u] \times N}{h_b} + \frac{1}{2} \nabla T [u]$
 2. Compute then a band stress tensor σ_b
 3. Recover traction forces $t([u], F) = \sigma_b \cdot n$
• **Discontinuous model here = Cohesive Band Model (CBM):**

 – **Hypothesis**
 - In the last stage of failure, all damaging process occurs in an uniform thin band

 – **Principles**
 - Replacing the traction-separation law of a cohesive zone by the behaviour of a uniform band of given thickness h_b [Remmers et al. 2013]

 – **Methodology [Leclerc et al. 2017]**
 1. Compute a band strain tensor $F_b = F + \left[\frac{u}{h_b} \right] \times \frac{N}{h_b} + \frac{1}{2} \nabla_T [u]$
 2. Compute then a band stress tensor σ_b
 3. Recover traction forces $t([u], F) = \sigma_b \cdot n$

 – At crack insertion, framework only dependent on h_b (band thickness)
 - $h_b \neq$ new material parameter
 - A priori determined with underlying non-local damage model to ensure energy consistency
Influence of h_b (for a given l_c) on response in a 1D elastic case [Leclerc et al. 2017]:
- Total dissipated energy Φ
 - Has to be chosen to conserve energy dissipation (physically based)
Influence of h_b (for a given l_c) on response in a 1D elastic case [Leclerc et al. 2017]:
- Total dissipated energy Φ:
 - Has to be chosen to conserve energy dissipation (physically based)
• 2D elastic plate with a defect
 – Biaxial loading
 • Ratio \bar{F}_x/\bar{F}_y constant during a test
 – In plane strain
 – Path following method
 – Comparison between:
 • Pure non-local
 • Non-local + cohesive zone (CZM)
 • Non-local + cohesive band (CBM)
Damage to crack transition for elasticity – Proof of concept

- 2D plate in plane strain: $\frac{F_x}{F_y} = 0$

Images:

- **Non-local only**: no crack insertion
- **Non-local + CZM**: cohesive models calibrated on 1D bar under uniaxial stress state
- **Non-local + CBM**:
Damage to crack transition for elasticity – Proof of concept

- 2D plate in plane strain: $F_x / F_y = 0$

- Force evolution

- Dissipated energy evolution

```
Non-Local only
Non-Local + CZM
Non-Local + CBM
```

```
Error on total diss. energy
CZM: ~29%
CBM: ~3%
```
Application of the transition to plasticity

- Porous plasticity (or Gurson) approach
 - Assuming a J2-(visco-)plastic matrix
Porous plasticity (or Gurson) approach

 - Assuming a J2-(visco-)plastic matrix

 - Including effects of void/defect or porosity on plastic behavior
 - Apparent macroscopic yield surface \(f(\tau_{eq}, p, \tau_y, Z) \leq 0 \) due to microstructural state:
• Porous plasticity (or Gurson) approach
 – Assuming a J2-(visco-)plastic matrix
 – Including effects of void/defect or porosity on plastic behavior
 • Apparent macroscopic yield surface $f(\tau_{eq}, p, \tau_y, Z) \leq 0$ due to microstructural state:
 – Competition between two deformation modes:
 » Diffuse plastic flow spreads in the matrix
 » Gurson-Tvergaard-Needleman (GTN) model
Porous plasticity (or Gurson) approach

- Assuming a J2-(visco-)plastic matrix

- Including effects of void/defect or porosity on plastic behavior
 - Apparent macroscopic yield surface $f(\tau_{eq}, p, \tau_{y}, Z) \leq 0$ due to microstructural state:
 - Competition between two deformation modes:
 » Diffuse plastic flow spreads in the matrix
 » Gurson-Tvergaard-Needleman (GTN) model
 » Before failure: coalescence or localized plastic flow between voids
 » GTN or Thomason models
• Porous plasticity (or Gurson) approach
 – Assuming a J2-(visco-)plastic matrix

 – Including effects of void/defect or porosity on plastic behavior
 • Apparent macroscopic yield surface \(f(\tau_{eq}, p, \tau_y, Z) \leq 0 \) due to microstructural state:
 – Competition between two deformation modes:
 » Diffuse plastic flow spreads in the matrix
 » Gurson-Tvergaard-Needleman (GTN) model
 » Before failure: coalescence or localized plastic flow between voids
 » GTN or Thomason models

 – Including evolution of microstructure during failure process
 • Void growth by diffuse plastic flow
 • Apparent growth by shearing
 • Nucleation / appearance of new voids
 • Void coalescence until failure
Non-local porous plasticity model

- Yield surface is considered in the co-rotational space
 - Non-local form: \(f\left(\tau_{eq}, p, \tau_Y, Z, \tilde{Z}\right) \leq 0 \) with \(\tilde{f}_V - l_c^2 \Delta \tilde{f}_V = f_V \)

 * \(\tau^{\text{eq}} \) is the von Mises equivalent Kirchhoff stress and \(p \) the pressure
 * \(\tau_Y = \tau_Y(\dot{\rho}, \dot{\rho}) \) is the viscoplastic yield stress
 * \(f_V \) is the porosity and \(\tilde{f}_V \), its non-local counterpart
 * \(Z \) is the vector of internal variables
 * \(l_c \) is the non-local length

- Normal plastic flow \(D_p \)
- Microstructure evolution (spherical voids):
 - Eq. plastic strain of the matrix:
 \[\dot{\rho} = \frac{\tau : D_p}{(1 - f_{V0}) \tau_Y} \]
 - Porosity:
 \[\dot{f}_V = (1 - f_V) \text{tr} D_p + \dot{f}_{\text{nucl}} + \dot{f}_{\text{shear}} \]
 - Ligament ratio:
 \[\dot{\chi} = \dot{\chi}\left(\chi, \tilde{f}_V, \kappa, \lambda, Z\right) \]

 Microstructure parameters
Non-local porous plasticity – void growth and coalescence

- Gurson–Tvergaard–Needleman (GTN) model:

\[f = \frac{\tau_{eq}^2}{\tau_Y^2} + 2q_1 \tilde{f}_V \cosh \left(\frac{q_2 p}{2\tau_Y} \right) - 1 - q_3^2 \tilde{f}_V^2 \leq 0 \]

\[\tilde{f}_V - l_c^2 \Delta \tilde{f}_V = f_V \]

- Phenomenological coalescence model:
 - replace \(\tilde{f}_V \) by an effective value \(\tilde{f}_V^* \):

\[\tilde{f}_V^* = \begin{cases}
\tilde{f}_V & \text{if } \tilde{f}_V \leq f_C \\
 f_C + R (\tilde{f}_V - f_C) & \text{if } \tilde{f}_V > f_C
\end{cases} \]

- \(f_C \) is determined by Thomason criterion [Benzerga2014]:

\[\max \text{eig} \left(\tau \right) - C_T^f (\chi) \tau_Y > 0 \]
Non-local porous plasticity – void growth and coalescence

• Damage to crack transition for porous plasticity
 – Plane strain specimen [Besson et al. 2003]
 • Only an half is modelled

\(e_0 = 5 \text{mm} \)
Non-local porous plasticity – void growth and coalescence

- Damage to crack transition for porous plasticity
 - Discontinuous Galerkin formulation + cohesive band model [Leclerc et al. 2017]
 - Coalescence is detected at interfaces of elements:

\[
\max \text{eig} (\tau) - C^f_T (\chi) \tau_Y > 0 \quad \Rightarrow \quad n \cdot \tau \cdot n - C^f_T (\chi) \tau_Y > 0
\]
Conclusion

- **Objective:**
 - Simulation of material degradation and crack initiation / propagation during the ductile failure process

- **Upcoming tasks:**
 - Enrichment of nucleation model and coalescence model
 - Calibration of the band thickness
 - Validation/Calibration with literature/experimental tests
Thank you for your attention
State of art: two main approaches – 1. Continuous approaches

• Non-local model
 – Principles
 • variable $\xi \Rightarrow$ non-local / “averaged” counterpart $\tilde{\xi}$
 – Formulation
 • Integral form [Bažant 1988]
 \[
 \tilde{\xi}(x) = \frac{1}{V} \int_V W(x - y) \xi(y) \, dV
 \]
 » not practical for complex geometries
 • Differential forms [Peerlings et al. 2001]
 – Explicit formulation / gradient-enhanced formulation: $\tilde{\xi}(x) = f(\xi, \nabla\xi, \nabla^2\xi, ...)$
 » does not remove mesh-dependency
 – Implicit formulation: $\tilde{\xi}(x) = f(\xi, \nabla\tilde{\xi}, \nabla^2\tilde{\xi}, ...)$
 \[
 \tilde{\xi}(x) - l_c^2 \Delta \tilde{\xi}(x) = \xi(x)
 \]
 » removes mesh-dependency but one added unknown field
• Influence of h_b (for a given l_c) on response in a 1D elastic case [Leclerc et al. 2017]:
 – Total dissipated energy Φ = linear with h_b:
 • Has to be chosen to conserve energy dissipation (physically based)
2D plate in plane strain:
- Same trends with ≠ force ratio

\[
\frac{F_x}{F_y} = +0.5
\]

\[
\frac{F_x}{F_y} = -0.5
\]

Damage to crack transition for elasticity – Proof of concept

- Non-Local only
- Non-Local + CZM
- Non-Local + CBM
Damage to crack transition for elasticity – Proof of concept

- Comparison with phase field
 - Single edge notched specimen [Miehe et al. 2010]:
 - Calibration of damage and CBM parameters with 1D case [Leclerc et al. 2017]:

Non-local model

Cohesive band model

Force-displacement curve

Tension test

Shearing test
Damage to crack transition for elasticity – Proof of concept

- Validation with Compact Tension Specimen [Geers 1997]:
 - Better agreement with the cohesive band model than the cohesive zone model or the non-local model alone [Leclerc et al. 2017]
Porous plasticity – principles (2)

• Yield surface is considered in the co-rotational space
 – Local form: \(f(\tau_{eq}, p, \tau_Y, Z) \leq 0 \)

 • \(\tau^\text{eq} \) is the von Mises equivalent Kirchhoff stress and \(p \), the pressure
 • \(\tau_Y = \tau_Y(\dot{p}, \ddot{p}) \) is the viscoplastic yield stress
 • \(Z \) is the vector of internal variables

• Normal plastic flow decomposition:
 \[
 D^p = \dot{F}^p \cdot F^p^{-1} = \dot{\lambda} \frac{\partial f}{\partial \tau} = \dot{d} \frac{\partial \tau_{eq}}{\partial \tau} + \dot{q} \frac{\partial p}{\partial \tau}
 \]

• Plastic deformation of the matrix from the equivalence of plastic energy:
 \[
 (1 - f^0_V)\tau_Y \dot{p} = \tau : D^p
 \]

• Microstructure evolution (porosity \(f_V \) and ligament ratio \(\chi \)):
 \[
 \dot{f}_V = (1 - f_V) \text{tr} D^p + \dot{f}_\text{nucl} + \dot{f}_\text{shear}
 \]
 \[
 \dot{\chi} = \dot{\chi}(\chi, f_V, Z)
 \]

• Drawbacks
 – The numerical results change with the size and the direction of mesh
Porous plasticity – principles (3)

- Evolution of local porosity

\[\dot{f}_V = (1 - f_V) \text{tr } D^p + \dot{f}_{\text{nucl}} + \dot{f}_{\text{shear}} \]

- Void nucleation \(\dot{f}_{\text{nucl}} \)
 - Modify porosity growth rate (where \(A_N, f_N, \epsilon_N, s_N \) are material parameters)
 - Linear strain-controlled growth
 \[\dot{f}_{\text{nucl}} = A_N \dot{\hat{p}} \quad \text{with} \quad A_N \begin{cases} \neq 0 & \text{if } f_V > f_N, \\ = 0 & \text{otherwise.} \end{cases} \]
 - Gaussian strain-controlled growth
 \[\dot{f}_{\text{nucl}} = \frac{f_N}{\sqrt{2\pi s_N^2}} \exp \left(-\frac{(\hat{p} - \epsilon_N)^2}{2s_N^2} \right) \dot{\hat{p}} \]
Porous plasticity – principles (3)

- Evolution of local porosity

\[\dot{f}_V = (1 - f_V) \text{tr } D^p + \dot{f}_{\text{nucl}} + \dot{f}_{\text{shear}} \]

- Shear-induced voids growth \(\dot{f}_{\text{shear}} \)
 - Includes Lode variable effect (where \(k_w \) is a material parameter)

\[\dot{f}_{\text{shear}} = f_V k_w \omega(\tau) \frac{\tau^{\text{dev}} : D^p}{\tau^{\text{eq}}} \]
Ductile non-local damage model

- **Hyperelastic formulation:**
 - Multiplicative decomposition of deformation gradient in elastic and plastic parts:
 \[\mathbf{F} = \mathbf{F}^e \cdot \mathbf{F}^p \]
 - Logarithmic elastic potential \(\psi \):
 \[\psi(\mathbf{C}^e) = \frac{K}{2} \ln^2 J^e + \frac{G}{4} (\ln \mathbf{C}^e)^{\text{dev}} : (\ln \mathbf{C}^e)^{\text{dev}} \]
 with \(\mathbf{C}^e = \mathbf{F}^e \cdot (\mathbf{F}^e)^T \) and \(J^e = \det \mathbf{F}^e \)
 - Stress tensor definition
 - PK1 stress: \(\mathbf{P} = 2\mathbf{F} \cdot \frac{\partial \psi}{\partial \mathbf{C}} \)
 - Kirchhoff stresses: \(\mathbf{\kappa} = \mathbf{P} \cdot (\mathbf{F}^e)^T \) or again:
 \[\mathbf{\kappa} = p\mathbf{I} + (\mathbf{\kappa})^{\text{dev}} = p\mathbf{I} + \mathbf{F}^e \cdot \left[\mathbf{C}^{e-1} \cdot (\mathbf{\tau})^{\text{dev}} \right] \cdot (\mathbf{F}^e)^T \]
 \[\mathbf{\tau} = p\mathbf{I} + (\mathbf{\tau})^{\text{dev}} = p\mathbf{I} + 2G \left(\ln \sqrt{\mathbf{C}^e} \right)^{\text{dev}} \]
Integration algorithm

• **Predictor-corrector procedure**
 – Elastic predictor
 – Plastic corrector (radial return-like algorithm)
 • 3 Unknowns $\Delta \hat{d}$, $\Delta \hat{q}$, $\Delta \hat{p}$
 • 3 Equations
 – Consistency equation:
 \[f \left(\tau_{eq}(\Delta \hat{d}), p(\Delta \hat{q}), \tau_Y(\Delta \hat{p}), Z(\Delta \hat{d}, \Delta \hat{q}, \Delta \hat{p}), \tilde{Z} \right) = 0 \]
 – Plastic flow rule:
 \[\Delta \hat{d} \frac{\partial f}{\partial p} - \Delta \hat{q} \frac{\partial f}{\partial \tau_{eq}} = 0 \]
 – Matrix plastic strain evolution:
 \[(1 - f_{V0}) \tau_Y \Delta \hat{p} = \tau_{eq} \Delta \hat{d} + p \Delta \hat{q} \]