Comparison of Different Nonlinear Identification Methods: a Guitar Tube Amplifier Practical Case ULG, Belgium, 2018

SCHMITZ Thomas : T.Schmitz@uliege.be

Department of Electrical Engineering and Computer Science, University of Liège, Montefiore Institute

June 22, 2018

[Application](#page-2-0)

[Nonlinear methods](#page-4-0)

- [Hammerstein Kernels Identification by Sine Sweep \(HKISS\)](#page-6-0)
- [Recurrent Neural-Network \(RNN\)](#page-8-0)
- [Polynomial Nonlinear State Space \(PNLSS\)](#page-10-0)
- [Volterra kernels estimation](#page-11-0)

3 [Methods of comparison](#page-12-0)

[Summary](#page-14-0)

[Application](#page-2-0)

[Application](#page-3-0)

Practical case: a tube amplifier emulation

Figure: Goal: replace hardware effects by software emulations

Amplifier with Vacuum tube triodes:

The sound of old tube amplifiers is perceived by most musicians as warmer and more dynamic but their nonlinear behaviors make them hard to model.

Emulation advantages:

- Wide variety of sounds and timbres.
- Weight and overcrowding.
- Cheaper.
- More robust.

[Nonlinear methods](#page-4-0)

Proposed methods for nonlinear modeling

Comparison of the following methods:

- Hammerstein Kernels Identification by Sine Sweep (HKISS).
- Recurrent Neural-Networks (RNN).
- Polynomial NonLinear State Space model (PNLSS).
- Volterra kernels estimation.

Feel free to contact me at T.Schmitz@uliege.be to propose or add an other method.

Parallel Hammerstein Models (PHM)

$$
y[n] = \sum_{m=1}^{M} h_m[n] \circledast x^m[n] \qquad (1)
$$

Main issue: the PHM does not work to model the tested tube amplifiers if the amplitude of the input signal is different from the one chosen during the measurement phase.

Figure: $y1$ =output of the amplifier, y_2 = output of the emulator. When the input signal is $sin(2\pi.1000.t)$

Figure: HKISS Toolbox is proposed in [\[2\]](#page-17-0)

HKISS method:

Identification of the Hammerstein kernels methodology:

Figure: $ss[n]$: exponential sine sweep, $\overline{ss}[n]$: inverse sine sweep, $x[n]$ input signal, $h_m[n]$: m^{th} Hammerstein kernel, $z[n]$: deconvolution of the sine sweep passing through the nonlinear device under test, $g_m[n]$: harmonic kernels, $y[n]$: emulated signal

References:

The details of the method can be found in [\[1\]](#page-17-1) and the Toolbox [\[2\]](#page-17-0) can be downloaded [here](https://github.com/TSchmitzULG/HKISS). A comparison of identification methods (Exponential Sine Sweep and Least Square method) can be found in [\[3\]](#page-17-2)

Long Short Term Memory (LSTM) Neural-Network: a cell

Figure: presents a LSTM Cell, where c is the long term state, h is the short term state, y is the output of the cell, x is the input of the cell. f, g, i, o are the forget, candidate, input, output gate respectively, FC is a fully connected layer, σ is the sigmoid function and tanh is the hyperbolic tangent function

Figure: The result of the emulation : in orange the target (output of the amplifier), in blue the prediction (output of the Neural-Network).

Long Short Term Memory Neural-Network: a layer

Identification of the weight and bias of the Network methodology:

Figure: Based on the last N values of the input signal x , a prediction *pred* is computed. A cost function $C = E{ \vert target - pred \vert}^2$ is minimized using the back propagation through time algorithm [\[4\]](#page-17-3)

Conclusions:

The method has been developed in [\[5\]](#page-17-4) and has been improved to reach the real-time (40ms latency) constraint in [\[6\]](#page-17-5) with less than 2% of Root Mean Square Error (RMSE) between the target and the predicted signals.

Polynomial Nonlinear State Space:

Model:

$$
x(t+1) = A \t x(t) + B \t u(t) + E \t (x(t), u(t))
$$

$$
y(t) = C \t x(t) + D \t u(t) + E \t \t \t \t \t \t F \t \t \eta(x(t), u(t))
$$

linear state-space model

Where:

- $u \in \mathbb{R}^{n_u}$ the inputs of the system.
- $y \in \mathbf{R}^{n_y}$ the outputs of the system.
- $x \in \mathbf{R}^{n_a}$ the state memory of the system.
- \circ ζ et n contain all the distinct monomial combinations of x and u up to a chosen degree p.

Identification of A,B,C,D,E,F parameters methodology:

The Best Linear Approximation is computed, then a parametric linear model is estimate from it. Finally the full nonlinear model is computed by using a nonlinear search routine. Method and Toolbox can be found in [\[7\]](#page-18-0).

Volterra kernels estimation

Volterra Series

$$
y(t) = \sum_{m=1}^{\infty} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} v_m(\tau_1, \ldots, \tau_m) \times \prod_{i=1}^m x(t - \tau_i) d\tau_1 \ldots \tau_m
$$
 (2)

In practice, Volterra kernels v_m have to be truncated in time (t) and order (m)

Identification of the v_m kernels

- Maximum Likelihood estimation of the parameters.
- Regularized nonparametric estimation [\[8\]](#page-18-1).
- o Pre-estimation of the diagonal elements with HKISS method [\[1\]](#page-17-1)?
- Estimation of the first three kernels based on Wiener filter estimation by perfect sequences and multiple-variance sequences. [\[9,](#page-18-2) [10\]](#page-18-3)

[Methods of comparison](#page-12-0)

Comparison methodology:

Goals:

The aim of this study is to be able to emulate a tube amplifier with a high level of distortion.

To be compared:

- Accuracy.
- Learning time.
- Computational cost during the emulation phase.
- **a** Robustness

Performances Indexes (PI):

The output signal of the amplifier y_{test} has to be compared with an estimate signal \hat{y}_{test} when the input x_{test} (a guitar scale at different amplitudes) is provided.

$$
Pl_1 = \frac{\sum_{t=0}^{T} [\hat{y}_{test}[t] - y_{test}[t]]^2}{\sum_{t=0}^{T} [y_{test}[t]]^2}
$$
 (3)

- Listening test ?
- ^o Others ?

[Summary](#page-14-0)

[Summary](#page-15-0)

Guitar tube amplifier in real-time

Results:

a LSTM method:

- Tube amplifier ENGL, emulation with less than 2% of RMSE
- Sampling rate: 44100Hz
- Latency: 400 samples
- [Compare audio sound](https://soundcloud.com/user-247709626) here

PNLSS method: to do

Volterra kernels method: to do

Figure: Sound from amplifier (target) Vs emulator (prediction) (LSTM)

Figure: Goal: replace hardware effects by software emulations

Useful informations for this project:

[GitHub repository for this project](https://github.com/TSchmitzULG/NL_Models_Comparison) here

LIÈGE

Thank you for your attention!

Bibliography I

- T. Schmitz, J.J. Embrechts. "Hammerstein Kernels Identification by Means of a Sine Sweep Technique Applied to Nonlinear Audio Devices Emulation".Journal of the Audio Engineering Society,2017, vol. 65, no 9, p.696-710
- Matlab Toolbox for Identification of the Hammerstein Kernels: https://github.com/TSchmitzULG/HKISS

M. Rebillat, M. Schoukens. "Comparison of least squares and exponential sine sweep methods for Parallel Hammerstein Models estimation". Mechanichal system and signal processing,2018, vol. 104, p.851-865.

Chauvin, Y. and Rumelhart, D-E. "Backpropagation: Theory, Architectures, and Applications", 1995, Psychology Press.

- T. Schmitz, J.J. Embrechts, "Real time emulation of parametric guitar tube amplifier with long short term memory neural network" to be published at the 5th International Conference on Signal Processing, (2018 March).
-

T. Schmitz, J.J. Embrechts, "Nonlinear real-time emulation of a tube amplifier with a long short term memory neural network" published at the 144th Convention of the Audio Engineering Society, (2018 May).

- J. Paduart, L. Lauwers, J. Swevers, K. Smolders, J. Schoukens, R. Pintelon. "Identification of nonlinear systems using Polynomial Nonlinear State Space models". Automatica, 2010, vol. 46, p.647-656
- 冨 G. Birpoutsoukis, A. Marconato, J. Lataire, J. Schoukens. "Regularized nonparametric Volterra kernel estimation". Automatica, 2017, vol. 82, p.324-327.
	- S. Orcioni, A. Carini. "Multivariance nonlinear system identification using wiener basis functions and perfect sequences". 25th EUSIPCO, 2017.
-
- S. Orcioni, A. Carini, A. Terenzi, F. Piazza. "Identification of nonlinear audio devices exploiting multiple-variance method and perfect sequences". 144th Convention of AES, 2018.