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Abstract 

Post-weaning diarrhoea (PWD) is a widespread disease causing loss of weight and 

mortality of the piglets. To cure or prevent PWD, the treatment of pigs with antibiotics 

is frequent. The overuse of these substances led to the appearance of multi-resistant 

bacteria, raising public health issues. Thus, finding sustainable alternatives to 

antibiotics for PWD curation is of major importance. Most research focusses on the 

use of substances like prebiotics able to affect the microbiota of the piglets, as gut 

microbiota is responsible for the maturation of the intestinal immune system. 

Promoting a beneficial microbiota as early in life as possible is a good strategy for a 

better future health and a lower prevalence of PWD. Our hypothesis was that using 

dietary fibres (wheat bran and resistant starch) in the diet of sows would alter their 

microbiota and in turn affect their piglets’ microbiota and future health. In addition, 

the ability of the two fibre sources to alter milk composition, also affecting piglets’ 

performances and health, was tested. This hypothesis was challenged with two animal 

experiments. 

Results indicated that wheat bran (WB) and resistant starch (RS) had the ability to 

alter sows’ microbiota during gestation but not anymore during lactation, possibly 

limiting a differential microbial transfer to their offspring. These two dietary fibre 

slightly altered milk composition. Maternal wheat bran had the ability to increase the 

villus height and villus to crypt ratio in the small intestine of the progeny, while 

resistant starch increased the gene expression of tight junction proteins at weaning. 

These two fibre sources included in a high level in sows’ diets did not affect their 

performance or their piglets’, making their use in animal diets realistic. 

A second objective of the thesis was to unravel whether the diet of sows could 

program the metabolism of piglets for later life, using them as model for human. For 

this, piglets were challenged with a high fat diet in order to induce low-grade 

inflammation and/or obesity symptoms. After 7 weeks on a high fat diet, piglets had 

an increased backfat thickness and higher serum cholesterol levels. The main findings 

are that feeding sows resistant starch increased the total sum of short-chain fatty acids 

(SCFA) production in the caecum and colon of their progeny, which is beneficial but 

did not affect the microbiota of the pigs. Moreover, maternal RS diet seemed to 

increase the barrier function of the colon due to a higher gene expression of tight 

junction proteins while the maternal effects on intestinal inflammation were 

contradictory for TNF-α and IFN-γ. It seems thus that the maternal diet had the ability 

to decrease gut permeability. However, the high fat diet did not alter the microbiota 

of the pigs, nor was it affected by the maternal diet. 

In conclusion, using dietary fibre in sows’ diet had the ability to alter their own 

microbiota during gestation and milk composition, but the impact on the piglet’s 

microbiota was rather limited. It could be thus interesting to use these diets on piglets’ 

themselves after birth to promote the establishment of beneficial bacteria. Although 



effects on the microbiota were limited, the maternal diet seemed to affect some aspects 

of the health of their progeny in later life. 
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Résumé 

La diarrhée post-sevrage est une maladie très répandue dans les élevages porcins, 

causant des pertes de poids et la mortalité des porcelets. La solution la plus répandue 

pour pallier au problème est l’utilisation d’antibiotiques, dont l’utilisation abusive est 

à la source de l’apparition de souches bactériennes multi-résistantes, représentant un 

problème de santé publique. Trouver des alternatives durables à l’utilisation de ces 

antibiotiques pour traiter ou prévenir la diarrhée post-sevrage est donc d’une 

importance capitale. De nombreuses recherches se concentrent sur l’utilisation de 

substances comme des prébiotiques, qui sont capables d’impacter le microbiote 

intestinal des porcelets. Le microbiote étant responsable de la maturation du système 

immunitaire intestinal, promouvoir des bactéries bénéfiques permettrait une meilleure 

immunité au moment du sevrage, réduisant ainsi la fréquence des diarrhées. Notre 

hypothèse était qu’utiliser des fibres alimentaires (du son de blé et de l’amidon 

résistant) dans l’alimentation des truies pourrait impacter leur microbiote intestinal, 

qui pourrait à son tour affecter celui de leurs porcelets ainsi que leur santé future. De 

plus, l’aptitude de ces deux sources de fibres à modifier la composition du lait des 

truies a également été testée, étant donné que celle-ci peut affecter les performances 

et la santé des porcelets. Pour tester cette hypothèse, deux expérimentations animales 

ont été réalisées. 

Les résultats montrent qu’à la fois le son de blé et l’amidon résistant peuvent 

modifier le microbiote intestinal des truies durant la période de gestation, mais que 

ces modifications ne perdurent pas pendant la lactation, ce qui peut limiter le transfert 

à la descendance. Les deux fibres alimentaires ont impacté la composition du lait des 

truies, augmentant principalement la quantité de lactose. De plus, la supplémentation 

avec du son de blé a résulté en de plus hautes villosités intestinales et un ratio 

villosités/cryptes plus élevé dans l’intestin des porcelets avant sevrage. L’amidon 

résistant a, quant à lui, mené à une augmentation de l’expression des gènes des 

protéines de jonction serrées dans l’intestin des porcelets avant sevrage. De plus, 

aucune de ces sources de fibres à haute dose dans l’alimentation des truies n’a 

détérioré les performances des truies ou porcelets, ce qui rend leur utilisation en 

routine réaliste. 

Un deuxième objectif de cette thèse était de déterminer si l’alimentation des truies 

pouvait programmer le métabolisme des porcelets sur du long terme. Lors de cet essai, 

le porc a été utilisé comme modèle pour l’humain. L’hypothèse a été testée en 

soumettant les porcs à un régime alimentaire contenant une haute teneur en graisses 

saturées afin d’induire une inflammation chronique et/ou des symptômes liés à 

l’obésité. Les conclusions sont qu’alimenter les truies avec de l’amidon résistant 

permet d’augmenter la production totale d’acides gras volatils dans l’intestin de leur 

descendance sur le long terme. Cette augmentation peut être considérée comme 

bénéfique pour la santé même si le microbiote intestinal n’a pas été impacté par le 

régime maternel. De plus, le régime alimentaire maternel avec de l’amidon résistant 



semble augmenter la fonction barrière du colon de la descendance, étant donné 

l’augmentation de l’expression des gènes codant pour les protéines de jonction 

serrées. L’effet maternel sur l’inflammation du colon est quant à lui contradictoire, 

étant donné que l’expression de TNF-α et IFN-γ ont été affectées de façon opposée. 

Une autre conclusion qui peut être tirée de cette expérimentation à long terme est que 

le challenge métabolique de 7 semaines a permis d’induire chez les porcs les premiers 

symptômes de l’obésité, à savoir une augmentation du cholestérol sanguin et du gras 

dorsal. Cependant, le microbiote intestinal des porcs n’a pas été impacté par le 

challenge métabolique ni par la supplémentation alimentaire des mères.   

Pour résumer, l’utilisation de fibres alimentaires dans la ration des truies a permis 

de modifier la composition de leur lait, mais l’effet sur le microbiote intestinal de leurs 

porcelets est très limité. Une perspective serait l’utilisation de ces mêmes fibres dans 

le régime alimentaire des porcelets après la naissance en vue de promouvoir 

l’établissement précoce d’un microbiote intestinal bénéfique. Bien que les effets du 

régime alimentaire maternel sur le microbiote des porcelets soient limités, certains 

aspects de leur santé intestinale semblent impactés.    

 

Mots-clés: transfert maternel, microbiote, porcelet, truie santé intestinale, fibre 

alimentaire, son de blé, amidon résistant. 
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Pig production is the first animal production worldwide, with China being the first 

producer and the European Union following (FAO data 2016). As the total population 

worldwide is continuously increasing (an increase of 32% is planned by 2050, leading 

to a world population of 9.8 billion according to the United Nations), so does the 

demand for animal products and in particular pig meat. It is thus necessary to reach 

high yields in a short period. In practice, several strategies are applied to improve 

efficiency, i.e. the selection of sows with high prolificity, an increased carcass weight 

and a reduced time for weaning that is very low compared to natural rearing (3-4 

weeks compared to 8-12 weeks). This intensification of production in terms of abrupt 

early weaning was concomitant with the spread of post-weaning diarrhoea worldwide 

(Fairbrother et al. 2005). This disease, which is mainly caused by pathogenic E. coli 

infections (Melin et al. 2004), is characterized by lower feed intake, loss of weight, 

infections and mortality resulting in economic losses for the farmer. To counteract 

this disease, antibiotics have been widely used but their sustainability poses more and 

more questions nowadays. Therefore, solutions are required to prevent infections at 

weaning and this thesis aimed at investigating a possible strategy, by acting on the 

diet of the sows. In this introduction, the function and development of the 

gastrointestinal tract and intestinal microbiota of pigs will be described followed by a 

description of the weaning problems. In addition, a brief introduction to the use of the 

pig as a model for human disease and in particular metabolic troubles will be 

presented, as part of this work focussed on metabolic disorders related to ingestion of 

a high fat diet. 
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1. Gut function and maturation 

The small intestine is composed of 4 layers (from the inside to the outside): the 

tunica mucosa, the tela mucosa, the tunica muscularis and the tunica serosa (Figure 

1). Within the tunica mucosa, 3 layers are distinguished: (a) the epithelial layer, 

covered with exocrine (goblet cells), endocrine cells (secreting hormones) and 

epithelial cells (nutrients absorption); (b) the lamina propria (containing the blood 

and lymphatic vessels and gut-associated lymphoid tissue) and (c) the muscularis 

mucosa. The small intestine is very efficient in absorbing nutrients thanks to its 

impressive absorptive surface possible by the presence of villi and microvilli on the 

epithelial cells. Lieberkühn crypts, located between the villi mainly serve as a nursing 

for new enterocytes, having a high mitosis rate. Enterocytes will then migrate from 

the crypt to the villus and will replace damaged or older enterocytes cleared by 

apoptosis. Intestinal crypts also contain Paneth cells that produce lysozyme and 

defensins, protecting the intestine against pathogens. In this introduction, the 

emphasis lies on the small and large intestines. 

 

  

Figure 1. Structure of the gastrointestinal tract (Walthall et al. 2005). 
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1.1. Gut functions 

1.1.1. Digestive function & fermentation (Sherwood et al. 2016) 

The primary function of the digestive tract is to digest carbohydrates, proteins and 

lipids and absorb them for a release in the systemic blood flow. The first part of the 

digestion occurs in the stomach, where the digestion of carbohydrates and proteins 

begins with pepsin and salivary amylase enzymes and is continued in the duodenum. 

In the duodenum, the chime (pre-digested food) is mixed with pancreatic juice, 

containing proteases, pancreatic amylase and lipase that will convert complex 

proteins, carbohydrates and lipids in amino acids and short-chain peptides, 

disaccharides and monosaccharides, monoglycerides and free fatty acids. The 

digestion of lipids is complete after the release of pancreatic lipase and bile salts, 

while the digestion of disaccharides and small peptides needs to be terminated in the 

small intestine. The brush border of the epithelial layer secretes disaccharidases 

(lactase, maltase, sucrase and trehalase) and aminopeptidases that will allow the final 

digestion step of those molecules in monosaccharides (glucose, galactose, fructose) 

and amino acids. Glucose and galactose absorption in the enterocytes is possible by 

an active transport with sodium glucose linked transporters (SGLT) while fructose 

enters the enterocytes by a facilitated diffusion with glucose transporters (GLUT); 

these monosaccharides are further transported to the capillaries by GLUT2 

transporter. Another way of glucose transportation is the paracellular transportation 

by the tight junctions between epithelial cells. The absorption of amino acids and 

small peptides follows the same pattern as monosaccharides, with intraepithelial 

peptidases able to fulfil the digestion of the di- or tripeptides (Le Huërou-Luron 

2003). One exception is noteworthy for the protein passage. Indeed, the new-born 

piglets are equipped within the first hours of life (48h) with foetal-type enterocytes 

that are able to directly absorb entire proteins, like immunoglobulins from the 

colostrum which is necessary as the piglets are born agammaglobulinemic due to 

epitheliochorial placentation. The replacement of foetal-type enterocytes to adult-

type enterocytes occurs within 2 days of life and is responsible for the so-called “gut 

closure” (Zabielski et al. 2008). 

The hindgut (large intestine, comprising the caecum, colon and rectum) is 

important for the mineral balance as reabsorption of biliary salts, minerals, vitamins 

and water will happen. Some undigested carbohydrates and proteins (due to their size 

or their cell structure) reach the large intestine (caecum and colon) nearly intact. In 

the hindgut, they will be fermented by the microbiota and the end-products of their 

fermentation will be absorbed. This point will be discussed in another part (see 

section 2 “The microbiota”).  



Chapter 1. General introduction 
 

5 

 

1.1.2. Protective function 

The gut epithelium represents a physical barrier against harmful bacteria, viruses 

and antigens1 as epithelial goblet cells produce mucins that will allow the formation 

of a viscous gel on the surface of the epithelium (King et al. 2003). Moreover, the 

epithelium is sealed by proteins called tight junctions that will prevent the 

paracelullar transduction of macromolecules as well as bacteria; the acidity of the 

gastric juice and the motility of the chime are also physical obstacles for pathogens 

survival. Moreover, the digestive tract harbours a highly condensed and developed 

immune system, often referred to as the “gut associated lymphoid tissue” (GALT), 

composed of immune cells in the lamina propria and epithelium (like intraepithelial 

T lymphocytes), highly organized lymphoid follicles (of which Peyers’ patches is a 

major representative) and small aggregates of lymphoid follicles, as summarized by 

King et al. (2003). Every mechanism involved in the animal protection is detailed 

hereunder.  

1.1.2.1. Mucus layer 

The mucus layer is formed after secretion of mucin glycoproteins (MUC2) and 

trefoil peptides (protease resistant) by goblet cells (Bourlioux et al. 2003) and has 

several roles s.a. the lubrication of the lumen but also a mechanical barrier against 

pathogens, as the tight mucus layer forms a network with a mean pore size of 100nm 

(Mackie et al. 2016) and exerts hydrophobic properties thanks to surfactant lipids 

produced by epithelial cells, preventing the passage of water-soluble toxins 

(Bourlioux et al. 2003). Moreover, the mucus layer serves as an habitat for 

commensal bacteria, representing a nutrient source (Sommer & Bäckhed 2013). 

Goblet cells can produce more mucins in presence of some stimuli, like toxins and 

bacterial infection but there is no change with aging for the piglet from day 7 to 18 

of life (Brown et al. 2006) while the thickness of the mucus layer increases when 

going from the proximal to the distal intestine (Bourlioux et al. 2003; Mackie et al. 

2016). The intestinal microbiota plays a role on the mucus layer as microbial 

colonization is related to higher goblet cells number and thicker mucus layer, 

(Sommer & Bäckhed 2013). The underlying mechanisms are so far unknown but 

these conclusions could be drawn from the use of germ-free animals. 

1.1.2.2. Tight junctions 

To connect epithelial cells (absorptive enterocytes, endocrine, Paneth and goblet 

cells) together and thus act as a barrier against pathogens, intracellular junctional 

complexes are necessary to obtain a semi-permeable dynamic and selective 

membrane allowing the passage of small molecules, ions and water but preventing 

                                                      

 

1 An antigen is a molecule (often proteins) interacting with the immunoglobulin receptor of 

B cells (Kindt et al. 2007). 
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the passage of pathogens, toxins and harmful antigens (Niessen 2007). One part of 

this complex is formed by “tight junctions” (TJ) composed of more than 50 proteins 

(Ulluwishewa et al. 2011). 

TJ are composed of different proteins and interface with several molecules. Tight 

junctions are transmembrane proteins (Figure 2), having 4 transmembrane domains 

and 2 extracellular loops (tetra-span tight junction, including occludin, claudin and 

tricelullin) or one transmembrane domain (single span, junctional adhesion 

molecules, abbreviated as “JAM”). Claudin proteins are involved in the tightening 

(CLDN 1, 3, 4, 5, 8) or the opening (CLDN2) of the paracelullar pores, while occludin 

(OCLN) is recognized to be involved in the regulation of intermembrane and 

paracelullar diffusion of small molecules (Ulluwishewa et al. 2011). Tricelullin is a 

protein that will tighten the closure of the membrane between 3 adjacent enterocytes, 

reinforcing the effect of claudins. Those tight junctions interact with plaque proteins, 

which are responsible for the anchoring of tight junctions into the cytoplasm of 

enterocytes. Important plaque proteins are zonula occludens (ZO1, 2, 3) that are 

composed of 3 PSD95–DlgA–ZO-1 homology (PDZ) domains that can bind to 

claudins, to JAM-A and to another ZO in order to form dimers. ZO-1 is thought to be 

very important in TJ regulation as they can interact with F-actin that are projected by 

the actin and myosin belt that surrounds the apical pole of the enterocytes and can 

thus regulate the tightening or smoothing of the TJ (Niessen 2007; Ulluwishewa et 

al. 2011). Moreover, ZO1- and ZO-2 have been demonstrated to determine the 

polymerization and extent of polymerization of claudin proteins (Umeda et al. 2006). 

Tight junction expression has been shown in humans to interact both with microbiota 

and with dietary components (Ulluwishewa et al. 2011). 

1.1.2.3. The gut immune system / Gut-associated lymphoid tissue (GALT) 

The immune system provides a continuous surveillance and protects the host 

against pathogenic infections. It is composed of primary and secondary lymphoid 

organs together with a collection of cells circulating in the blood and lymphatic 

vessels. Immunity is innate but also acquired from the contact with different 

pathogens; immune cells are produced and matured in the bone marrow and/or 

thymus and stored in secondary lymphoid organs, including the GALT. A short 

review of the functioning and composition of both innate and adaptive immunity is 

given below, before characterization of the GALT. 
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a. Innate immune system  

The innate immune system is a very efficient defence line of the organism against 

pathogenic bacteria, viruses or antigens and constitutes a rapid response (Sherwood 

et al. 2016). This response is non-specific as it will target any pathogenic antigens 

and does not rely on previous contact with a specific antigen. In addition to immune 

cells, the innate immunity also relies on physical characteristics of the intestine, e.g. 

the barrier function and intestinal motility (King et al. 2003). Below is a brief 

summary of the main cells involved in the innate immune response. Enterocytes are 

able to produce cytokines after recognition of pathogen-associated molecule patterns 

(PAMPs) on their receptors (pattern recognition receptors, PRR including toll-like 

receptors, TLR) like TNFα and interferon (IFN) γ to block pathogen replication. 

Enterocytes have also the ability to directly produce anti-microbial peptides and pigs 

Figure 2. Schematic view of the components of the tight 

junctions (Ulluwishewa et al. 2011). 
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do not express major histocompatibility complex (MHC) class II2 on their 

enterocytes, unlike humans (Mair et al. 2014). Neutrophils represent the first defence 

against a pathogenic infection and have different roles, including phagocytosis of 

pathogens, production of anti-microbial peptides and signals for maturation, 

activation and attraction of macrophages and dendritic cells to the site of infection, 

and regulation of T-cells response (Kumar & Sharma 2010). Monocytes are 

differentiated in macrophages after IFNγ stimulation. Macrophages then destroy 

pathogens by phagocytosis and present the pathogenic antigens on MHC II together 

with the release of  inflammatory cytokines (e.g. IL1β) that are the main 

communication sources between immune cells and are responsible for the recruitment 

of T helper cells (Mair et al. 2014). Natural killer cells have a lysis activity against 

pathogens and produce various cytokines including IFNγ (Mair et al. 2014). Dendritic 

cells are antigen presenting cells (APC) and interact with the adaptive immune system 

by stimulating cytotoxic and helper T cells. APC are thus essential as they will recruit 

the adaptive immune system; these APC include macrophages and dendritic cells. 

The release of cytokines related to these cells is also of major importance as they are 

the mediator between innate and adaptive immune responses. 

b. Adaptive immune system 

The adaptive immunity can be divided in two components, the humoral immunity 

(relying on antibodies and B cells) and the cellular immunity (mediated by T cells) 

(Sherwood et al. 2016). The B and T cells are produced in bone marrow while 

maturation occurs also there for B lymphocytes and in the thymus for T lymphocytes. 

The matured lymphocytes then migrate to lymphoid tissues where they establish and 

can proliferate (Sommer & Bäckhed 2013). Those lymphoid tissues comprise the 

GALT that will be described below.  

The adaptive immunity relies on the detection of antigens (foreign large sized 

molecules that will induce a specific immune response), including dietary antigens 

(for which a tolerance is developed). One example of pathogenic antigen is the 

protein lipopolysaccharide (LPS) that is present on the cell wall of gram-negative 

pathogenic bacteria (King et al. 2003). Those antigens are presented by APC from 

the innate immunity and this presentation constitutes the first step in the activation of 

the adaptive immunity. Antigenic peptides are presented on MHC II. 

  

                                                      

 

2 MHC are divided in two classes. MHC I is involved in the recognition of infected 

cells and recruits cytotoxic T cells while MHC II function is to present antigenic 

peptides deriving from phagocytosis to the immune system.  
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Humoral immunity 

Specific receptors on the B cells membrane allow them to bind to a specific site of 

the antigen. This binding leads to the mitosis of B cells that will differentiate either 

in plasma cells or in memory B cells. Plasma cells will massively produce antibodies 

specific for the antigens that induced the mitosis. Those specific antibodies, also 

called immunoglobulins (Igs), are released and circulate in the blood. The recognition 

of the antigen by T helper lymphocytes also leads to the differentiation of B cells in 

plasma cells (King et al. 2003). Immunoglobulins are categorized in 5 types (IgG, 

IgA, IgM, IgE, IgD) even though in each type, there are millions of specific 

antibodies. IgG is the most abundant immunoglobulin which is present in high 

amounts within the blood and the colostrum of sows; IgM has a role of receptor on B 

cells membrane and IgA are mainly produced in the digestive tract. The effects of Igs 

are mainly indirect and they do not have any destructive capacity. Indeed, Igs bind to 

antigens, preventing them to bind to other cells, agglutinate to form insoluble 

complexes and act indirectly by allowing a more effective protection by activating 

the complement and amplifying the phagocytosis of innate immune cells (King et al. 

2003; Sherwood et al. 2016). The memory B cells exist to allow a faster and long-

lasting effect after a second contact with the same antigen, even years after the first 

attack.  

Cellular immunity 

In addition to threats related to the presence of bacterial antigens, viruses are able 

to penetrate cells and to replicate inside it. To warn the immune system of this attack 

or mutation, most cells can present antigenic peptides after the degradation of the 

viral antigens within the cells and present them on their surface thanks to MHC I. 

This complement allows the recognition of the presented antigen by cytotoxic (also 

called CD8+) T cells. Cytotoxic T cells (Tc) are thus activated, multiply and secrete 

factors that destroy the infected cells; these T cells are also antigen-specific and 

memory T cells are produced for a longer lasting protection.  

In addition to Tc, two other types of T cells exist. As mentioned above, T helper 

(Th) cells are not killing cells but allow the modulation of other immune cells, as the 

proliferation of B lymphocytes and macrophages. Finally, T regulatory cells (Treg) 

suppress the immune response and regulate the expression of both innate and adaptive 

immune cells.  

  



Early life programming of piglets’ microbiota and gut health by maternal dietary fibre  
 

10 

 

c. The Gut-associated lymphoid tissue (GALT)  

The GALT is considered to be the largest immune organ of the porcine body, a fact 

that can be explained by its large surface and continuous contact with pathogenic and 

commensal bacteria as well as dietary antigens, for which a tolerance mechanism 

(“oral tolerance”) has been developed (Burkey et al. 2009; Le Huërou-Luron & 

Ferret-Bernard 2014). The GALT is composed as any other immune organ by innate 

immunity (mucus layer, tight junctions, intestinal motility, phagocytic cells) and an 

adaptive immune system. The adaptive immune system of the gut is mainly located 

within the Peyer’ Patches (PP), the mesenteric lymph nodes (MLN) and the lamina 

propria and intraepithelial lymphocytes (Le Huërou-Luron & Ferret-Bernard 2014). 

PP and MLN are considered as the inductive sites of the immune response, detecting 

pathogenic antigens and triggering the inflammatory response, while intraepithelial 

lymphocytes and the lamina propria are considered as the effector sites of 

inflammation as they will directly be able to kill the pathogens and protect the 

organism (Burkey et al. 2009). Peyer’s Patches are present from the jejunum (as 

discrete PP) to the end of the ileum, where it forms a unique large PP (Everaert et al. 

2017). PP surface is composed of epithelial cells without absorptive capacity and 

contain M cells specialized in the uptake of antigens from the intestinal lumen 

(containing TLR on their membrane) and thus in surveillance of the gut health. Large 

B-cells follicles, T cells and follicular dendritic cells are present underneath the 

epithelial layer (Le Huërou-Luron & Ferret-Bernard 2014; Burkey et al. 2009). M 

cells have the ability to transport pathogenic antigens transcellularly; these antigens 

will interact with the underlying APC that will present the immunogenic peptides on 

MHC II. T-helper cells are activated by the APC presenting pathogenic peptides and 

dendritic cells induce “homing receptors” on T cells that will enable them to go to 

the lamina propria later on. Activated T cells secrete substances (lymphokines) that 

induce B cells to produce antibodies. Some T and B activated cells then migrate to 

the lamina propria by lymphatic circulation where B cells differentiate in plasma B 

cells that will secrete large amounts of specific IgA, a process induced i.a. by IL-6 

and TGF-β (King et al. 2003). These IgA are then released in the lumen to bind 

pathogenic antigens. A summary of this mechanism is shown in Figure 3. 
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1.2. Development and maturation of the digestive tract 

The gut development begins during early gestation and Buddington & Malo (1996) 

categorized the ontogenetic development of the gut in 5 phases. The first three phases 

occur during gestation (organogenesis, differentiation, growth & maturation), the 

fourth phase is related to ingestion and processing of milk and the switch from the 

neonatal intestine to a fully developed and functional adult-like intestine at weaning 

characterizes the fifth phase.  

Everaert et al. (2017) summarized the first steps of development and differentiation 

of intestinal tissues and cells in a recent review. The villi present on the small intestine 

surface are already present from the 40th day of gestation, while the muscularis 

mucosae and differentiation of cells in enterocytes, goblet cells and secretory cells 

are achieved by the third month of gestation (Zabielski et al. 2008). It has been 

reported that during late gestation, the small intestine is growing faster than the body 

itself, probably to support the growth and need of arginine of the foetus (Sangild et 

al. 2000; McPherson et al. 2004; Everaert et al. 2017). The intestinal architecture is 

also evolving during the first days of life, as crypts depth and villi heights increase to 

allow a higher absorptive capacity of the intestine, together with thickening of the 

mucosa (Skrzypek et al. 2010). These observations also highlight the increase in 

absorptive area of duodenum and jejunum when piglets age, translating the 

maturation of the digestive and absorptive system of the piglet which is a 

consequence of colostrum and milk intake. Not only the architecture of the gut is 

modified during the first days of life, but the overall weight of the small intestine 

doubles during the first days of life, due to an increase of blood flow, accumulation 

of the colostral proteins in epithelial cells that are capable of engulfing Igs and other 

macromolecules, and a high mitosis rate accompanied with lower apoptosis for 

epithelial cells, resulting in more differentiation into goblet, immune, endocrine and 

epithelial cells (Zabielski et al. 2008; Le Huërou-Luron & Ferret-Bernard 2014). 

Epithelial cells also encounter profound changes during the first postnatal days as 

adult-type cells will be reached, characterized by an altered composition of 

transporter proteins, brush border enzymes and membrane receptors (Zabielski et al. 

2008) and no ability of forming large lysosomial vacuoles like foetal-type 

enterocytes, leading to gut closure.  

Concerning the large intestine of the piglets, the colon is not fully developed at 

birth and has similar functions as the small intestine (presence of villi and ability to 

transport amino acids) but these foetal-types colonocytes are progressively replaced 

by adult-type and thus loose this ability within the first two weeks after birth (Everaert 

et al. 2017). The replacement of foetal colonic enterocytes to mature-type enterocytes 

and the colonization of micro-organisms will provide the fermentative capacity that 

is observed in the hindgut when the pig ages. 
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Digestive enzymes are not fully efficient at birth. Indeed, only lactase and peptidase 

are already active in utero while glucosidase (sucrase-isomaltase and maltase-

glucoamylase) activity remains low until birth (Manners & Stevens 1972; Sangild et 

al. 2000). Lactase expression is lower from the proximal to the distal part of the small 

intestine and decreases over time while sucrase-isolmaltase activity increases after 

birth to reach a plateau at 2 or 3 weeks (Le Huërou-Luron 2003). Aminopeptidases 

N and A and dipeptidyl peptidase IV are high at birth and decrease over time (Le 

Huërou-Luron 2003). It is reasonable to relate this lower activity over time to a lower 

protein content of milk compared to colostrum (Loisel et al. 2013; Krogh et al. 2017). 

Due to the epitheliochorial3 placentation of the pigs, no transfer of immunoglobulin 

is possible during gestation, rendering the piglet agammaglobulinemic at birth  

(Rooke & Bland 2002; King et al. 2003). The piglet thus relies on the intake of 

colostrum containing large amount of IgG and IgA and hormones within the first 

hours of life but also on milk during the whole lactation period as the piglet does not 

harbour a totally developed and mature immune system before weeks (Salmon et al. 

2009; Le Huërou-Luron & Ferret-Bernard 2014). As mentioned above, this 

macromolecules absorption is possible by foetal-type enterocytes before the gut 

closure of the piglets that is complete 48h after birth (Sangild et al. 2000; Everaert et 

al. 2017). 

Milk ingestion will trigger the absorptive and digestive functions of the small 

intestine of the piglets, while the microbiota colonization is involved in different 

functions, including the maturation of the gut-associated lymphoid tissue and 

fermentative ability of the large intestine (more details in 2.2).  

The GALT maturation relies both on the contact with dietary antigens, occurring 

firstly at birth and then at weaning, and on the colonization of the gut by commensal 

bacteria, that will induce a tolerance of the immune system, mediated by the 

intervention of regulatory T cells and production of anti-inflammatory cytokines. The 

PP will expand within the first two weeks of life (Le Huërou-Luron & Ferret-Bernard 

2014) but will not be totally mature due to the lack of IgA follicles until week 6 

(Everaert et al. 2017). The effector sites of the immune response is not mature either 

as intraepithelial cytotoxic T cells do not populate densely the paracellular space 

between enterocytes until 7 weeks of age (Vega-Lopez et al. 2001) while the APC 

will develop in the first two weeks of life (Everaert et al. 2017). Brown et al. (2006) 

                                                      

 

3 Diffuse epitheliochorial placentation in swine is made of 6 distinct layers 

separating blood from the dam and the fœtus. This means no invasion between 

tissues, impairing the passage of large molecules. Thus, fetal nutrition occurs by 

hemotrophic (diffusion or active transport) but also histotrophic (nutrition by uterine 

milk) nutrition (Carter & Enders 2013).  
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observed an increased proportion of activated Tc and activated T and B cells while 

ageing.  

All this information together poses questions about the abrupt weaning occurring 

at 21 to 28 days of age in the current production systems; this point will be discussed 

below (see 3.1).  

2. The microbiota  

The gut is densely populated (1014 bacteria) with beneficial microbes (Isaacson & 

Kim 2012) that have a mutualistic relationship with the host (Sommer & Bäckhed 

2013). Indeed, microorganisms populating the gut benefit from the environmental 

and trophic condition (lack of oxygen, temperature and substrate for growth) while 

the bacteria provide the host with important functions, such as the protection against 

pathogens and production of energy from the fermentation processes (Kamada et al. 

2013; Sassone-Corsi & Raffatellu 2015).  

2.1. Development of the microbiota and early colonization 

The bacterial colonization of the gut begins early in life (Lawley & Walker 2013) 

and will be acquired by different sources, mainly maternal. Indeed, the first 

colonization step begins at birth when the neonate passes through the genital tract: it 

will ingest bacteria present in the cervix, vagina and skin (Mackie et al. 1999; 

Dominguez-bello et al. 2011). After birth, loads of bacteria will be ingested when 

suckling: bacteria present on the skin of sows will be acquired as well as bacteria and 

oligosaccharides (considered as probiotics) present in milk (Mackie et al. 1999; Chen 

et al. 2018). Moreover, bacteria from the mouth can also be transmitted by licking 

from the mother (Mackie et al. 1999). Another way of important bacterial 

transmission from the mother to the progeny is by the contact with sows’ faeces, as 

piglets will explore the pen and ingest some (O’Doherty et al. 2017). Actually, the 

colonization of the progeny’s gut at 3 days of age has been shown to be more related 

to faecal microbiota of the mother than to colonization by vaginal bacteria in humans 

(Sakwinska et al. 2017). 

It is still under contest whether the foetus is completely sterile. In humans, bacteria 

have been found in the umbilical cord blood, amniotic fluid, placenta and neonate’s 

meconium (Jiménez et al. 2005; Jiménez et al. 2008; Aagaard et al. 2014). It can be 

argued that the type of placentation in humans and pigs is different and this is a valid 

argument. However, there is evidence of trans-placental transmission of viruses 

(swine fever) during pregnancy as well as pathogenic bacteria (Leptospira 

interrogans) and parasites (Schistosoma japonicum and Toxoplasma gondii) from 

sow to foetus (Iburg et al. 2002; Soto et al. 2006; Basso et al. 2015; Girotto-soares et 

al. 2016) as well as evidence of pathogenic bacteria transfer in cows to the calf 
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foetuses (Girotto-soares et al. 2016; Abreu et al. 2017). Thus, a bacterial transfer 

during pregnancy from the sow to the piglets is possible despite the epitheliochorial 

placentation, separating the foetal blood from the maternal blood by six layers. 

These bacteria will have different roles in early life, the most important being 

related to the development of the GALT (see 2.2). Bacteria populate the gut from the 

stomach to the distal colon but the bacterial composition of the different segments 

varies widely, as does the load of bacteria (Fava et al. 2007; Sommer & Bäckhed 

2013; Yang et al. 2016). Indeed, very few bacteria are present in the stomach and 

duodenum due to acidic conditions and peristalsis; an increase in the terminal ileum 

is observed and the maximal load and diversity of bacteria is present in the caecum 

and colon of the animals (Lawley & Walker 2013). The relative abundance of the 

different phyla are also gut compartment-dependent. The jejunum has been 

demonstrated to be dominated by Firmicutes (>90%), Proteobacteria, Cyanobacteria 

and Actinobacteria; the ileum was dominated by Firmicutes and Proteobacteria 

(accounting for 5-40%) and caecum and colon by Firmicutes and Bacteroidetes, those 

two phyla accounting for more than 90% of the total microbiota (Isaacson & Kim 

2012). 

The microbiota of the piglets at the first day of life is similar between piglets at the 

phylum level (see 2.3) and then differentiates with ageing until reaching a stable 

community (Isaacson & Kim (2012) reported the age of 22 weeks for stabilization 

while Bian et al. (2016) reported 49 days). Microbiota composition is influenced by 

several factors including thus age, but also diet, environment, genetics and 

physiological state (Dominguez-bello et al. 2011). As a consequence, a high inter-

individuals variation is reported in several studies (Kim et al. 2011). As microbiota 

of the piglets is partly acquired from the sows’ faecal microbiota, several studies have 

been performed with the purpose of modifying the microbiota and immune 

competence of the piglets by changing sows’ microbiota with pre- or probiotics. Even 

though it is known that microbiota is important for the proper development of the 

intestinal immune system and oral tolerance, the exact mechanisms still have to be 

elucidated. 

2.2. Roles for host  

Microbiota plays several roles for the host. The first important role is the priming 

of the gut immune system. Indeed, the contact with antigens will allow the proper 

development of the adaptive immune cells like T regulatory cells, T helper cells and 

plasma B cells (Kamada et al. 2013) and promote the extension of the lamina propria 

(Isaacson & Kim 2012) together with promoting the differentiation of immune cells 

like NK (Sommer & Bäckhed 2013); the exact mechanisms are not known but the 

interplay between microbiota colonization and GALT priming has been demonstrated 

with germ-free mice and piglets (Kamada et al. 2013; Everaert et al. 2017). It seems 

that the maturation of secondary lymphoid tissues rely on the early microbial 
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exposure, leading to the development of the GALT and in particular PP and MLN 

(Sommer & Bäckhed 2013).  

A second very important role of the microbiota is the fermentation of undigested 

carbohydrates, including dietary fibres and resistant starch, the portion of starch that 

escaped enzymatic digestion due to the unavailability of this polysaccharide (due to 

cellulose or physical structure of starch granules). The end-products of carbohydrate 

fermentation are short-chain fatty acids (SCFA), namely propionic, acetic and butyric 

acid that constitute energy sources for the host. The end-products of protein 

fermentation are branched-chain fatty acids (valeric, isovaleric and isobutyric acids) 

and are not desirable as they will induce the formation of inflammatory compounds. 

From the SCFA, butyric acid is considered as the most beneficial as it constitutes the 

main energy source of colonocytes and can increase the expression of intestinal 

alkaline phosphatase, an enzyme involved in the detoxification of LPS. Other abilities 

of the microbiota are the physical protection against pathogens by competition for 

food and space, involvement in mucus production, direct production of anti-

pathogenic compounds, stimulation of innate and adaptive immune responses against 

pathogens and production of vitamin K (Isaacson & Kim 2012; Kamada et al. 2013; 

Sassone-Corsi & Raffatellu 2015).  

2.3. Composition of the young and adult microbiota in the 

hindgut 

As mentioned previously, the microbiota of the neonate and the young differ from 

each other and differ from the complex and stable community reached in adult 

animals. It has been shown that within the first days of life (1-3 days of age), all 

piglets harbour the same microbiota type, with no influence of their breed or nursing 

mother, these factors driving microbiota later on (Bian et al. 2016). At the Phylum 

level, the microbiota of the young pig is dominated by Firmicutes, Proteobacteria 

and Fusobacteria at the first day of life, while Bacteroidetes begin to be dominant 

after 3 days of age (Bian et al. 2016), while for sows it is composed mainly of 

Fimicutes, Bacteroidetes and Spirochaetes (Larivière-Gauthier et al. 2017). A 

comprehensive study of the microbiota changes has been led on 10-weeks old pigs 

whose faeces were then collected a 5 different time points every 3 weeks (Kim et al. 

2011). These authors found out that at every time point, Firmicutes and Bacteroidetes 

accounted for >90% of the total microbiota and that Firmicutes and Spirochaetes 

proportions in the microbiota increased when the pigs aged while Bacteroidetes 

decreased. Their study drew the conclusion that age and related dietary changes are 

the most important factors in driving microbial composition. As said previously, 

microbiota is not fixed and will vary in some conditions, including stress and disease 

(Isaacson & Kim 2012), before reaching again the climax community when the 

trouble ends. Microbiota of the sow or growing pig can thus be modified by the 

inclusion of fermentable materials in the diet; this will be discussed in section 4.4. It 
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is worth noting that microbiota composition changes with stress and physiological 

state. Indeed, studies using sows observed microbiota composition differences 

between the beginning and end of gestation (Larivière-Gauthier et al. 2017) and 

between gestation and lactation periods (Tan et al. 2016). 

To determine microbiota composition of the animals, the classical method used was 

the culture of bacteria on specific media. However, this technique is weak as most of 

the bacteria present in the gut of animals are not cultivable. Thus, alternatives rose 

and so far, the most accurate and promising technique is next-generation sequencing 

(NGS). NGS relies on the amplification of 16S rRNA gene that contains 

hypervariable regions allowing identification of operational taxonomic units (OTU) 

that can be related to bacteria. This culture-independent technique has been used in 

this thesis.  

3. Post-weaning diarrhoea  

3.1. Weaning 

With the intensification and the productivity reached in the current pig production 

systems, the age for weaning the piglets has never been so low (21-28 days today vs 

8-12 weeks in wild pigs for the beginning of weaning process, Miller & Slade 2003). 

The early weaning allows a higher number of piglets to be produced per sow per year 

and it has been established that suckling piglets are limited for their growth because 

of limitation in sows’ milk yield and composition (King & Pluske 2003), representing 

another reason for early weaning. Several stressors happen at weaning, including a 

brutal separation from the mother, mixing with other litters, change in the 

environment (sometimes transportation to another pig facility) and the conversion 

from milk to solid feed only (Lallès et al. 2007; Campbell et al. 2013). Moreover, 

weaning occurs when the animal gut functions are not totally developed (Zabielski et 

al. 2008), like nutrients absorption, gut immune system and secretory abilities (Lallès 

et al. 2004), leading to gut disorders. In wild pigs, weaning is gradual, as the sows 

reduce the milk they provide while the piglets begin to eat solid feed. In the pig 

industry, this switch from milk to solid feed is sudden rather than gradual although a 

creep feed is provided before weaning and forces then the immature intestine to adapt 

fast to a new diet (Miller & Slade 2003). Moreover, the gut immune system is not 

mature at 21-28 days; an example of this immaturity is the load of intraepithelial T 

lymphocytes that is increasing but remains low until 5 weeks for reaching adult levels 

at 24 weeks of age (Vega-Lopez et al. 2001). As weaning leads to the withdrawal of 

passive immunity provided by maternal immunoglobulins in milk, piglets are thus 

even more susceptible to infections.  
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3.2. Adverse consequences  

The first consequence of abrupt weaning is a reduced feed intake (FI) within the 

first hours after weaning as piglets have to switch diet from palatable milk to dry solid 

feed. As summarized by Campbell et al. (2013), the reduced FI at weaning may have 

several adverse consequences on piglets’ health like a lower metabolizable energy 

for the piglets and weight loss. Moreover, a continuous lower FI can impact the gut 

inflammatory status, the gut morphology and enzymes activities. One observation 

that has been made and summarized by several reviews (Miller & Slade 2003; Lallès 

et al. 2004) concerning the small intestine is the atrophy of the villi and hyperplasia 

of the crypts, resulting in a decreased ratio between villus and crypt in the first days 

post-weaning. This reduction in villus height has been mainly attributed to the lower 

feed intake occurring at weaning and is one of the indicators of lower intestinal 

integrity (Vente-Spreeuwenberg & Beynen 2003). Indeed, the altered ratio 

villus/crypt has been described to result in higher apoptosis of enterocytes with a 

lower mitosis rate, resulting in gaps in the mucosa (Zabielski et al. 2008). The 

decreased mucosa integrity has been associated with a higher paracellular 

permeability of the membrane (Boudry et al. 2004) to macromolecules s.a. toxins, 

pathogens and antigens to the lamina propria, where an inflammatory response can 

be triggered (King et al. 2003; Vente-Spreeuwenberg & Beynen 2003). Another 

consequence of the weaning process itself and of the lower villi (result of lower FI) 

is the reduction of the brush border enzymes activity (Vente-Spreeuwenberg & 

Beynen 2003). As summarized by Le Huërou-Luron (2003), lactase and sucrase 

activities decreased within the first 4 days post-weaning (PW) when piglets were 

weaned at 2-3 weeks of age while sucrase activity recovers within 11 days post-

weaning (PW). As microbiota composition relies both on nutrients availability to the 

bacteria and on the physiological state of the animal, weaning induces important 

changes in the microbiota composition of the host, making the gut more susceptible 

to proliferation of pathogenic bacteria (Castillo et al. 2007). All the factors together 

(disturbed microbiota, lower feed intake and digestion, more exposure to pathogens, 

immature gut immune system and no passive protection from sows’ milk), 

summarized in Figure 4, increase the risk of enteric infections at weaning which is 

often observed in the farm as piglets experience post-weaning diarrhoea (PWD). 

PWD is most often the result of infections of the proximal intestine with 

enterotoxigenic E. coli (Hopwood & Hampson 2003; Gresse et al. 2017) which 

fimbriae bind to the enterocytes and releases toxins causing secretion of water and 

electrolytes in the faeces. PWD together with anorexia of the animals cause a loss of 

weight, disease and can finally lead to mortality of the animals. These problems 

represent for the farmer an economic loss as the time to slaughter will also be 

increased and the piglets will have to be cured with medication. 
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Figure 4. Main mechanisms underlying the susceptibility of piglets to PWD. 
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3.3. Allopathic management: antibiotics and zinc oxide 

Traditionally, antibiotics have been used to cure and prevent PWD. It had been 

observed that antibiotics could act as growth promoters at low doses in-feed, and this 

observation led to the massive use of antibiotics as growth promoters all around 

Europe (Levy 2014). As the exposition of non-lethal doses of antibiotics to pathogens 

promotes the appearance of resistant genes, a global threat for animals and humans 

health has emerged with the rise of multi-resistant bacteria. Because of this global 

health issue, the European Union banned progressively the use of in-feed antibiotics 

as growth promoters (Heo et al. 2013). In Belgium, AMCRA objectives are a 

reduction of 50% of antibiotics use from 2011 to 2020. In 2016, the cumulative 

reduction was of 20%, from which the highest decrease is for in-feed premixes 

(BelVet-SAC 2017). 

Thus, more sustainable alternatives to antibiotics are necessary and zinc oxide has 

been used for years now to prevent PWD at therapeutic doses as it has been authorized 

in Belgium in 2013 (BelVet-SAC 2017). As summarized by Heo et al. (2013), the 

use of ZnO in weaner diets increases the gene expression of microbial peptides and 

IGF-I and IGF-II in the small intestine and alters the gut microbiota. However, the 

use of ZnO is very pollutant and highlights the need for more sustainable alternatives.  

3.4. Alternatives to antibiotics and zinc oxide  

Several feed alternatives have been proposed and are under the focus of different 

studies: probiotics, prebiotics and organic acids are the most promising additives in 

regard to improving gut health. In this introduction, the focus will be put on prebiotics 

and in particular dietary fibres. Prebiotics have been firstly described in 1995 by 

Gibson & Roberfroid (1995). In 2004, Gibson et al. (2004) highlighted the need for 

a new definition of prebiotics. This definition of prebiotics includes several 

characteristics, including the resistance of the substance to enzymatic digestion, the 

fermentation by microbiota and the ability to selectively stimulate the growth and/or 

activity of beneficial bacteria. Thus, strategies have been developed aiming at 

stimulating the survival and growth of beneficial microbes within the microbiota at 

the expense of pathogens. In particular, bacteria producing butyrate have been 

targeted. In addition to changes in microbiota composition, studies using prebiotics 

also target inflammatory status (Leonard et al. 2012; Le Bourgot et al. 2014), gut 

morphology and permeability (Chen et al. 2013; Chen et al. 2014), diarrhoea score 

(Kim et al. 2008; Walsh et al. 2012) and performances of the pigs. Most studies focus 

on the introduction of these substances in the growing pigs’ diets, but few focused on 

early nutrition, i.a. on the introduction of prebiotics directly during the suckling 

period (Wang et al. 2013) or weaner diets (Kim et al. 2008; Walsh et al. 2012; Hong 

Chen et al. 2013; Chen et al. 2014) or indirectly in sows’ diets. Only studies related 

to sows’ nutrition will be discussed here. 
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In this thesis, the focus was put on the introduction of fibres in sows’ diet to induce 

microbiota, immune and morphological changes in the progeny. The hypothesis 

underlying this objective is that microbiota of the sow will be transmitted to the 

offspring. As microbiota is important in the development of the immunity, it is likely 

that acting on sows’ microbiota will allow the modulation of the immune system. 

Moreover, the colostrum has a strong influence on the immunity of the piglets as it 

carries important quantities of passive immunity, in the forms of secretory IgA and 

IgG. Milk composition (protein, lactose and fat) are also important for the survival of 

the piglets and for shaping the gut morphology. Some studies got interested in 

maternal nutrition concerning one or several of these parameters. Table 1 summarizes 

the results of some studies concerning the maternal transfer. In addition to the studies 

in the table, other studies focussed in the alteration of milk composition following the 

inclusion of dietary fibres in sows’ diet. An increased milk protein concentration was 

reported for sows fed alfalfa or high fibre diets (Loisel et al. 2013; Krogh et al. 2017). 

Loisel et al. (2013) also observed an increase in fat concentration for sows fed a high 

fibre diet. 
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4. Dietary fibre: wheat bran and resistant starch 

As observed in Table 1, dietary fibres and prebiotics are good candidates to be 

introduced in maternal diet, thanks to their ability to modify sows’ microbiota and 

milk composition. In this thesis, two sources of fibres have been envisaged.  

Wheat bran (WB) was firstly used as it presents several benefits. WB is the outer 

layer of the wheat grain, including the cuticle, pericarp and seed coat and is a by-

product of the milling industry. WB is already used in animal feed as it is a cheap 

ingredient and presents interesting bulking properties helping sows to cope with 

frustration induced by the feed restriction during gestation. WB is a source of 

insoluble non-starch polysaccharides and is rich in arabinoxylans (22-30%), cellulose 

(9-12%) and lignin (3-5%) (Kamal-Eldin et al. 2009) and is thus a good candidate to 

be included in the diet as it will be fermented in the hindgut (Govers et al. 1999; Bach 

Knudsen & Canibe 2000). WB has been mostly studied on weaned piglets and the 

main conclusions concern the fermentation end-products, e.g. an increased 

production of total SCFA, an increased proportion of acetic acid and a decreased 

branched chain fatty acids (BCFA) production, which is beneficial as they are related 

to protein fermentation and lead to the production of inflammatory compounds in the 

gut (Martín-Peláez et al. 2009; Molist Gasa et al. 2010; Molist et al. 2012; Nielsen et 

al. 2014; Iyayi & Adeola 2015). The impact of WB fed to growing pigs has been 

demonstrated to impact microbiota as Molist et al. (2012) observed a decreased 

abundance of Bacteroidetes in the faeces of pigs fed 4% of coarse WB, while Ivarsson 

et al. (2014) observed an increased abundance of L. reuteri (able to produce 

antimicrobial compounds) in the ileum and of M. elsdensii (a bacterium able to 

exclude the pathogen Brachyspira hyodysenteriae) in the faeces of pigs fed 14% of 

WB. In weaned piglets’ faeces, a trend for a decreased abundance of 

Enterobacteriaceae (Molist Gasa et al. 2010) and an increase in Bifidobacterium 

(Chen et al. 2013; Yu et al. 2016) were reported when feeding them 8% or 10% of 

WB, respectively, together with a lower copy number of E. coli in the faeces (Chen 

et al. 2013). Moreover, Zhang et al. (2016) observed an impact of providing suckling 

piglets with creep feed containing 2.92% of WB as Dorea spp. increased in the 

caecum, while L. paracasei increased and S. suis decreased in their distal colon. 

Effects on the immune competence and permeability of the membrane of weaned 

piglets have also been reported when supplementing them 10% of WB in the diet 

(Chen et al. 2013; Chen et al. 2017). The observed effects were an increased 

expression of tight junction proteins (ZO-1 and OCLN) and decreased expression of 

pro-inflammatory compounds (e.g. IL-6, TNFα) in the ileum. 
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All these studies designated WB as a good candidate to be introduced in the diet of 

sows for the first experiment and another feed ingredient was tested during a second 

animal experiment. Resistant starch (pea starch) was selected based on literature and 

on its properties. Resistant starch (RS) is the part of starch that is able to escape 

enzymatic digestion in the small intestine due to chemico-physical properties and is 

thus fermented in the caecum of the animals (Haenen et al. 2013; Nielsen et al. 2014; 

Giuberti et al. 2015). Depending on the characteristics of the starch, it will be divided 

in 5 categories (RS1: physically inaccessible starch, RS2: native resistant starch 

granules, RS3: retrograded starch, RS4: starch that has been chemically modified and 

RS5: amylose-lipid complex starch, Giuberti et al. 2015; Yan et al. 2017). Thought 

to influence the microbiota and SCFA and butyrate production (Pieper et al. 2015), 

resistant starch is thus another good candidate for inclusion in sows’ diet. Several 

studies showed that RS can act on microbiota, SCFA production, immune 

development or milk composition. The impact of the starch on these parameters will 

differ depending on the type of RS used. Indeed, Martinez et al. (2010) observed an 

effect on humans’ microbiota when using RS4 but not with RS2. In vitro (Giuberti et 

al. 2013) or in vivo studies on growing or adult pigs using resistant starch, in the form 

of RS2 or RS3, determined the production of total and individual SCFA. A higher 

production of total SCFA, acetic acid and propionic acid inducing a lower intestinal 

pH were observed, which is considered as beneficial to prevent the growth of 

pathogens (Bird et al. 2007; Haenen et al. 2013; Nielsen et al. 2014) together with a 

lower production of branched-chain fatty acids and molecules produced during 

protein fermentation (Haenen et al. 2013; Zhou et al. 2016). In general, an increased 

butyrate concentration is observed, which however seems to be segment-dependent 

(Bird et al. 2007; Nofrarías et al. 2007; Haenen et al. 2013). The effects of resistant 

starch supplemented to pigs have also been related to microbial changes in the 

hindgut (Sun et al. 2015) Indeed, Haenen et al. (2013) observed a change of 7 

bacterial groups in the caecum and 30 bacterial groups in the colon (including the 

beneficial bacterium Faecalibacterium prautsznii) when feeding adult female pigs 

34% of RS3. Bifidobacterium and Lactobacillus, also considered as beneficial 

bacteria, seem to be impacted by supplementation of RS (Bird et al. 2007; Regmi et 

al. 2011). An improved integrity and health of the intestine by RS have also been 

reported as Zhou et al. (2016) observed an increased expression of genes involved in 

mucin production while Nofrarías et al. (2007) observed an increase of some goblet 

cell types, an increased thickness of tunica muscularis together with a lower number 

of apoptotic cells. Table 2 summarizes the beneficial effects of these two feed 

ingredients on gut health.  
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Table 2. Summary of the effects of wheat bran (WB) and resistant starch (RS) on several 

parameters of the intestinal content, mucus or faeces. #Microbiota changes comprise changes 

at relative abundance of beneficial genera and overall changes of microbiota (composition, 

diversity); * Gut health comprises effects on mucus production, tight junctions and/or 

inflammation of the intestine. 1: Bird et al. (2007) ; 2 : Chen et al. (2013); 3: Chen et al. 

(2015); 4: Haenen et al. (2013); 5: Ivarsson et al. (2015); 6: Iyayi & Adeola (2015); 7: 

Martin-Pelaez et al. (2009); 8: Molist Gasa et al. (2010); 9: Molist et al. (2012); 10: Nielsen 

et al. (2014); 11: Nofrarias et al. (2007) ; 12 : Regmi et al. (2011) ; 13 : Sun et al. (2015) ; 

14 : Yu et al. (2016) ; 15 : Yan et al. (2017); 16 : Zhang et al. (2016) ; 17 : Zhou et al. 

(2016). 
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5. The pig as model for human gastrointestinal tract  

The study of the gastrointestinal tract (GIT) development and intestinal 

challenges for human purposes need appropriate animal models whose GIT 

development and function are similar with that of humans. Historically, mostly rats 

and mice have been used for studies because of their low cost, rapid reproduction 

and handling ease (Guilloteau et al. 2010a; Gonzalez et al. 2015). However, rodents 

may not be the most suitable model for GIT studies. Indeed, rodents gestation 

length and thus maturity of the new-born is different from human, they are 

granivorous animals, the fermentation of carbohydrates happens in the caecum 

rather than colon and they have a lower fermentative ability due to faster passage 

rate of the digesta through the intestine (Guilloteau et al. 2010a; Heinritz et al. 2013; 

Gonzalez et al. 2015). On the contrary, pig as a large animal model shares most of 

the digestive characteristics of the humans. The first common characteristic is the 

same omnivorous diet. Moreover, those two species share a long gestation, enabling 

the piglet to gain maturity for enzymes activities and gut morphology before birth; 

however, it is noteworthy that due to different placentation, the piglet is born 

agammaglobulinemic as specified above, which renders the foetal-type enterocytes 

quite different from human as a closure of the mucosa will happen within the first 

two days of life for piglets. Other advantages of using the pig model include the 

same gut characteristics (same transit time, mainly colonic fermentation, same 

digestive and absorptive processes) and a microbiota composition that is more 

similar to human than microbiota of rodents compared to humans.  

Concerning microbiota, the dominating phyla are the same (Firmicutes and 

Bacteroidetes) for pigs and humans as well as the relative abundance of 

Lactobacillus, a genus for which the abundance differs for rodents (Heinritz et al., 

2013). However, Bifidobacterium (~4% in human colon) are present but to a lower 

extend in the pigs’ colon, even though studies mostly focused on the neonatal or 

un-weaned piglet, for which Bifidobacterium is very poorly represented (<1% of 

Bifidobacterium) (Heinritz et al. 2013). Even though microbiota of the pigs and 

humans are not exactly the same, the physiological and anatomical similarities 

(responses to diseased state, colonic fermentation) make the pig a good animal 

model even for microbiota studies, which is supported by the successful 

transplantation of human faecal microbiota in gnotobiotic pigs, which was not 

efficient enough in rodents for which Bifidobacterium was not able to colonize the 

gut (Heinritz et al. 2013). 

Pigs are becoming extensively used models for GIT disorders, including 

necrotizing enterocolitis or troubles related to obesity (adiposity and 

dyslipidaemia), as pigs and humans have the same body fat distribution and adipose 

cells size, even though the major site for lipogenesis is different (adipose tissue for 

the pig, liver for human; Heinritz et al. 2013). Despite the high similarities between 
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pigs and humans, it is important to note that all breeds are not suitable for studies 

concerning the development of type 2 diabetes syndromes and in particular the 

development of insulin resistance and obesity. Indeed, conventional pigs have been 

selected for leanness, conducting to low body fat deposition (Renner et al. 2016); 

one solution is the use of rustic breeds or minipigs that have the ability to deposit 

more intramuscular and subcutaneous fat (Torres-Rovira et al. 2012; Renner et al. 

2016). In addition, pigs don’t develop insulin resistance characterized by 

destruction of beta-cells in the pancreas; solutions proposed by Renner et al. (2016) 

are the use of transgenic pigs or of substances able to destroy insulin-producing 

beta-cells. 

Pigs are also used as model for preterm delivery, food deprivation during 

pregnancy and infant early nutrition (Thymann et al. 2009; Ferenc et al. 2014; 

Mudd & Dilger 2017). However, studies concerning the use of pigs around birth 

and weaning need to be taken carefully as weaning is more brutal for pigs and as 

piglets are not as mature as human neonates at birth. To conclude, pig and piglets 

are valuable tools for research oriented to human health, even though their cost and 

difficult handling must be taken into account. 

  



 

 



 

 

2 

Objectives, methods and articles related 

to the thesis 
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1. Objectives 

The aim of the thesis was to unravel the potential of two dietary fibre sources (WB 

and RS) included in sows’ diet to impact their microbiota, milk composition and 

piglets’ health. Indeed, we investigated if sows’ microbiota and milk composition 

were affected by their dietary treatment and if this might in turn have impacted the 

microbiota and gut health-related parameters of their piglets by different mechanisms 

(Figure 5). Firstly, as faeces of the sows are in direct contact with piglets, a first 

microbial exposure and colonization occurs with sows’ microbiota; thus, modifying 

sows’ microbiota by dietary fibre nutrition, could differentially affect their piglets’ 

microbiota (1). A possible transfer of microbiota already during gestation was also 

investigated. Microbiota in turn, by fermenting dietary compounds, produces SCFA 

(2); these SCFA have direct positive effects on the energy balance of the piglets and 

can interact with the immune system (3). On the other hand, an altered milk 

composition might also impact piglets’ gut health related parameters. Firstly, milk 

nutrients load and yield can impact the growth and survival of the piglets (4) and their 

gut architecture (5). Then, colostrum and milk provide passive immunity to the 

piglets by the transfer of immunoglobulins (6). Finally, milk composition can impact 

gut morphology and indirectly affect piglets’ microbiota (7). Thus, we hypothesized 

that acting on both sows’ microbiota and milk composition by the use of in-feed 

dietary fibres could promote a beneficial microbiota for the piglets early in life and 

improve their intestinal health. This hypothesis was tested with two animal 

experiments. Additionally, a long-term study with a metabolic challenge was 

performed. Indeed, during the second animal experiment, the pig was used as an 

animal model for human using RS in sows’ diet. The hypothesis was that feeding 

sows with RS would alter the physiological responses (cholesterol production, 

backfat deposition, gene expression) and microbiota of their progeny submitted to a 

high-fat challenge in the later life.  

It is noteworthy that the piglets might have been metabolically programmed during 

foetal development and that changes in sows’ metabolism could have altered their 

milk composition. This hypothesis was however not investigated in the current PhD 

thesis, but is considered in future research. 
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Figure 5. Hypothesis underlying the research question of the thesis. 
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2. Methods, animal experiments and publications 

 

  

Figure 6. Time line and different sampling points of the two animal experiments performed. 
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Two animal experiments were conducted, using wheat bran and resistant starch, 

respectively. The outline for each experiment is represented in Figure 6. For each 

experiment, faeces of sows were collected before and after parturition in order to 

determine their faecal microbiota related to the feed used. Milk was collected weekly 

from birth until the third week of lactation; immunoglobulins concentration and 

nutrients composition were determined. Prior to weaning, piglets were euthanized 

and their intestinal contents and tissues collected. The first experiment ended at 

weaning while the second animal experiment continued until 11 weeks post-weaning, 

with a 7-weeks high fat challenge and 4 groups of pigs (each maternal diet divided in 

control or high fat treatments).  

Four publications were prepared during this thesis using the data collected during 

the experiments and are included as chapters of the thesis. 

 

Chapter 3: “Modulation of piglets’ microbiota: differential effects by a high wheat 

bran maternal diet during gestation and lactation” concerns microbiota of sows, 

piglets and umbilical cord blood and SCFA production of piglets from Exp. 1 

(published in Scientific Reports, August 2017). 

 

Chapter 4: “Effects of a high wheat bran diet administrated to sows on 

performances and intestinal health parameters of the progeny” concerns milk 

composition, performances and gut morphology and cytokines production of piglets’ 

mucosa from Exp. 1 (submitted to Livestock Science). 

 

Chapter 5: this chapter is not included as a publication but is related to an abstract 

submitted to EAAP 2017 and presented in the form of a poster: “In vitro 

characterization of different resistant starch sources” 

 

Chapter 6: “Feeding sows pea starch during gestation and lactation impacts their 

microbiota, milk composition but has little effects of the progeny” includes 

microbiota and SCFA data of the sows and piglets, milk data, performances, intestinal 

health at weaning and diarrhoea score at weaning (published in PLoS ONE, July 

2018) 

 

Chapter 7: This paper will concern the long-term experiment, including the dietary 

high fat challenge and the use of the piglets as a model for human obesity. This paper 

will be submitted when RNAseq results will be available.  

 

Chapter 8 is the general discussion of the thesis. 
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Modulation of piglets’ microbiota: 

differential effects by a high wheat bran 

maternal diet during gestation and 

lactation 
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Article 1 (published in Scientific Reports) 

Modulation of piglets’ microbiota: differential 

effects by a high wheat bran maternal diet 

during gestation and lactation 

Julie Leblois1,2, Sébastien Massart3, Bing Li1, José Wavreille4, Jérôme Bindelle1, 

Nadia Everaert1* 

1 Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA, 

Teaching and Research Centre, University of Liège, 5030 Gembloux, Belgium 

2Research Foundation for Industry and Agriculture, National Scientific Research 

Foundation (FRIA-FNRS), Brussels, Belgium 

3Laboratory of Urban and Integrated Plant Pathology, Gembloux Agro-Bio Tech, 

TERRA, Teaching and Research Centre, University of Liège, 5030 Gembloux, 

Belgium 

4Production and Sectors Department, Walloon Agricultural Research Centre, 5030 

Gembloux, Belgium 

*nadia.everaert@ulg.ac.be 

Reaching a beneficial intestinal microbiota early in life is desirable for piglets, as 

microbiota will impact their future health. One strategy to achieve this is the addition 

of prebiotics to sows’ diet, as their microbiota will be transferred. Transmission of 

microbiota to the offspring occurs at birth and during lactation but a transfer might 

also occur during gestation. The objectives of this study were to determine whether 

and when (before and/or after birth) a maternal transfer of the microbiota occurs, and 

to observe the impact of wheat bran (WB) in sows’ diet on their faecal microbiota, 

their offspring’s microbiota and fermentation profile. Sequencing was performed on 

DNA extracted from umbilical cord blood, meconium, sows’ faeces and piglets’ 

colon content. Short-chain fatty acid production was determined in piglets’ distal gut. 

Different bacteria (mostly Proteobacteria, followed by Firmicutes) were found in the 

umbilical cord blood, suggesting a maternal transfer occurring already during 

gestation. Less butyrate was produced in the caecum of WB piglets and a lower 

concentration of valerate was observed in all intestinal parts of WB piglets. Maternal 

wheat bran supplementation affected microbiota of sows and piglets differently.  
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1. Introduction  

Intestinal microbiota is acquired early in life and plays multiple roles on host’s 

health : fermentation of fibrous dietary compounds, synthesis of vitamins, maturation 

of the gut associated lymphoid and immune tissues and resistance to pathogen 

colonization (Fava et al. 2007; Isaacson & Kim 2012; Kamada et al. 2013; Lawley & 

Walker 2013; Corsi & Raffatellu 2015). The fermentation of undigested 

carbohydrates by fibrolytic bacteria within the large intestine leads to the production 

of short-chain fatty acids (SCFA), mainly acetate, propionate and butyrate (Castillo 

et al. 2007; Besten et al. 2013) that are used as energy sources by the host. In 

particular, butyrate is the main energy source for colonocytes and is considered 

health-promoting due to its anti-inflammatory properties (Guilloteau et al. 2010b). 

An increase in gut butyrate production might improve host’s health and can be 

beneficial in pig production as piglets are prone to infections especially around the 

weaning period. In an attempt to apply such a strategy, Ivarsson et al. (2014) observed 

an increased ileal and faecal butyrate production when feeding growing pigs a high 

wheat bran (WB) diet (14%) in comparison with other fibre sources (pectin or 

arabinoxylan sources).  

A second factor that might improve piglets’ health, possibly on the long term, is the 

establishment of a beneficial microbiota early in life. This might be done by 

modulating the sow’s microbiota that will be transferred to the offspring. This vertical 

transfer of the microbiota has been shown both in humans (Thum et al. 2012) and in 

pigs (Starke et al. 2013; Paßlack et al. 2015). It takes place mainly at birth via a 

transfer of vaginal and faecal microbes from the mother.  However, an earlier 

mechanism has been more recently unravelled. In humans, a transfer of bacteria has 

been proven to occur during gestation as bacteria were found in the umbilical cord 

blood, the meconium, the amniotic fluid (Jiménez et al. 2005; Jiménez et al. 2008) 

even if the digestive tract of new-borns had always previously been considered as 

sterile and firstly colonized at birth (Guilloteau et al. 2010a; Besten et al. 2013). 

 In order to take advantage of this interplay between sows and offspring for pig 

production purposes, some studies showed that prebiotics in the sow’s diet can 

improve piglets’ health status (i.e. greater levels of IgG, IFNγ and activated T cells) 

by using prebiotics (Leonard et al. 2012; Le Bourgot et al. 2014)  but few focussed 

on the direct impact of sows’ diet on the offspring’s microbiota (Starke et al. 2013; 

Paßlack et al. 2015). 

Wheat bran (WB) is a source of insoluble non-starch polysaccharides, rich in 

arabinoxylans, cellulose and lignin that is commonly used in sows’ diets for its 

bulking properties and may be considered as a prebiotic due to its ability to be 

fermented in the large intestine (Govers et al. 1999; Kamal-Eldin et al. 2009; Bach 

Knudsen & Canibe 2000). As it has been shown that WB can induce microbiota and 
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SCFA changes in growing pigs’ ileum and faeces (Ivarsson et al. 2014), WB in the 

maternal diet was used in this study to investigate whether an altered microbiota was 

observed in sows’ faeces at different time points and if this treatment could in turn 

affect the microbiota and SCFA production of their offspring. Moreover, to 

investigate in utero microbiota transfer, the umbilical cord blood and meconium were 

collected at birth and analysed for subsequent microbiota determination.  

2. Methods 

2.1. Animals 

The animal experiment and all interventions on animals were approved by the 

ethical committee of the University of Liège (Belgium, licence number 1661 

approved 31st January 2015) and were in compliance with European (directive 

2010/63/EU) and Belgian (C − 2013/24221, AR of 23rd of March 2013) regulations 

concerning the use and care of animals for scientific purposes.  The experiment was 

run at the Walloon Agricultural Research Centre in Gembloux (Belgium). Fifteen 

Landrace sows, inseminated with Piétrain semen, parity 1 to 5, were divided in two 

groups, equilibrated for parity, body weight and genetic background.  

2.2. Housing 

Sows were housed in groups during the gestation period from 3 days after artificial 

insemination (AI) until 7 days before farrowing.  Gestation pens used straw as 

bedding; the individual farrowing units used wood shavings as bedding. 

2.3. Diets and feeding 

From day 3 after AI to day 43, all sows received the same gestation diet containing 

7% of WB. At day 43, the sows were split in 2 groups and each group was assigned 

to a dietary treatment, either a control diet (CON, N=7) or a wheat bran-based diet 

(WB, N=8) until the end of the lactation period (28 days after farrowing). Day 43 was 

chosen to allow a long adaptation period to the sows and because ultrasound had been 

performed to confirm gestation of all sows. The same ingredients were used for both 

the CON and WB diet. WB diet contained 250g/kg DM of wheat bran during 

gestation and 140g/kg DM during lactation. For a similar feeding phase, diets of both 

groups were formulated to supply similar amounts of net energy and protein. The 

composition and nutritive values are given in Supplementary Table ST1 online. Sows 

were restrictively fed during the gestation period and fed ad libitum during the whole 

lactation period, diets being adapted to their nutritional requirements at each feeding 

phase (gestation and lactation). Piglets had access to creep feed during the lactation 

period.  The creep feed was devoid of wheat bran, non-starch polysaccharidases and 

organic acids (composition displayed in Supplementary Table ST2).  
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2.4. Sample collection 

Faeces were collected directly from the rectum of the sows during gestation, 21 

days after AI (G21) and 98 days after AI corresponding to 16 days before farrowing 

(G98+), respectively before and after the dietary change that took place on day 43.  

Sows’ faeces were also collected during the lactation period, i.e. 20 days post-

farrowing (L). Faecal samples were placed immediately in sterile bags, snap-frozen 

and stored at -80°C until DNA extraction. Farrowing was induced by the injection of 

2ml of sodium cloprostenol (92µg/ml) at 114 days of gestation. For one piglet during 

each farrowing, a 5ml sample of umbilical cord blood was collected with a sterile 

syringe and tube by clamping the cord while the piglet was being born. The same 

piglet was directly removed from the sows’ vulva and euthanized in order to collect 

meconium in the colon that was snap-frozen and stored at -80°C until DNA 

extraction. Fourteen blood and meconium samples were collected in total (6 from 

CON sows, 8 from WB sows). On days 26 and 27 of lactation, 8 female piglets per 

group (16 in total, 2 piglets/sow, 4 sows/treatment) were euthanized. A mix of 

Xylazine/Zoletil 100 (4 mg of xylazine, 2 mg of zolazepam and 2 mg of tilamine/kg) 

was used for anaesthesia followed by T-61 injection directly in the heart (0.1ml/kg) 

for euthanasia. Their ileal, caecal and colonic contents were immediately collected in 

sterile tubes, snap-frozen and stored at -80°C until further analysis. 

2.5. DNA extraction and sequencing 

DNA from sows’ faeces, piglets’ meconium and colon content was extracted with 

the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany), following the 

manufacturer’s instructions modified by the addition of two bead-beating steps 

(FastPrep-24, MP Biomedicals, Illkirsh, France), as described by Yu & Morrison 

(2004). DNA from umbilical cord blood was extracted with QIAamp DNA Blood 

Mini Kit (Qiagen, Hilden, Germany). The concentration and quality of the DNA were 

confirmed on a Nanodrop (Thermo Scientific NanoDrop 2000, USA) and by an 

agarose gel (1%). DNA was then stored at -20°C until sequencing. Sequencing was 

performed by DNAVision (Gosselies, Belgium), using the Illumina MiSeq (2x300nt) 

and after amplifying, purifying and tagging the hypervariable regions V3-V4 

(Forward primer: 5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGC

AG-3’ and reverse primer: 5’- 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATC

TAATCC-3’) following the 16S Metagenomic Sequencing Library Preparation 

protocol (Part # 15044223 Rev. B) from Illumina. For sows’ faecal DNA, 6 DNA 

samples per treatment were analysed by sequencing to exclude samples of sows with 

high parity. For piglets, 7 samples per maternal treatment were analysed based upon 

the need of high quality DNA for sequencing. 
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2.6. Short-chain fatty acids (SCFA) and branched-chain fatty 

acids (BCFA) determination 

Piglet’s intestinal content and sow’s faeces were diluted in ultrapure water to obtain 

a 6-fold dilution prior to determination of SCFA and lactate by high performance 

liquid chromatography (HPLC). Piglets’ short chain and branched chain fatty acids 

were analysed by isocratic HPLC, using a Waters system fitted with an Aminex HPX-

87H column (Bio-Rad, Hercules, CA, USA) combined with a UV detector (210nm) 

with sulfuric acid (5mM) as mobile phase at a flow rate of 0.6ml/min. Each peak was 

integrated by the Empower 3 software (Waters, Milford, USA) after the encoding of 

the standard curve and then verified manually. The results were expressed in mg.ml-

1 and were transformed in mg.g-1 and mmol.g-1, taking into account the initial dilution. 

The percentages of SCFAs (acetate, propionate, butyrate and valerate), BCFAs 

(isobutyrate, isovalerate), and lactate were calculated based on the molar ratios. The 

variable number of samples observed for different intestinal parts is explained by the 

lack of intestinal contents of some pigs at slaughtering. 

2.7. Bioinformatics and statistical analyses  

Raw sequences of 16S rRNA were assigned to each sample, quality checked and 

trimmed using Basespace default parameters (Illumina). Sequences were assigned to 

97% ID OTUs by comparison to the Greengenes reference database 13.8 using the 

QIIME (Quantitative Insights Into Microbial Ecology) 1.9.0 software. Since samples 

contained variable number of sequences (mean±SEM of 35893±5552 for sows’ 

faeces, 23440±3747 for piglets’ colon contents and 209±90 for the umbilical cord 

blood), diversity analyses were carried out on samples rarefied at the same 

sequencing depth to avoid bias in sequencing depth between samples. The low 

number of sequences for the umbilical blood was probably due to the low numerical 

count of bacteria present in blood in opposition with intestinal contents, as already 

observed by Vientos-Plotts et al. (2017). The Beta_diversity_through_plots.py script 

was used to assess differences in bacterial communities and functional composition 

between groups of samples. Beta diversity was visualized using un-weighed, weighed 

UniFrac and Bray–Curtis distances with Principal Coordinate Analysis (PCoA). The 

compare_categories.py script, which applied the adonis method on the previously 

obtained dissimilarity matrices, was used to determine whether communities differed 

significantly between groups of samples. Multiple_rarefactions.py and 

alpha_diversity.py scripts were applied to compute alpha diversity metrics, which 

evaluated diversity within a sample and generated rarefaction curves.  All statistical 

analyses were performed with SAS 9.2 software (Cary, NC USA). Microbiota results 

were analysed with the Kruskall-Wallis test which is a non-parametric analysis of 

variance including multiple comparisons. P-values and false discovery rate (FDR) 

corrections were determined by the MULTTEST procedure of SAS that calculates 

the adjusted p-value by using the linear method of Benjamini and Hochberg.  SCFA, 

BCFA and lactate results were analysed with the proc MIXED of SAS, using the 
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treatment alone (piglets) or treatment and period (sows) as fixed factors. Normality 

of data (Shapiro-Wilk’s test) and variance equality (Levene’s test) were checked in 

SAS prior to analysis. Pearson’s correlation coefficient between SCFA ratios and 

microbiota in colon content were calculated using the PROC CORR of SAS. All data 

were presented as mean and the SCFA data was presented as mean ± SEM; for all 

analyses, differences were considered as significant when p-value<0.05 and as 

substantial when p-values < 0.1. 

3. Results 

Results of the individual composition of sows’ (a) and piglets’ (b) microbiota are 

presented in Figure 7, with a grouping of butyrate-producing bacteria. On the X-axis, 

each bar chart represents individual animals (ID number on the axis). Because of the 

important role of butyrate in health-promoting mechanisms of intestinal microbiota, 

specific attention was paid to the butyrate-producing bacteria in the microbiota 

analyses. These butyrate-producing bacteria group includes the Clostridium, 

Anaerostipes, Blautia, Butyrivibrio, Coprococcus, Dorea, Lachnospira, 

Pseudobutyrivibrio, Roseburia, Faecalibacterium, Oscillospira, Ruminococcus, 

Megasphaera and  Butyricimonas genera. This group is not exhaustive is based on 

the classification provided by several articles found in literature (Bian et al. 2016; 

Louis & Flint 2009; Levine et al. 2013). What is clear from this figure is that there 

exists a large variability between individual sows even within the same group. To 

illustrate this, Prevotella (in red) can vary for one group (G98+ CON e.g.) from 9% 

to 25% of the total microbiota. For piglets, the same tendency is observed (from 3% 

to 16% of the total microbiota is Prevotella in the CON group). The same 

observations can be made for several groups (Lactobacillus, Bacteroides). 
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Figure 7. Individual composition of sows’ (a) and piglets’ (b) microbiota at the genus level. The Y-

axis represents the relative abundances of the different genera (expressed as % of the total 

microbiota) and the X-axis represents the individuals (ID number). 
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3.1. Sows 

The box plot (Figure 8) shows a numerical difference in the calculated Shannon 

index between CON (7.10) and WB (6.48) samples during G98+, although the 

Shannon index was not significantly different (p-value=0.06). During G21 and L, the 

p-value between groups were not significant (p-value=1). The PCoA for sows 

sampled during gestation when fed the experimental diets shows a clear separation 

between the CON and the WB groups, the two axes explaining 68 % of the total 

variability (Figure 8, PCoA based on the weighted Unifrac distance). Such clustering 

could not be found during the lactation period (see supplementary figure SF1 online). 

 

During the gestation period (G98+), 13 genera differed in relative abundance 

(P<0.05) between the CON and the WB group (Table 3), probably driving the PCoA 

separation. Most of the genera for which the raw p-value was significant showed a 

higher abundance in the CON than in the WB group (including Parabacteroides, 

Unclassified_Bacteroidales, Unclassified_RF16, Unclassified_Clostridiales and 

Figure 8. Distribution of alpha diversity as measured by Shannon index, box plots 

represent the calculated Shannon index for microbiota samples of sows fed the control 

diet (CON, N=6) and the wheat bran-enriched diet (WB, N=6) at three different stages: 

21 d (G21) and 98 d (G98+) of gestation, respectively before and after the 

experimental diets were distributed, and 20 d of lactation (L). 



Early life programming of piglets’ microbiota and gut health by maternal dietary fibre  
 

44 

 

Oscillospira, a butyrate-producing bacterium), while only 

Unclassified_Erysipelotrichaceae OTU1 were more abundant in the WB group. Only 

3 genera showed a significant difference with FDR correction (FDR<0.05, 

Parabacteroides, Unclassified_Bacteroidales, SMB53). During lactation (L), two 

genera, the unclassified RF32 and Ruminobacter, showed significant differences 

(p<0.05) between groups, these two being higher in the WB group. It is worth noting 

that some bacteria, even though non-significantly different between both groups 

show a numerical difference with a p-value<0.10. Indeed, the butyrate-producing 

bacterium Butyrivibrio is higher in the WB group in lactation compared to the CON 

group.  Before the separation of the two dietary groups (G21), the microbiota of the 

sows was also analysed. The results can be found in the supplementary table ST3 

online. Minor genera (<1% of the total microbiota) were different before the dietary 

change but were not different afterwards. For Lactobacillus, a significant difference 

was observed: the future CON group had a higher abundance than the future WB 

group, which is the opposite of what we can observe numerically during G98+. 

The SCFA molar ratios of the sows’ faeces (see Supplementary Table ST4) were 

not affected by the dietary treatment whatever the period, while a period-effect was 

observed (p<0.001) for the total SCFA concentration. This value was higher during 

lactation than gestation. 
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Table 3. Composition of the faecal microbiota of sows fed the control diet (CON, N=6) and 

the wheat bran-enriched diet (WB, N=6) at two different stages: 98 d into gestation (G98+) 

and 20 d into lactation (L), expressed as a percentage (%) of the total mi 

Phylum/Genus 

G98+ L 

CON WB 
P FDR 

CON WB 
P FDR 

(N=6) (N=6) (N=6) (N=6) 

Bacteroidetes 29.3 25.4 NS NS 23.2 22.7 NS NS 

Parabacteroides 0.36 0.14 <0.001  0.02 0.36 0.32 NS NS 

Unclassified_Bacteroidales 6.13 2.25 <0.001 0.02 5.1 4.11 NS NS 

Bacteroides 0.22 0.04 <0.005 NS 0.12 0.11 NS NS 

CF231 1.22 0.57 0.01 NS 0.74 0.69 NS NS 

Unclassified_RF16 2.38 0.79 0.03 NS 0.78 0.43 NS NS 

Prevotella 15.5 19 NS NS 12.7 13.7 NS NS 

Cyanobacteria 0 0 NS NS 0.07 0.14 0.06 NS 

Unclassified_YS2 0.11 0.14 NS NS 0.07 0.14 0.06 NS 

Firmicutes 63.9 67.8 NS NS 71.2 68.5 NS NS 

Butyrivibrio 0 0.04 NS NS 0.04 0.14 0.09 NS 

SMB53 0.29 0.13 <0.001 0.03 0.83 0.8 NS NS 

Unclassified_Lachnospiraceae OTU2 0.09 0.02 <0.005 NS 0.04 0.03 NS NS 

Unclassified_Clostridiales 7.17 5.41 <0.005 NS 6.23 6.46 NS NS 

Unclassified_ Erysipelotrichaceae 

OTU1 
0.02 0.06 0.01 NS 0.07 0.06 NS NS 

Anaerovibrio 0.2 0.53 0.03 NS 0.3 0.44 NS NS 

Turicibacter 0.13 0.07 0.03 NS 0.17 0.12 NS NS 

Oscillospira 2.69 1.76 0.03 NS 1.88 1.85 NS NS 

Unclassified_Erysipelotrichaceae OTU2 0.08 0.03 0.06 NS 0.05 0.05 NS NS 

Unclassified_Mogibacteriaceae 0.75 0.44 0.07 NS 0.46 0.61 NS NS 

Lactobacillus 12.2 23.4 NS NS 9.47 12.3 NS NS 

Streptococcus 4.84 1.45 NS NS 6.17 3.72 NS NS 

Unclassified_Lachnospiraceae OTU1  5.07 6.19 NS NS 6.26 5.5 NS NS 

Unclassified_Ruminococcaceae 17.5 15.8 NS NS 21.4 20.3 NS NS 

Unclassified_Christensenellaceae 0.55 0.52 NS NS 3.2 3.02 NS NS 
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Continutation of Table 3. 

  

Phylum/Genus 

G98+ L 

CON WB 
P FDR 

CON WB 
P FDR 

(N=6) (N=6) (N=6) (N=6) 

Proteobacteria 1.28 1.5 NS NS 1.57 2.49 NS NS 

Unclassified_Enterobacteriaceae 0.04 0.01 0.01 NS 0.31 0.43 NS NS 

Ruminobacter 0.02 0.03 NS NS 0 0.01 0.04 NS 

Unclassified_RF32 0.04 0.03 NS NS 0.02 0.04 0.05 NS 

Spirochaetes 3.16 3.29 NS NS 2.3 3.8 NS NS 

Unclassified_Sphaerochaeta 0.33 0.12 0.07 NS 0.18 0.17 NS NS 

Treponema 2.83 3.17 NS NS 2.12 3.63 0.09 NS 
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3.2. Umbilical cord blood and meconium 

After DNA extraction on the meconium of the new-born piglets, bacterial DNA 

concentrations were below detection limits and thus could not be sequenced. 

Consequently, no meconium results can then be presented here. For umbilical cord 

blood, concentrations of >20ng/µl of DNA were reached for every sample and 

underwent sequencing. Shannon indexes did not differ between treatments (boxplot 

displayed in Supplementary Figure SF1, p=0.4). Results (Table 4) showed that 

different bacteria are present in the umbilical cord blood. Proteobacteria accounted 

for 51.6% and 46.6% of the total bacteria present in the CON and the WB groups, 

respectively. The second most abundant phylum was Firmicutes while Actinobacteria 

and Bacteroidetes were also well represented.  

Numerical differences between groups (p<0.1) were observed for some genera, 

including unclassified_Lachnospiraceae, which is an intestinal bacterium. Although 

concentration was low, this bacterium was more abundant in the CON group (0.48%) 

compared to the WB group (0.08%). Some distal intestinal bacteria were also 

detected, namely Corynebacterium, Prevotella, unclassified_Bacteroidales, 

unclassified_ Ruminococcaceae and Lactobacillus as well as bacteria colonizing the 

small intestine (Psychrobacter, Acinetobacter). FDR correction did not reveal any 

differences between treatments. 

3.3. Piglets  

As insufficient amount of DNA was extracted from the meconium, only results 

concerning the colonic contents of the piglets at days 26/27 of lactation are presented 

here. The Shannon index of the microbiota from piglets’ colon content did not show 

any difference in diversity between treatments (boxplot displayed in Supplementary 

Figure SF2, p=0.6). However, some differences in the relative abundance of genera 

existed and are presented in Table 5. The most abundant genera in the colon did not 

differ significantly between both groups but numerical differences were observed for 

less abundant genera. Indeed, Colinsella spp., a butyrate producing genus, was 

significantly more abundant (p<0.05) in the CON group while Methanobrevibacter, 

unclassified_Clostridiaceae (FDR<0.05) and unclassified_Lachnospiraceae 

(p<0.05) were more abundant in the WB group. Some genera also exhibited 

numerical differences between treatments (p<0.10), i.e. Butyricimonas, Odoribacter 

and Ruminococcus were more abundant in the CON group, whereas 

Phascolarctobacterium and Roseburia were more abundant in the WB group. 
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Table 4. Microbial composition of the umbilical cord blood of piglets born from sows fed 

the control diet (CON, N=6) and the wheat bran-enriched diet (WB, N=8), expressed as the 

percentage (%) of the total microbiota. Only top ten genera and those with a consistent p-

value (<0.1) were included in the table. 

 

  

 Genus 
CON 

(N=6) 

WB 

(N=8) 
P FDR 

Actinobacteria 12.4 8.7 NS NS 

Corynebacterium 4.44 1.93 NS NS 

Propionibacterium 6.17 4.76 NS NS 

Bacteroidetes 9.4 16.0 NS NS 

Prevotella 2.60 6.50 NS NS 

Unclassified_Bacteroidales 1.06 2.09 NS NS 

Firmicutes 23.1 25.4 NS NS 

Unclassified_Lachnospiraceae OTU2 0.48 0.08 0.06 NS 

Bacillus 0.48 0.04 0.10 NS 

Staphylococcus 3.47 1.24 NS NS 

Unclassified_Ruminococcaceae 1.93 2.63 NS NS 

Lactobacillus 6.17 5.34 NS NS 

Solibacillus 0.68 1.93 NS NS 

Streptococcus 1.93 1.01 NS NS 

OD1 0.7 0.0 0.08 NS 

Unclassified_ZB2 0.68 0.04 0.08 NS 

Proteobacteria 51.6 46.6 NS NS 

Unclassified_Pseudomonadaceae 2.80 0.97 NS NS 

Sphingomonas 2.89 2.09 NS NS 

Psychrobacter 12.4 19.3 NS NS 

Acinetobacter 22.1 15.9 NS NS 
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Table 5. Relative abundance of bacterial genera sampled in the colon of piglets born from 

sows fed the control diet (CON) and the wheat bran-enriched diet (WB), only genera with 

abundance >0.01% are displayed in this table. P-values and FDR are considered as 

significant <0.05 and numerically different with a value <0.10. 

 

In piglets’ intestinal contents, SCFA were affected by the maternal dietary 

treatment. The molar ratio of acetate was higher in the caecum of WB piglets (57%) 

compared to CON piglets (51%) and the same tendency (p=0.06) was observed in the 

colon (Table 6). Butyrate molar ratio was lower in the WB group in the caecum 

(9.73% in WB vs 13.3% in CON). Valerate molar ratio was lower in the WB group 

compared to the CON group for each intestinal part. Concerning BCFA, no impact 

of the maternal dietary treatment was observed, as isobutyrate and isovalerate 

concentrations were not significantly different for each intestinal part.  

Results of Pearson’s correlations between SCFA ratios and microbiota data of the 

colon are shown in Table 7. 

Genus 
CON 

(N=7) 

WB 

(N=7) 
P FDR 

Actinobacteria 0.71 0.57 NS NS 

Collinsella 0.29 0.08 0.04 NS 

Bacteroidetes 32.3 28.4 NS NS 

Butyricimonas 0.15 0.02 0.07 NS 

Odoribacter 0.25 0.02 0.07 NS 

Bacteroides 6.72 2.21 NS NS 

Unclassified_Bacteroidales 3.27 5.61 NS NS 

Prevotella 12.3 11.8 NS NS 

Euryarchaeota 0.01 0.02 0.05 NS 

Methanobrevibacter 0.01 0.02 0.05 NS 

Firmicutes 56.0 63.2 NS NS 

Unclassified_Clostridiaceae 1.57 2.82 <0.001 0.04 

Unclassified_Lachnospiraceae OTU2 1.91 4.14 0.04 NS 

Ruminococcus 1.74 0.85 0.07 NS 

Phascolarctobacterium 2.35 3.68 0.07 NS 

Roseburia 0.11 0.57 0.09 NS 

Lactobacillus 14.8 13.1 NS NS 

Unclassified_Clostridiales 6.57 6.97 NS NS 

Unclassified_Ruminococcaceae 11.7 14.3 NS NS 
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Table 7. Pearson's correlations between SCFA molar ratios and genera of the microbial 

community in the colon of piglets from sows fed a control and a wheat bran-enriched diet 

(N=14). Only the results with a p-value<0.05 and r>0.70 were included in this table. 

Negative correlations are expressed in the table with the symbol “-“. 
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Slackia               
 

Unclassified_Rikenellaceae               
 

Butyricimonas               
 

Unclassified_Peptostreptococcaceae               
 

Unclassified_Ruminococcaceae - - - -   - 
 

Faecalibacterium               
 

Megasphaera               
 

Phascolarctobacterium           -   
 

Bulleidia               
 

Catenibacterium               
 

Unclassified_Fusobacteriaceae               
 

Fusobacterium               
 

Unclassified_Desulfobulbaceae               
 

Unclassified_Desulfovibrionaceae               
 

Bilophila               
 

Flexispira               
 

Pasteurella               
 

 

  



Early life programming of piglets’ microbiota and gut health by maternal dietary fibre  
 

52 

 

4. Discussion  

The aim of the study was to investigate whether the addition of wheat bran in the 

diet fed to gestating and lactating sows would alter their intestinal microbiota and if 

this diet would in turn alter their offspring’s microbiota and subsequent SCFA 

production. Moreover, the study aimed at determining whether a maternal transfer of 

microbiota occurred already in utero. Regarding the latter and to the author’s best 

knowledge, it is the first time in pigs that a maternal transfer occurring during the 

gestation period is reported, as shown by the umbilical cord blood microbial results.  

Similar results have been observed in humans as Jiménez et al. (2005) isolated four 

bacterial genera from the umbilical cord blood: Enterococcus, Propionibacterium, 

Staphylococcus, and Streptococcus.  The three last genera had also a high share in the 

microbial communities of umbilical blood in this experiment with pigs, strengthening 

the reliability of our results. In this experiment, more than four genera have been 

observed, which is probably due to the direct DNA extraction from blood instead of 

the pre-culturing of blood that was done by Jiménez et al. (2005). As no bead beating 

step was added for the umbilical blood, it may be possible that more bacterial DNA 

could be extracted by adding bead beating steps during the DNA extraction.  The 

presence of intestinal bacteria in the umbilical cord blood suggests a microbial 

transfer from the mother to the offspring already during gestation. So it can be 

surprising that no detectable DNA was found in the meconium. A first explanation 

for this lack of detectable DNA in the meconium is that some bacteria found in the 

umbilical cord blood are not hosted in the colon lumen (i.e. meconium collected) but 

in the small intestine like Psychrobacter and Acinetobacter (Zhao et al. 2015) or in 

the intestinal mucus layer, like Proteobacteria and Ruminococcaceaeae (Tran et al. 

2015) and could thus have colonized these locations that were not sampled in this 

study. Also, as the kits used for blood and meconium DNA extractions were not the 

same, it might be that the kit used for meconium may not be sensitive enough to 

quantify small amounts of DNA. Other evidences of maternal bacterial transfer 

during gestation could be found by the analysis of mucus layer and small intestine of 

the piglets and the use of a more sensitive kit to extract DNA from the meconium. To 

understand better the mechanism of the maternal transfer during the gestation period, 

sampling of amniotic fluid that is directly ingested by the foetus in the second part of 

the gestation (Guilloteau et al. 2010a) could be interesting in the future as well as 

placenta during C-section. 

Regarding the main hypothesis in this experiment, namely the introduction of WB 

into sows’ diet and the impact on their microbiota, it was shown that during gestation, 

13 genera abundances differed in sows’ faeces between both dietary groups and 2 

additional genera differed during lactation. Only during gestation (G98+), a nice 

clustering of the two groups was observed with the PCoA, most probably due to the 

genera for which p-values were different. 
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Ivarsson et al. (2014) found that lactic acid bacteria in faeces of growing pigs fed a 

14% WB diet were significantly higher while Prevotella were lower. This tendency 

was not observed in the current study for Prevotella while Lactobacillus relative 

abundances were higher during G98+ and L in the WB group without being 

statistically significant, probably due to a high variability between individual sows, 

which is in agreement with studies highlighting the individual variations (Kim et al. 

2011). Seen the variability between individuals, it can be interesting for future 

research to increase the number of animals with the same genetic background and 

equal parity. In this study, results showed a higher proportion of Oscillospira, which 

has been reported to be a butyrate-producing genus (Upadhyaya et al. 2016), in the 

CON group during gestation. However, a negative correlation (see Supplementary 

table ST5 online, r= -0.57) has been observed between butyrate production and the 

abundance of Oscillospira for piglets, suggesting that this genus can have a different 

impact on butyrate production depending on the species or strains. Most of the 

differences in sows’ faecal microbiota occurred for minor groups of microbiota 

present in the faeces of sows (<1% of the total microbiota). However, some genera 

with a different abundance amongst treatments were well-represented in the 

microbial community, i.e. Oscillospira (2.7% in the CON group, 1.8% in the WB 

group), the unclassified Bacteroidales (6.1% in CON, 2.2% in WB) and Clostridiales 

(7.2% CON, 5.4% WB). During the lactation period, the butyrate-producing genus 

Butyrivibrio was increased in the WB group (0.14%) compared to the CON group 

(0.04%). Different studies (Chen et al. 2013; Chen et al. 2014; Yu et al. 2016) showed 

an increase in Bifidobacterium in the distal part of the gastrointestinal tract of growing 

pigs fed by a WB diet, but this was not observed for sows in the present study. It must 

be emphasized that most studies on WB have been performed on piglets or growing 

pigs, which renders the comparison difficult as the microbiota is related to age (Bian 

et al. 2016) and encounters changes as the pig grows (Kim et al. 2011). 

The differences in the microbial composition of sows’ faeces observed for the two 

dietary treatments in gestation were less pronounced in lactation, where only 2 genera 

were different between both groups, illustrated by the lack of clustering between 

groups for PCoA in opposition with gestation. The first possible explanation for this 

resides in the lower amount of WB in the diet that could be included to meet the 

nutritional requirements of the sows during the lactation period. A second hypothesis 

is that the gestation and lactation diets contained different ingredients in different 

proportions, such as soya pods that can be fermented. Thirdly, microbiota 

composition is not stable and can vary with physiological stages. It is particularly true 

for piglets for which colonization by microbiota has been demonstrated to be affected 

by stress (Schokker et al. 2014) but may apply to sows as farrowing and lactation are 

stressful periods due to handlings on sows and piglets and accompanied with 

physiological changes. A last explanation could be the different environment in 

gestation and lactation, as the bedding materials differed.  
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The maternal dietary treatment impacted the composition of the microbiota in 

piglet’s colon, which was distinct from the sow’s faecal microbial alterations. This 

was also observed by  different studies when feeding sows with inulin or probiotics 

(Starke et al. 2013; Paßlack et al. 2015). As highlighted by Paßlack et al. (2015), the 

discrepancy between microbiota changes in sows and piglets can be ascribed to the 

use of faeces for sows and colon content for piglets, which may not be the exact 

reflection of a sow’s colon. Another explanation for these differences resides in the 

fact that as diet is a major driver for microbiota composition, the microbiota is 

probably the reflection of their different diets (solid diet for sows vs milk for piglets). 

Moreover, the piglet acquires not only the faecal microbiota from the sow but also 

microbial communities present in the vagina, on the skin and in the environment of 

its mother.  All these observations probably contributed to some extend the 

discrepancies between sow’s and piglet’s microbiota. Furthermore, besides a faecal 

transfer, the colostrum and the chemical and microbial composition of milk might as 

well influence the intestinal microbiota of the progeny (Bian et al. 2016) which is 

worth to be investigated. As microbiota composition is related to age, it would be 

interesting to analyse pigs’ microbiota at the adult age to see if and how these 

discrepancies evolve, as a stable microbiota was not reached at our sampling time 

period (26 days of age, Bian et al. 2016).  

SCFA production in piglets’ intestinal contents was measured and differences 

between groups were observed. In the caecum and colon, acetate was higher for WB 

piglets compared to CON animals, whereas valerate was lower for WB piglets for 

each intestinal part. The butyrate production was higher in the CON pigs in the 

caecum, which was unexpected but no support in literature could be found on indirect 

impact of maternal WB on progeny’s butyrate production. Some plausible 

explanations for these results can be found in the correlation matrix between 

microbial genera and SCFA production in the colon. Indeed, the lower valerate 

production in the WB group can be partly explained by the higher abundance of 

genera with a negative correlation with valerate production: the 

unclassified_Bacteroidales (r=-0.55), the unclassified_Clostridiaceae (r=-0.63), 

unclassified_Lachnospiraceae OTU2 (r=-0.58) and Phascolarctobacterium (r=-

0.73). Moreover, some valerate-producing genera, as determined by the correlation 

matrix, were more abundant in the CON piglets than in the WB: Colinsella (r=0.57) 

and Odoribacter (r=0.69). Butyricimonas was positively correlated with butyrate 

(r=0.80), iso-valerate (r=0.75) and valerate (r=0.86) production, explaining partly the 

higher valerate and butyrate production of the CON piglets as this genus was 

significantly more abundant than in the WB piglets. The lower valerate concentration 

could be considered as beneficial for health, as valerate is an end-product of protein 

fermentation and can lead to the production of toxic compounds, even though the 

impact of valerate on the colon is poorly documented (Mortensen et al. 1992; Walton 

et al. 2012; Yao et al. 2016; Poelaert et al. 2017). The higher acetate production in 

the WB group does not seem to increase butyrate production (bacteria can use acetate 
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as alternative pathway to produce butyrate) but can be further absorbed by 

colonocytes as energy source and taken up by the liver for energy purposes (Besten 

et al. 2013). 

5. Conclusion  

In conclusion, this study showed that a maternal transfer is possible, and that it 

might already take place during gestation, as seen by the microbiota composition of 

the umbilical cord blood. The maternal diet impacted the piglet’s microbiota and 

fermentation end-products profile, even though, conversely to what was expected, 

the butyrate did not increase in the WB piglets. In a more holistic approach for future 

studies, it would be interesting to investigate long-term effects on piglet’s microbiota 

and health.  
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Supplementary Table ST1. Composition and nutritive values of sows’ diets. 

 

Ingredients (%) GC GWB LC LWB 

Wheat 19.993 15.3 23.954 17.942 

Maize 15 12 12 12 

Barley 15 10 11.4 10 

Wheat bran -  25  - 14 

Soya -  -  13.7 13.1 

Bread flour 6.5 5 6.5 5 

Sugar beet pulp 5.5 5.5 5.5 5.5 

Biscuit flour 5 3.5 5 4 

Cocoa pods 5 1.5 3.9 0.8 

Sunflower meal 9 4.2 2.5 1 

Palmist meal 4 4 1.2 1.6 

Soya pods 1.9 1.9 3 3 

Treacle 2 1 3 3 

Nutex 68 (Dumoulin Inc) 3.6 3.3 3.3 3.3 

Chalk 1.17 1.21 1.61 1.66 

Lard 0.47 1.25 1.47 2.25 

Rapeseed meal 3 2.2 -  -  

Rapeseed flour 1.2 1.2 -  -  

Soya oil -  0.55 0.05 -  

Minerals & Vitamins 1.242 0.982 1.41 1.34 

L-Lysine 50 % 0.386 0.372 0.393 0.385 

L-threonine 0.039 0.038 0.081 0.09 

DL-methionine -  -  0.032 0.033 

Thr+Met 70/30 -  0.034  -  - 

     
DM 88.78 88.82 88.3 88.3 

Crude ash 5.91 5.71 6.24 6.07 

OM 94.09 94.29 93.76 93.93 

CP 14.59 14.55 18.09 17.4 

ADF (%) 11.89 11.43 9.88 9.75 

NDF (%) 22.41 25.41 19.73 20.93 

Starch (%) 34.06 30.56 34.21 31.15 

Fat (%) 5.53 7.22 6.12 6.97 

GE (kcal/kg MS) 4520 4633 4508 4613 

          

WB = wheat bran; GC = gestation, control diet; GWB = gestation, WB diet; LC = 

lactation, control diet; LWB = lactation, WB diet 

DM = analytical dry matter; OM= organic matter; CP = crude protein; GE = gross energy; 

ADF = acid detergent fiber; NDF = neutral detergent fiber 
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Supplementary Table ST2. Piglets’ creep feed composition. 

Ingredient (%) Creep feed 

Maize flaked 44.9 

Skimmed milk 23.5 

Soybean 10.0 

Soybean meal 10.0 

Maize starch 5.0 

Soybean oil 2.2 

Vit:min 1.0 

Monocalciumphosphate 0.9 

Cellulose 0.8 

Inert markers 0.5 

L-lysine HCl 0.4 

Salt 0.3 

Phytase 0.2 

L-Threonine 0.1 
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Supplementary Table 3. Composition of the faecal microbiota of sows before the diet 

change (G21), expressed as a percentage (%) of the total microbiota. Only genera with a 

relative abundance >0.01% were included in this table. 

 Genus CON WB P-value FDR 

Bacteroidetes         

Prevotella 15.3 20.3 NS NS 

Unclassified_Lachnospiraceae 6.92 6.97 NS NS 

      

Firmicutes     

Unclassified_Ruminococcaceae 16.4 19.9 NS NS 

Lactobacillus 15.3 7.8 0.002 NS 

Unclassified_Clostridiales 6.91 6.81 NS NS 

Ruminococcus 2.68 2.55 NS NS 

Blautia 0.17 0.32 0.04 NS 

Bacteroides 0.11 0.02 0.03 NS 

Bulleidia 0.07 0.13 0.03 NS 

      

Proteobacteria     

Treponema 2.92 2.12 0.08 NS 

Phascolarctobacterium 1.93 1.88 NS NS 

ParaPrevotella 0.02 0.00 0.01 NS 

      

Spirochaetes     

Unclassified_Bacteroidales 4.75 3.66 NS NS 

Oscillospira 2.76 2.30 NS NS 

      

TM7     

Unclassified_Enterobacteriaceae 0.09 0.01 0.07 NS 

      

WPS-2     

Sphaerochaeta 0.32 0.15 0.05 NS 
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Supplementary Table ST4. Sows' faecal SCFA production. The individual SCFA are 

expressed as molar ratios. Results are mean ± SEM. 
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Unclassified_Microbacteriaceae   -           

Leucobacter   -           

Propionibacterium             - 

Collinsella               

Slackia               

Unclassified_Rikenellaceae               

Unclassified_[Barnesiellaceae]               

Butyricimonas               

Odoribacter               

Unclassified_[ParaPrevotellaceae]   -           

Unclassified_Stramenopiles   -           

Leuconostoc -   - -   - - 

Unclassified_Clostridia   -           

Unclassified_Clostridiales - - -         

Unclassified_Christensenellaceae -   - -   -   

Christensenella               

Unclassified_Clostridiaceae           -   

SMB53 - - - -       

Unclassified_Lachnospiraceae               

Coprococcus         -     

[Ruminococcus]         - -   

[Clostridium]               

Unclassified_Ruminococcaceae - - - -   - - 

Anaerotruncus               

Clostridium               

Faecalibacterium               

Oscillospira       -       

Megasphaera               

Phascolarctobacterium           -   

Supplementary Table ST5.Pearson's correlations between SCFA molar ratios and genera 

of the microbial community in the colon of piglets from sows fed a control and a wheat 

bran-enriched diet (n=14). Only the results with a p-value<0.05 were included in this table. 

Negative correlations are expressed in the table with the symbol “-“. 
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Continuation of Supplementary Table ST5. 
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Anaerococcus               

Bulleidia               

Catenibacterium               

L7A E11 - -           

[Eubacterium]               

Unclassified_Fusobacteriaceae               

Fusobacterium               

Sphingomonas               

Sutterella               

Unclassified_Desulfobulbaceae               

Unclassified_Desulfovibrionaceae               

Bilophila               

Flexispira               

Helicobacter               

Klebsiella               

Pasteurella               

Sphaerochaeta           - - 

Treponema     -         

Unclassified_RFP12 -     -   -   
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Supplementary Figure SF1. PCoA of microbial communities of sows fed the control diet 

(CON, N=6) and the wheat bran-enriched diet (WB, N=6) during lactation. Individual WB 

sows are displayed in red and CON sows in blue. 

 

 

 

 

 

 

  

 

Supplementary Figure SF2. Boxplot based on 

Shannon index for the umbilical cord blood microbial 

results. 
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Supplementary Figure SF3. Boxplot based on 

Shannon index for the piglets’ microbial results. 
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and intestinal health parameters of the 
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1. Abstract  

As weaning is a critical period in pig production, there is a need to find sustainable 

alternatives to the use of antibiotics to prevent or cure post-weaning diarrhoea. In this 

study, we hypothesized that the supplementation of sows with high amounts of wheat 

bran (WB) in gestation and lactation can modify milk composition and improve 

piglets’ health. An animal experiment was run with 15 sows, divided in two groups, 

a WB group (receiving 25% or 14% of wheat bran during gestation and lactation, 

respectively) or a control (CON) group devoid of WB. Backfat thickness and 

bodyweight changes, litter size, number of weaned piglets and weekly bodyweight of 

the piglets were recorded to assess performance of the animals. Before weaning, 16 

female piglets (8/group) were euthanized; their intestinal tissues and contents were 

collected. An ex vivo lipopolysaccharide (LPS) challenge was run on ileal tissue to 

assess a differential expression of cytokines. No impact of the dietary treatment was 

observed on sows’ backfat or bodyweight changes, but a decrease of the feed intake 

was observed during the last period of lactation for the WB group. The bodyweight 

of the piglets from birth until weaning was not affected by the maternal dietary 

treatment.  Colostrum and milk immunoglobulins (IgA, IgG, IgM) were similar 

between groups during the whole lactation period. In milk, protein and fat contents 

were not affected by the dietary treatment while maternal WB diet increased the 

lactose content. Villus height was increased in the duodenum of piglets born from 

WB sows as well as the ratio villi/crypts in the duodenum and jejunum, suggesting a 

higher absorption of nutrients for piglets born from WB sows. Calprotectin and 

intestinal inflammation (TNF-α, TLR4) did not differ between piglets born from the 

two maternal diets. In conclusion, increasing the WB proportion in sows’ diet did not 

decrease their performances or their piglets’ health, while improving lactose 

concentration in sows colostrum and milk and gut morphology possibly affecting the 

absorptive capacity of the piglets’ gut. Therefore, diets enriched in WB can be used 

during gestation and lactation.  

Keywords 

Fibre, intestinal health, maternal transfer, piglets, weaning 
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2. Introduction 

Weaning is a critical moment in pig production due to multiple stressful events 

occurring simultaneously: separation from the sow, mixing with other litters, abrupt 

transition from milk to a solid feed diet, change in the environment and greater 

exposure to pathogens (Campbell et al., 2013). As a result, piglets show low feed 

intake and experience gut disorders after weaning, such as shortening of intestinal 

villi and deepening of crypts, a lower brush border enzyme activity, a higher 

permeability to antigens in the gut mucosa and an altered immune response 

(Campbell et al., 2013; Lallès et al., 2004; Montagne et al., 2007) . Ultimately, 

weaning causes loss of weight of the piglets often associated with the appearance of 

post-weaning diarrhoea (PWD) that is mainly due to colibacillosis (Gresse et al., 

2017). 

Even though the use of antibiotics as growth promoters has been banned by the EU 

in 2006 (EU IP/05/1687), antibiotics are still used in piglet production both to prevent 

and treat PWD.  Concomitantly, overuse of antibiotics has led to the appearance of 

multi-resistant bacterial strains threatening animal and public health (Pluske 2013; 

Lindberg 2014; Gresse et al. 2017). Therefore, more sustainable alternatives to 

improve piglets’ health are desirable and various nutritional approaches have been 

proposed to help piglets cope with the weaning transition, including the 

supplementation of the diet with substances that increase appetence, have immune-

stimulating properties or target the intestinal microbiota (Lallès et al. 2004; Devriendt 

et al. 2009). Since the intestinal microbiota is involved in the maturation of the 

immune system of piglets, one strategy is to act on sows diets to alter the composition 

of the intestinal microbiota of the sow, subsequently modifying favourably the 

microbiota colonizing the piglets early in life (Everaert et al., 2017; Schokker et al., 

2014). 

Wheat bran is widely used in gestation diets of sows. Thanks to its bulking 

properties, it reduces frustration from restrictive feeding and increases welfare (Matte 

et al., 1994). However, the incorporation rate of WB in sows’ gestation diets stays 

moderate. Moreover, as WB is an ingredient rich in insoluble non-starch 

polysaccharides, it is fermented in the colon by the intestinal microbiota (Bach 

Knudsen and Canibe, 2000; Govers et al., 1999) and has been shown to stimulate 

beneficial bacteria in the ileum and faeces of growing pigs (Ivarsson et al., 2014) 

while decreasing the faecal score of piglets after weaning (Francesc Molist et al. 

2012). In addition, it has been shown that a high WB diet given to sows impacted 

their microbiota during gestation and a few genera of their offspring’s colonic 

microbiota at weaning (Leblois et al., 2017). This transfer of microbiota from the sow 

to the piglets takes place during gestation, at birth and during the lactation period 

(Leblois et al., 2017; Paßlack et al., 2015; Starke et al., 2013). As gut bacteria will 

modulate the maturation of the immune system early in piglets’ life (Schokker et al., 
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2014), it is possible that a change in sows’ and piglets’ microbiota could impact the 

inflammatory response of piglets facing a bacterial infection.  

In addition, wheat bran, as a potential prebiotic, might impact several milk 

components and piglets parameters. Indeed, other prebiotics have been shown to 

affect positively the immunoglobulin concentration of colostrum (Le Bourgot et al., 

2014; Leonard et al., 2012), which confers a systemic or local protection against 

pathogenic antigens. Moreover, the nutritional composition of sows’ milk can be 

altered by the inclusion of prebiotics in sows’ diet (Graugnard et al., 2014; Krogh et 

al., 2017). Concerning piglets’ intestinal parameters, Le Bourgot et al. (2014) showed 

an increased IFNγ concentration and an increased number of T-helper lymphocytes 

in Peyers’ patches of piglets born from fructo-oligosaccharide (FOS) supplemented 

sows, and Heim et al. (2015a) observed a decreased villus height of the ileum of 

piglets born from fucoidan supplemented sows, which was related to a lower 

expression of glucose transporter SGLT1.  The hypothesis tested in the current study 

was that incorporation of high amounts of WB in sows’ diet would modify their milk 

composition that in turn affects piglets’ performances, immunity and gut 

morphology. Gut morphology and inflammation being also related to microbiota and 

subsequent short-chain fatty acids production, the latter two already described in 

Leblois et al. (2017). 

3. Materials and methods 

3.1. Animals, diet and housing 

The animal experiment was approved by the Ethical Committee of the University 

of Liège (protocol number 1661) and the procedure agreed with the European 

(directive 2010/63/EU) and Belgian (C − 2013/24221, AR of 23rd of March 2013) 

regulations. The animal experiment was led at the Walloon Agricultural Research 

Centre (Gembloux, Belgium). Fifteen Landrace sows (parity 1 to 5) were allotted to 

two dietary treatments, the groups being balanced for parity and genetic background. 

Sows were housed in loose groups on straw bedding (room was separated in two units 

to avoid faeces contamination) from day 3 after artificial insemination (AI) and then 

moved one week before parturition to individual farrowing cages equipped with 

wood shavings, a heat lamp for piglets and extra space for sows and piglets available 

from day 5 after delivery. Water was supplied at libitum with drinker bowls. 

Parturition was provoked by the injection of 2 ml of sodium cloprostenol (92 μg/ml) 

at 114 days of gestation.  

Two diets, a control diet (CON, 7 sows, 3 1st parity sows, 4 multiparous sows) 

devoid of wheat bran or an enriched-wheat bran diet (WB, 25% of WB in gestation 

and 14% in lactation, 8 sows, 4 primiparous sows, 4 multiparous sows), were fed to 

the sows from the 43rd day of gestation onwards to allow the longest time for 

microbiota adaptation and after gestation was confirmed. During gestation, sows 
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were fed-restricted according to their bodyweight and parity, and during lactation 

they were fed ad libitum. For each feeding phase, diets were formulated to be iso-

energetic and iso-nitrogenous and to reach the nutritional requirements of the animals 

following the NRC recommendations (Table 8). Piglets had access to creep feed that 

was devoid of wheat bran, non-starch polysaccharidases and organic acids from day 

10 after birth. Sows’ feeders were adapted to prevent piglets from eating the sow’s 

diet. The lactation period lasted for 28 days.  

3.2. Zootechnical performances 

Sows were weighted and backfat thickness was recorded with a lean-meater ® 

(Secrepro, Québec, Canada) 4 days before AI, during gestation (day 38 and day 108) 

and at weaning. Backfat and bodyweight gain/loss were assessed between these 

periods. The number of piglets born alive and the number of piglets weaned were 

recorded. During the lactation period, each piglet was weighted weekly, from birth 

until weaning. Feed intake of the sows was measured daily during the lactation 

period, with a computerized feeding system (Gestal FM ®, Jyga Technologies, 

Canada). Each sow had a target ingestion curve (target DM intake/day during the 

whole lactation period), as they had a maximal feed intake depending on their parity. 

Data shown are the percentage of this curve reached, in order to take into account the 

different parities. The first days of lactation are not taken into account as sows’ 

ingestion is close to 0. 

3.3. Milk 

Colostrum (15 ml) was sampled manually at all functional tits within the first 3 

hours after the beginning of the farrowing (birth of the first piglet). Milk (15ml) was 

then sampled weekly after the intramuscular injection of 1.5ml of oxytocin 10Un./ml 

(V.M.D., Belgium). Colostrum and milk were filtered on sterile medical gauze and 

stored at -20°C until further analyses. Samples were analysed for fat, protein and 

lactose content by Fourier transform infrared spectroscopy on a Standard Lactoscope 

FT-MIR automatic (Delta Instruments, Drachten, The Netherlands) as already done 

by Decaluwé et al. (2013). The predictive models provided by the manufacturer were 

originally designed for analysis of cow milk and were consequently updated for sow 

milk by a slope and bias correction using a set of sow milks with known reference 

values obtained by chemical reference analysis. Immunoglobulins (IgA, IgG, IgM) 

concentrations were determined by specific anti-pig antibodies ELISA (Bethyl 

Laboratories, Montgomery, USA and R&D Systems, Oxon, UK), following the 

manufacturer’s recommendations. 3,3',5,5'-Tetramethylbenzidine was used as 

developer of the reaction (Fisher Scientific, Merelbeke, Belgium) and the reading of 

the plate was made at 450µm on a 96-wells plates reader (Stat-fax 2100, awareness 

technology Inc, USA). 
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Table 8. Ingredients proportions and analysed chemical composition of gestation and 

lactation diets of the sows. 

Ingredients (%) GC1 GWB LC LWB 

Wheat 20.0 15.3 23.9 17.9 

Maize 15.0 12.0 12.0 12.0 

Barley 15.0 10.0 11.4 10.0 

Wheat bran -  25.0  - 14.0 

Soybean grains -  -  13.7 13.1 

Bread flour 6.50 5.00 6.50 5.00 

Sugar beet pulp 5.50 5.50 5.50 5.50 

Biscuit flour 5.00 3.50 5.00 4.00 

Cocoa pods 5.00 1.50 3.90 0.80 

Sunflower meal 9.00 4.20 2.50 1.00 

Palmist meal 4.00 4.00 1.20 1.60 

Soya pods 1.90 1.90 3.00 3.00 

Molasses 2.00 1.00 3.00 3.00 

Nutex 68 (Dumoulin Inc) 3.60 3.30 3.30 3.30 

Chalk 1.20 1.20 1.60 1.70 

Fat 0.50 1.20 1.50 2.20 

Rapeseed meal 3.00 2.20 -  -  

Rapeseed flour 1.20 1.20 -  -  

Soya oil -  0.50 0.10 -  

Minerals & Vitamins 1.20 1.00 1.40 1.30 

L-Lysine 50 % 0.40 0.40 0.40 0.40 

L-threonine 0.04 0.04 0.08 0.09 

DL-methionine -  -  0.03 0.03 

Thr+Met 70/30 -  0.03  -  - 

Chemical composition2 
    

DM (%) 88.8 88.8 88.3 88.3 

OM (%) 94.1 94.3 93.8 93.9 

CP (%) 14.6 14.5 18.1 17.4 

ADF (%) 11.9 11.4 9.88 9.75 

NDF (%) 22.4 25.4 19.7 20.9 

Starch (%) 34.1 30.6 34.2 31.1 

Fat (%) 5.53 7.22 6.12 6.97 

GE (kcal/kg DM) 4520 4633 4508 4613 

1GC = gestation, control diet; GWB = gestation, WB diet; LC = lactation, control diet; LWB = 

lactation, WB diet; 2DM = analytical dry matter; OM= organic matter; CP = crude protein; GE = gross 

energy; ADF = acid detergent fiber; NDF = neutral detergent fiber. All diets were analysed for DM 

(105°C overnight, AOAC 967.03), OM (calcination at 550°C for 12 hours, AOAC 923.03), fat 

(Soxhlet method, AOAC 920.29), CP (N determination with Kjeltec Analyzer Unit 2300, Foss, 

Denmark), NDF and ADF (Fibercap system, Foss, Denmark), GE (1241 adiabatic bomb calorimeter, 

PARR Instrument, USA) and starch content (total starch assay kit, Megazyme, Ireland). 
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3.4. Sampling of intestinal tissues and rectum content 

At days 26 and 27 of age, 16 female piglets having a bodyweight (BW) close the 

the litter mean BW (7.6±0.2 kg for CON group, 7.8±0.2 kg for WB group) were 

euthanized (8 piglets/treatment, 2 piglets/sow) using an injection of a mix of 

Xylazine/Zoletil 100 (4 mg of xylazine, 2 mg of zolazepam and 2 mg of tilamine/kg 

BW) for anaesthesia (Kela SA, Hoogstraten, Belgium; Virbac, Leuven, Belgium), 

followed by T 61 injection (0.1ml/kg BW) for euthanasia (Intervet Belgium N.V., 

Brussel, Belgium). The duodenum was collected as the first 15 cm after the pyloric 

junction, jejunum was collected one meter after this junction and terminal ileum 

(50cm) was collected before the ileo-caecal junction after clamping to avoid 

contamination between ileal and caecal contents.The pH of terminal ileum, caecum 

and colon contents was recorded. Rectum content was collected in sterile tubes and 

stored at -80°C until further calprotectin analysis. 

3.5. Histomorphological analyses 

Five-centimetre tissue samples from the duodenum, jejunum and terminal ileum 

were collected, rinsed with saline solution and dehydrated in 4% formaldehyde for 

48h followed by storage in an ethanol 70% solution. Tissues were then embedded in 

paraffin, and slides cut at 5µm thickness with a microtome using blades Thermo 

MX35 Ultra (Thermo Fisher Scientific, USA) before haematoxylin-eosin coloration.  

Villus height and crypt depth were measured at 10-fold magnification using an 

Olympus BX51 microscope and imaging system (Olympus Corporation, Hamburg, 

Germany) in 30 well-oriented villi and associated crypts per animal. The images were 

analysed by image software provided by Olympus. 

3.6. Ex vivo experiment and calprotectin concentration 

During sampling, terminal ileum tissue was collected, rinsed with culture medium 

(DMEM, Sigma-Aldrich, St Louis, USA), immediately cut in 6 mm-explants with 

biopsy punches (Vtrade International, Fernelmont, Belgium) and placed in 6-wells 

sterile plates containing 3ml of William’s culture medium (Sigma-Aldrich, St Louis, 

USA) supplemented with antibiotics and nutriments as decribed by Lucioli et al. 

(2013). Two modalities were set up on each plate: culture medium was either control 

(NO-LPS) or supplemented with LPS from E. coli O111:B4 (Sigma-Aldrich) at a 

concentration of 10µg/µl in order to mimic enterotoxigenic E. coli (ETEC) 

infections. This B4 strain at that concentration was already used successfully in other 

experiments (Leonard et al., 2012; Mukhopadhya et al., 2014; Vigors et al., 2016). 

Explants were incubated during 2 hours at 39°C, 5% CO2, snap-frozen and stored at 

-80°C until gene expression analyses. Calprotectin concentration in the rectum 

content of the piglets was assessed using Porcine Calprotectin ELISA Kit 

(MyBioSource, San Diego, USA) following the manufacturer’s recommendation. 

The quantity of faeces diluted in PBS was 100mg faeces in 1ml of PBS. 
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3.7. Relative gene expression 

RNA was extracted from frozen explants using ReliaPrep™ RNA Tissue Miniprep 

System kit (Promega, Madison, USA). Concentration and quality of RNA were 

determined with Nanodrop (Thermo Scientific NanoDrop 2000, USA) and by 

visualisation on an agarose gel (1%). Subsequently, 3.5µg of RNA were converted to 

single-stranded cDNA using GoScript™ Reverse Transcription Mix (Promega), 

following the manufacturer’s instructions. Specific regions of cDNA coding for 

housekeeping genes (PPIA and GAPDH), cytokines and receptors (TNF-α and 

TLR4) and tight junction proteins (ZO1 and CLDN2) were then amplified with qPCR 

(StepOne Plus, Thermo Fisher Scientific, USA) by using GoTaq® qPCR Master Mix 

(Promega). Primers used were either found in literature or designed with primer-

BLAST software (NCBI). The list of the primers used is found in Table 9. GAPDH 

and PPIA were selected as house keeping genes after verifying their stability upon all 

experimental conditions. QPCR conditions were optimized to obtain primers 

efficiency values between 90 and 110% (primers concentrations ranged between 300 

and 400nM, 40 cycles of qPCR at 60°C) and primers specificity was verified on the 

melting curves. GAPDH and PPIA were used as reference genes; gene expression 

was normalized using the 2-ΔΔCt method fixing the value of the CON pigs NO-LPS at 

1 for better comparisons. 
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Table 9. Primers used for qPCR analysis. Genes analyzed are peptidylprolyl isomerase A 

(PPIA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Tumor necrosis factor α 

(TNF-α), Toll-like receptor 4 (TLR4), Zonula occludens protein 1 (ZO-1), Claudin 2 

(CLDN2). Primers were tested on a pool of cDNA from the explants. 

Primer Sequence (5’  3’) Reference 
Accession 

number 

PPIA F TAA-CCC-CAC-CGT-CTT-CTT Dozois et al. 

(1997) 

NM_214353.1 

  R TGC-CAT-CCA-ACC-ACT-CAG  
     

GAPDH F CAT-CCA-TGA-CAA-CTT-CGG-CA Chatelais et 

al. (2011) 

NM_001206359.1  

  R GCA-TGG-ACT-GTG-GTC-ATG-AGT-C 
 

 
   

Meissonnier 

et al. (2008) 

 

 

TNF-α F ACT-GCA-CTT-CGA-GGT-TAT-CGG NM_214022.1 

  R GGC-GAC-GGG-CTT-ATC-TGA  
    

TLR-4 F CCT-GAC-AAC-ATC-CCC-ACA-TCA Designed NM_001113039  

  R TGC-TCT-GGA-TAG-TGG-TAA-AAG-C  
 

     

ZO-1 F TGA-GAG-CCA-ACC-ATG-TCT-TGA-A Vigors et al. 

(2016) 

XM_021098856  

  R CTC-AGA-CCC-GGC-TCT-CTG-TCT  
     

CLDN2 F AGG-CCT-CCT-GGG-CTT-CAT Vigors et al. 

(2016) 

XM_021079578.1  

 R GGA-GTA-GAA-GTC-CCG-CAG-GAT  

 

4. Results 

4.1. Zootechnical parameters 

Sows’ ingestion (Figure 9) was not affected by the dietary treatment except for the 

last period, where the ingestion of sows fed the WB diet was significantly reduced 

compared to the CON (66.2% of the target ingestion reached vs. 88.7%, respectively, 

p<0.001). No effect of the maternal treatment on piglets’ bodyweight was observed 

from birth until weaning (Figure 10); an effect of sex was observed (p=0.017), male 

piglets being heavier than females at every time point. The litter size (13±0.82 piglets 

for CON, 13.25±0.92 piglets for WB p=0.84) and number of weaned piglets 

(8.86±0.77 for CON sows, 9.87±0.61 for WB sows, p=0.31) did not differ between 

both groups. Diet did not impact the changes of sows’ backfat thickness at any time 

point. The same observation was made on the sows’ bodyweight gain or loss (data 

not shown).   

https://www.ncbi.nlm.nih.gov/nuccore/NM_214353.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_001206359.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_214022.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_001113039.2
https://www.ncbi.nlm.nih.gov/nuccore/XM_021098856.1
https://www.ncbi.nlm.nih.gov/nuccore/XM_021079578.1
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Figure 9. Percentage of target ingestion curve reached for sows in 4-days 

periods from farrowing until weaning. CON sows (N=7) are represented by 

the black dot and WB sows (N=8) by the white dot. Values are mean ± SEM. 

*** represent a p-value<0.001. 
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4.2. Milk composition 

Protein and fat concentration were impacted by the parity of the sows (p=0.04 and 

0.03, respectively, Table 10). Moreover, an interaction between treatment and parity 

was observed for protein concentration which was translated by a treatment effect for 

the primiparous sows (9.46±1.75% of protein for CON vs 8.84±1.43 % for WB sows). 

For both protein and lactose concentration, primiparous sows had a higher percentage 

than multiparous sows (9.11±1.09% of protein for P1 sows vs 8.71±0.99% for P≥2 

sows; 9.13±0.38% of fat for P1 sows vs 8.53±0.32% for P≥2 sows). Lactose 

percentage was not affected by the parity of the sows but globally by the dietary 

treatment (p=0.046). This treatment effect was not observed for every time point but 

a significant difference between treatments was observed during the second week of 

lactation (4.81±0.04% of lactose for CON sows vs 4.89±0.02% for WB sows, 

Figure 10. Weekly bodyweight of piglets born from WB and CON 

sows, from birth (week 0) until weaning (week 4). CON piglets are 

represented by dots and WB piglets by triangles; black symbols are 

males and white ones are females. Results are shown as mean ± 

SEM, n=54 for CON piglets and n=71 for WB piglets 
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p=0.03). All parameters were impacted by the week of sampling, highlighting the 

difference between colostrum and milk. Indeed, protein and immunoglobulin 

contents decreased after one week while fat and lactose concentration increased 

(p<0.001). None of the measured immunoglobulins was impacted by the dietary 

treatment, while only IgA concentration had significant interactions. Indeed, in the 

colostrum of sows, a parity effect was observed, P1 sows’ colostrum containing lower 

amounts of IgA than P≥2 sows’ colostrum (11.97±0.43 mg/ml and 15.03±1.31mg/ml, 

respectively). 

4.3. Intestinal parameters 

At weaning, the pH of the intestinal content of the three intestinal parts (distal 

ileum: 6.53±0.14 for CON, 6.66±0.17 for WB, caecum: 6.17±0.14 for CON, 

6.26±0.32 for WB, colon: 6.22±0.16 for CON, 6.33±0.21 for WB) and the relative 

lengths of the intestinal tract (1.17±0.14 m/kg BW for CON, 1.13±0.16 m/kg BW for 

WB) were not affected by the maternal dietary treatment (p>0.05). Calprotectin 

concentrations in the rectal content of the piglets were not affected (p=0.72) by the 

maternal dietary treatment, values reaching 40.67±2.54 ng/ml for the CON piglets vs 

39.55±0.99 ng/ml for the WB piglets. Villi in the duodenum of WB piglets (Figure 

11) were significantly higher (359.4±6.8µm for CON vs 455.2±7.0µm for WB, 

p<0.05) while crypts tended (p<0.10) to be lower in the jejunum of the WB pigs 

(Figure 11). The ratio villi/crypt was increased for WB piglets in the duodenum 

(1.34±0.03 CON vs 2.02±0.13 WB) and jejunum (1.27±0.03 CON vs 1.60±0.04 WB). 

No difference was observed between maternal treatments concerning the ileal 

parameters.  
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Table 10. Fat, protein, and lactose percentage, IgA, IgG and IgM concentrations in 

milk samples collected on a weekly basis after farrowing for piglets born from 

control (CON) or wheat bran (WB) sows. Values are presented as mean and SEM 

are given for each period, n=3 or 4 for each parity within a treatment. 
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Figure 11. Villus height (a), crypt depth (b) and ratio V:C (c) of piglets botn from CON 

(black bar, N=8) or WB (grey bars, N=8) sows. Values are mean ± SEM. P-values <0.05 

and <0.01 are indicated with the symbols * and **, P<0.10 are indicated with the symbol +. 
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4.4. Relative gene expression 

No impact of LPS or the maternal treatment was observed on piglets’ ileum 

expression of the tested genes (Figure 12). 

 

 

 

Figure 12. Relative gene expression for TNF-α, TLR4, ZO-1 and CLDN2 in piglets’ ileum tissue 

challenged or not with LPS. No-LPS CON is set to 1 to serve as reference for comparison; n=8 

piglets/maternal treatment. 
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5. Discussion 

The aim of this study was to explore effects of feeding a high WB diet to sows on 

the progeny and in particular to investigate if this maternal diet could impact the 

performances and intestinal health parameters of the progeny. The hypothesis under 

this research question is that effects on piglets could be the result of an altered 

microbiota of sows or of an altered milk composition following the addition of WB. 

However, only the effect of milk was investigated in this study as microbiota changes 

had already been studied in Leblois et al. (2017). 

5.1. Sows and piglets’ performances 

Overall performances of the sows were not impacted by the dietary treatment. 

Indeed, no effect of WB on the backfat or bodyweight changes of the sows was 

observed, which is in contrast with another study using high fibre diet (Danielsen and 

Vestergaard, 2001). Litter size and piglets’ growth were not affected either, which is 

in line with other high-fibre diets studies (Loisel et al. 2013; Matte et al. 1994). These 

equal performances between dietary groups are desirable in order to increase WB 

proportion in the diet without impairing performances. Sows’ feed intake was similar 

between treatments during the first periods (periods 1-5), while it decreased in the 

last period of lactation. The explanation for this decrease is unclear, as sows were fed 

a high WB diet during the last month of gestation and the whole lactation period, so 

it seems that the drop in intake cannot be ascribed to the bulking of WB. 

5.2. Milk composition and gut morphology 

The absence of differences in milk composition concerning immunological or 

nutritional components between treatments can partly explain the equal performances 

of sows and piglets observed between treatments (weekly bodyweight of the piglets 

and number of weaned piglets).  Indeed, sows’ WB diet did not impact colostrum and 

milk immunoglobulins concentrations, sows providing the same passive immunity to 

the piglets enhancing their survival until weaning. Interestingly, other studies using 

bioactive compounds like seaweed (Leonard et al., 2012) or short-chain fructo-

oligosaccharides (Le Bourgot et al., 2014) found an increase in colostral IgA, IgG or 

TGFβ1. Milk protein and fat percentages were not affected by the sows’ dietary WB. 

Hurley (2015) highlighted that protein content is generally not affected by the diet, 

as observed in this study. However, some studies showed an increase in protein 

content of the milk of sows fed a yeast-mannan rich diet (Graugnard et al., 2014) or 

a decrease for sows fed high alfalfa diet (Krogh et al., 2017). The only nutritional 

component that differed between treatments was lactose, being higher in WB sows’ 

milk than in CON sows at every time point. It can be possible that this higher lactose 

concentration could have resulted in a higher absorption of glucose and galactose as 

also the villi/crypts ratio was higher in the duodenum and jejunum and as Heim et al. 

(2015a) mention the relation between the glucose transporter SGLT1 and villus 
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height in the ileum of piglets. Moreover, the higher V/C ratio, suggesting a better 

absorption of nutrients, might also prevent a severe villi shortening at weaning, 

maybe impacting growth on a long term, which remains to be investigated. 

5.3. Intestinal fermentation and intestinal health 

In our previous study (Leblois et al., 2017), we showed only small differences in 

the colonic microbiota of piglets born from WB or CON sows, together with higher 

acetate and lower butyrate and valerate production in the caecum of piglets born from 

WB sows. However, no difference in the global short-chain fatty acids production 

was observed between groups, explaining the similar intestinal pH of the piglets born 

from the two dietary groups; these results are in line with Paßlack et al. (2015) when 

feeding sows a 3% inulin diet. Calprotectin, a well-known biomarker in human for 

inflammatory bowel disease in human faces (D’Haens et al. 2012; Foell et al., 2009) 

did not show differences in both groups, which suggest no intestinal inflammation 

for piglets even though the pertinence of calprotectin in pigs still needs to be 

demonstrated. 

The lack of major differences in piglets’ microbiota (Leblois et al., 2017) and 

immunoglobulin content of colostrum might be responsible for the absence of a 

maternal effect on the gut inflammation, as microbiota plays an important role in the 

maturation of the immune system. In line with this, Leonard et al. (2012) who 

supplemented sows with seaweed during lactation, did not observe any maternal 

effect on the immune response either in the ileal or colonic cultured tissues, except 

for TNF-α that was more expressed in the ileum of challenged tissues from piglets 

born from seaweed supplemented sows.  

Surprisingly, the LPS challenge did not seem to induce inflammation, as TNF-α 

concentration did not increase and as the receptor for LPS, TLR-4, was not more 

expressed in LPS-challenged explants. In contrast, an increased TNF-α expression 

has been reported when incubating colonic explants with 10µg/ml LPS from B4 E. 

coli strain for 3 hours (Bahar et al. 2016; Mukhopadhya et al. 2014). Another study 

also determined the effects of LPS from B4 strain 10µg/ml on different genes 

expression in ileum tissue (Vigors et al., 2016). The authors did not observe any 

impact of the LPS challenge on TNF-α but an increased expression of other pro-

inflammatory cytokines IL-1, IL-6, IL-8 e.g. and a decreased expression of TLR4, 

ZO-1 and CLDN-2, which was not observed in this study. These 3 studies were 

performed on explants from already weaned or adult animals, making the comparison 

difficult as the gut immune system is not as mature at our time point as the other 

studies. Moreover, Leonard et al. (2012), using  biopsies of 26-days old piglets, as in 

our study, observed an increase of IL-6 and IL-1α in the LPS-challenged explants of 

ileum and an increase of TNF-α concentration in the ileum of piglets born from 

seaweed-supplemented sows but not in the ileum of piglets born from control sows. 
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Thus the lack of inflammation is not clear and for future experiments we might need 

to adapt the dose of LPS and the duration of incubation.  

6. Conclusion 

A high WB maternal diet did not impact overall piglets’ performances until 

weaning or intestinal immune parameters. However, there was an impact on the 

villi/crypt ratio, which might affect performance on a long term. As no detrimental 

effect was observed on the performances of the sows or the piglets, a higher 

proportion of WB in sows’ gestating (25% of WB) and lactating (14% of WB) diet 

could be applied, although research on a larger number of animals and until slaughter 

weight of the pigs might first be recommended.  
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Different sources of resistant starch in vitro show 

contrasting fermentation and SCFA profiles  

(based on an abstract submitted for a poster presentation at EAAP 2017, Tallinn) 

1. Introduction 

As wheat bran only induced slight changes in the microbiota of sows and piglets, a 

second feed ingredient was selected for the second animal experiment. Resistant 

starch, considered widely as prebiotic, seemed a good candidate to be included in the 

diet of sows. The aim of this experiment was to select one source of RS from different 

purified ingredients based on their fermentation pattern and butyrate production in 

vitro. 

2. Materials and methods 

An in vitro fermentation was performed, following the protocol described by 

Bindelle et al. (2010). Briefly, five different sources of purified native RS2 (two high 

amylose maizes, one potato starch and two pea starches) were firstly hydrolyzed in 

vitro to mimic digestion in the stomach and small intestine with porcine pepsin and 

pancreatin. Undigested residues were recovered by dialysis membrane (1000kD) and 

used as substrate for in vitro fermentation. In vitro fermentation was performed by 

using 5% of sows’ faeces in Menke buffer; 30ml of buffer was added to 200mg of 

substrate in sealed vials and incubated at 39°C for 72h. At 8, 12 and 24h of 

fermentation, 2ml of fermentation juice was collected and stored at -20°C before 

SCFA determination by isocratic HPLC using a Waters system fitted by an Aminex 

HPX-87H column (Bio-Rad, Hecrules, CA, USA) combined with a UV decteror 

(210nm) and sulfuric acid 5mM flowing at 0.6ml/min for the mobile phase. Gas 

pressure was measured 2, 5, 8, 12, 16, 20, 24, 48 and 72h after the beginning of the 

fermentation to allow the determination of fermentation kinetics using the model of 

Groot et al. (1996). Several parameters were calculated with this model: A (maximal 

gas volume, ml/g DM), B (time to reach A/2, h), Rmax (maximal fermentation rate, 

ml/g DM*h) and Tmax (time to reach Rmax). Statistical analyses were performed 

with the MIXED procedure of SAS, using the substrate as fixed factor. 

3. Results and discussion 

From Table 11, it is clear that pea starch A (Nastar, Cosucra, Belgium) is the most 

promising RS from the fermentation kinetics point of view. Indeed, this starch 

produces the highest gas volume in the shortest time; in comparison, high amylose 

maize have the lowest gas production and take more time to be fermented; potato 

starch is in between, having a lower gas production but with an intermediate time to 
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reach A/2. These results are clearly shown in Figure 13. Giuberti et al. (2013), who 

also performed in vitro fermentation with different sources of either digestible or 

resistant starch, observed the same gradation for Rmax between pea, high-amylose 

and potato starches.  

Table 11. Fermentation kinetics parameters for the different RS sources fermented in vitro. 

N=3 per substrate. A= maximal gas volume; B= time to reach A/2; Rmax= maximal 

fermentation rate; Tmax= time to reach Rmax. 

 

 

 

 

 

 

  

Sample A (ml/g DM) B (h) 
Rmax (ml/g 

DM*h) 
Tmax (h) 

Maize A 220.4b ± 12.2 13.7a ± 0.4 24.2b ± 2.1 12.9a ± 0.7 

Maize B 220.1b ± 13.9 13.2a ± 0.6 25.2b ± 2.3 12.4a ± 0.8 

Pea A 252.6a ± 9.0 10.3c ± 0.1 48.8a ± 2.0 10.0b ± 0.1 

Pea B 221.4b ± 7.8 9.2c ± 0.2 27.8b ± 1.8 8.3c ± 0.4 

Potato 212.7b ± 12.0 11.1b ± 0.7 19.7c ± 1.8 9.7b ± 0.5 

Within a column, values having different superscript letters (a, b, c) show significant differences 

(p<0.05) 
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Total SCFA production and molar ratios of acetic acid, propionic acid and butyric 

acid were highly (p<0.05) impacted by the substrate used (Table 12). Indeed, total 

SCFA production at every time point was the highest for Pea starch B, while potato 

and pea A starches had intermediate values (24h) between pea B and the two high 

amylose maizes. Molar ratios were also impacted by the substrate, and in particular 

butyrate was highly influenced, as pea starch A produced the highest level of butyrate 

at the 3 sampling points, while high amylose starches produced the lower butyrate 

proportion, as already observed by Giuberti et al. (2013). Acetate and propionate 

production were also impacted by the substrate, maize starch producing in general 

more acetate than pea starches, while the opposite effect was observed for propionate 

production after 8 and 12h of fermentation. 

Figure 13. Total gas production curve of the different RS substrates over time. 
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Table 12. Total SCFA production and individual molar ratios of acetate, propionate and 

butyrate produced by the 5 types of RS at 3 time points. 

 

4. Conclusion 

Based on the kinetics of gas production and from the SCFA and more specifically 

butyrate results, pea starch, and in particular pea starch A (Nastar, Cosucra, Belgium) 

seemed to be a suitable candidate to be incorporated in the diet of sows in order to 

modify favourably their microbiota and subsequent butyrate production. These results 

led to the choice of pea starch for the second animal experiment, as this type of RS 

was able to ferment rapidly with the highest butyrate production, which was the aim 

of this in vitro experiment. The increased butyrate production might be the result of a 

higher abundance of butyrate-producing genera that could possibly improve gut 

health. 

Time Ingredient Sum (mg/ml) %acetate %propionate %butyrate 

8h 

Maize A 1.7d 72.5a 20.6bc 6.9d 

Maize B 1.7d 70.8a 21.6b 7.6d 

Pea A 2.0c 70.3a 18.3c 11.4a 

Pea B 2.8a 66.7b 23.3a 10.0b 

Potato 2.3b 66.5b 24.8a 8.8c 

12h 

Maize A 2.6i 73.3f 20.5i 6.2i 

Maize B 2.8h 70.7g 22.7g 6.6i 

Pea A 3.8g 61.0i 17.6j 21.5f 

Pea B 4.3f 64.2h 21.2h 14.6g 

Potato 3.8g 63.9hi 23.6f 12.5h 

24h 

Maize A 4.6w 68.8v 25.8w 5.3y 

Maize B 4.8vw 66.6w 27.4v 6.0y 

Pea A 4.7vw 60.7y 18.5z 20.8v 

Pea B 5.0v 65.2x 20.8y 14.0w 

Potato 4.9v 63.0y 24.1x 12.9x 

Within every time point in the same column, values having a different superscript letter (a-d 

at 8h; f-j at 12h; v-z at 24h) are significantly different (p<0.05). 
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1. Abstract 

Background: Establishment of a beneficial microbiota profile for piglets as early 

in life as possible is important as it will impact their future health. In the current study, 

we hypothesized that resistant starch (RS) provided in the maternal diet during 

gestation and lactation will be fermented in their hindgut, which would favourably 

modify their milk and/or gut microbiota composition and that it would in turn affect 

piglets’ microbiota profile and their absorptive and immune abilities.  

Methods: In this experiment, 33% of pea starch was used in the diet of gestating 

and lactating sows and compared to control sows. Their faecal microbiota and milk 

composition were determined and the colonic microbiota, short-chain fatty acids 

(SCFA) production and gut health related parameters of the piglets were measured 

two days before weaning.  In addition, their overall performances and post-weaning 

faecal score were also assessed.  

Results: The RS diet modulated the faecal microbiota of the sows during gestation, 

increasing the Firmicutes:Bacteroidetes ratio and the relative abundance of beneficial 

genera like Bifidobacterium but these differences disappeared during lactation and 

maternal diets did not impact the colonic microbiota of their progeny. Milk protein 

concentration decreased with RS diet and lactose concentration increased within the 

first weeks of lactation while decreased the week before weaning with the RS diet. 

No effect of the dietary treatment, on piglets’ bodyweight or diarrhoea frequency 

post-weaning was observed.  Moreover, the intestinal morphology measured as villus 

height and crypt depths, and the inflammatory cytokines in the intestine of the piglets 

were not differentially expressed between maternal treatments.  Only zonula 

occludens 1 (ZO-1) was more expressed in the ileum of piglets born from RS sows, 

suggesting a better closure of the mucosa tight junctions.  

Conclusion: changes in the microbiota transferred from mother to piglets due to 

the inclusion of RS in the maternal diet are rather limited even though milk 

composition was affected. 

2. Introduction 

Post-weaning diarrhoea is one of the major health problems in pig husbandry 

worldwide. It is characterized by a higher risk of infections and a lower feed intake, 

due to the conversion from milk to solid feed, which has consequences on the gut 

morphology like the atrophy of the small intestinal villi and hyperplasia of the crypts 

(Lallès et al. 2004; Montagne et al. 2007; Hu et al. 2014). Weaning troubles are also 

accompanied with an impairment of the immune function, a higher permeability of 

the gut mucosa to antigens and lower brush border enzymes activity (lower lactase 
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and sucrase activities), lowering the ability of the piglets to digest feed (Le Huërou-

Luron 2003; Lallès et al. 2004; Montagne et al. 2007; Gresse et al. 2017).  

Feeding strategies to reduce the risk of post-weaning diarrhoea include the use of 

prebiotics, probiotics and organic acids in newly weaned piglets’ diet (Gresse et al. 

2017). The mode of action of these feed ingredients relies on their ability to modify 

favourably the microbiota of the piglets which is very important for their health. 

Indeed, beneficial bacteria can act as a barrier against pathogens, having the ability 

to lower the pH of the gastrointestinal tract and produce anti-microbial compounds 

(Sassone-Corsi & Raffatellu 2015). Microbiota fermenting indigestible 

carbohydrates produces SCFA that are an important energy source for the animal and 

butyrate in particular is a gut health-promoting compound acting as the main energy 

source for colonocytes and exerting anti-inflammatory properties (Guilloteau et al. 

2010b). It is thus of interest to modify favourably the microbiota towards 

fermentative butyrate-producing and anti-pathogenic bacteria. 

Different moments in the life time of piglets for the feed additive supplementation 

are currently envisaged in research. The first strategy to favour beneficial bacteria in 

the gut early in life is to feed the additives to newly weaned piglets to boost their 

immunity via the development of a beneficial microbiota at weaning. Another 

strategy is the use of these additives in the sows’ diet in order to promote a rapid 

colonization of beneficial bacteria and a long-lasting effect for the health of the 

progeny (Starke et al. 2013; Paßlack et al. 2015; O’Doherty et al. 2017). Several 

mechanisms are hypothesized concerning the maternal effect. Firstly, acting on the 

sow’s diet relies on the fact that the microbiota triggering the intestinal immune 

system in piglets will be acquired from the bacteria present in sows’ faeces, vagina 

and in milk (Starke et al. 2013; Paßlack et al. 2015). The purpose then is to modulate 

the microbiota of the sows to shape a beneficial colonizing microbiota in piglets, 

improving their immune competence. Secondly, another mechanism that is sought is 

the modification of the composition of the milk, for nutrients and immunoglobulins 

(Igs) composition (Krogh et al. 2017), as it has been shown in sows fed a high fibre 

diet (Loisel et al. 2013) or a diet rich in short-chain fructooligosaccharides (Le 

Bourgot et al. 2014). As microbiota impacts the development and maturation of the 

intestinal immune system (Schokker et al. 2014), and as immunoglobulins act as a 

first passive immunological defence for piglets (Salmon et al. 2009; Theil et al. 2012), 

modifying one or another of these components, or possibly both together, could 

promote a healthy gut and prepare the piglet for the weaning period.  

Resistant starch is the part of starch that escapes enzymatic digestion in the small 

intestine and can thus be fermented in the colon of the pig (Haenen et al. 2013; 

Giuberti et al. 2015). It generally comes in ingredients with high amylose contents. 

Resistant starch can be classified in 5 categories depending on its chemical and 

physical properties: RS1 (physically inaccessible starch), RS2 (native resistant starch 
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granules), RS3 (retrograded starch), RS4 (starch that has been chemically modified) 

and RS5 (amylose-lipid complex starch) (Giuberti et al. 2015; Yan et al. 2017). As a 

non-digestible but fermentable dietary component, the inclusion of resistant starch in 

the diet is expected to reduce the energy content of the diet (Gerrits et al. 2012), 

potentially reducing performances and/or feed conversion compared to digestible 

starch. In turn, it should modulate microbiota composition in the distal small intestine 

and the large intestine of the animals and subsequently impact fermentation end-

products.  The production of butyrate is usually specifically increased as starch 

fermentation is known for being butyrogenic (Bindelle et al. 2008; Pieper et al. 2015). 

Thus, the purpose of this study was to investigate whether maternal pea starch 

supplementation could impact the ability of piglets to cope with the weaning period 

and its associated stresses by comparing the composition of the faecal microbiota and 

the milk of sows fed two diets contrasting in resistant starch contents. Additionally, 

the performance, health status and gut immune and morphological status of their 

progeny was also compared as well as their intestinal microbiota. Pea starch was used 

as a source of RS because of its ability to produce a high ratio of butyrate during in 

vitro fermentation (Giuberti et al. 2013); it is considered to be a RS2 type (Themeier 

et al. 2005; Giuberti et al. 2015) and contains 35% of amylose (information provided 

by the supplier). 

3. Materials and methods 

3.1. Animals, diets and housing 

All experimental procedures led on sows and piglets were in accordance with 

European and Belgian regulations concerning laboratory animal welfare. The ethical 

protocol was reviewed and approved by the Animal Ethical Committee of Liège 

University (protocol number: 1661).  Sows and piglets were housed until weaning at 

the Walloon Agricultural Research Centre (Gembloux). Landrace sows were 

inseminated with Piétrain semen and housed in groups on straw litter from one week 

after artificial insemination (AI) until one week before farrowing. Before the diet 

change, sows were housed all together in a room that was then divided in two parts 

to avoid cross contamination after diet change. For farrowing and lactation, they were 

moved to individual farrowing units, equipped with wood shavings litter, a heat lamp 

and an extra rear space for sows and piglets accessible by day 5 after delivery. Sows 

were fed a standard gestation diet until day 88 of gestation, after which they were 

divided in two dietary groups. The first group (12 sows) received a diet containing 

33% of digestible starch (DS diet) and the other group (12 sows) received a diet 

containing 33% of pea starch (Nastar, Cosucra, Belgium), considered as resistant 

starch (RS diet).  One sow from the RS group had to be removed from the experiment 

as she had to be treated with antibiotics because of vulva gangrene after delivery. 

Farrowing was induced by the injection of 2 ml of sodium cloprostenol (92 μg/ml) at 
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114 days of gestation. Within the DS diet, 4 sows were of 1st parity (P1), 2 sows of 

2nd parity (P2), 3 sows of 3rd parity (P3) and 3 sows had a parity higher or equal to 4 

(P≥4). Within the RS group, the parities distribution was as follows: 4 P1 sows, 2 P2 

sows, 4 P3 sows and 2 P≥4 sows. 

Gestation and lactation diets contained 33% of starch, were formulated to be iso-

nitrogenous and iso-energetic (net energy) according to NRC requirements (Nutrient 

Requirements of Swine, 2012). The composition of the diets is shown in Table 1. 

Between gestation and lactation diets, except for the change of barley into wheat, the 

same ingredients were used. At weaning (day 28), 44 female piglets (4 piglets/sow) 

were moved to the Animal Productions Centre in Gembloux and were fed a standard 

post-weaning diet devoid of antibiotics, prebiotics, probiotics or non-starch 

polysaccharide (NSP) enzymes. Two littermates were kept together in the same pen 

and the temperature the day of arrival was maintained at 26°C. 
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Table 13. Composition of sows’ diets during gestation for digestible starch (GDS) and 
resistant starch (RDS) and during lactation (LDS and LRS) and analyzed chemical 

composition. 

 GDS GRS LDS LRS 

Pea Starch - 33.0 - 33.0 

Maize starch 33.0 - 33.0 - 

Wheat bran 12.5 12.5 12.4 12.4 

Sugar beet pulp 10.1 10.1 6 6 

Soya meal 5.1 5.1 13.7 13.7 

Sunflower meal 10 10 4.5 4.5 

Canola meal 5 5 4 4 

Palmist meal 4 4 4 4 

Wheat   - - 3.7 3.7 

Biscuit flour 3.5 3.5 3.5 3.5 

Soya pods 3 3 3 3 

DDGS maize 3 3 3 3 

Barley 2.6 2.6 - - 

Maize gluten 2 1.8 1.01 0.81 

Soya oil 0.3 1.5 1 2.2 

Rapeseed flour 1.5 1.5 1.5 1.5 

Molasses 1 - 1 - 

Chalk 0.94 0.94 1.58 1.58 

Fat 0.79 0.79 1.25 1.25 

L-lysine 0.37 0.37 0.26 0.26 

Salt 0.36 0.36 0.39 0.39 

L-thr 0.08 0.08 0.05 0.05 

DL-met 0.07 0.07 0.03 0.03 

L-try 0.01 0.01 0.05 0.05 

Minerals & Vitamins 0.62 0.62 1.102 1.102 

Chemical composition analyzed1 

DM (%) 89.56 90.21 89.80 90.42 

OM (%) 84.96 85.43 85.11 84.95 

CP (%) 15.37 15.78 16.40 15.05 

NDF (%) 22.81 18.26 17.86 17.54 

ADF (%) 11.84 9.52 8.68 8.18 

EE (%) 2.82 4.53 4.59 5.6 

GE (kcal/kg DM) 4009 4110 4049 4112 

Total starch (%) 34.4 29.5 31.4 32.8 

Resistant starch (%) 0.88 5.41 0.55 8.55 
1DM: dry matter; OM: organic matter; CP: crude protein; NDF: neutral 

detergent fibre; ADF: acid detergent fibre; EE: ether extract, GE: gross energy. 
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3.2. Zootechnical performances 

Bodyweight and backfat thickness (Renco lean-meater® of Secrepro, Québec, 

Canada) of the sows were recorded at days 80 and 107 of gestation and day 28 of 

lactation to determine the changes between periods. The duration and the piglet 

expulsion rate of farrowing were determined by recording the time of birth of every 

piglet. Piglets were weighed weekly from birth until weaning. After weaning, the 

diarrhoea status of the piglets was assessed by faecal scoring for 15 days, using a 

scale going from 0 to 4 (0=hard pellet, 1= soft dry pellet, 2= soft shaped wet pellet, 

3= unshaped soft pellet, 4= watery). This score was given individually and a mean 

was calculated for the pen. Piglets were considered to have diarrhoea when the score 

was 3 or 4. The presence of diarrhoea (score of 3 or 4) was assigned to a “1” value 

while the absence of diarrhoea (score of 0, 1 or 2) was assigned to a “0” value. The 

occurrence of diarrhoea was then calculated. As daily recording did not lead to data 

normality, 3-days data were averaged grouped for analysis. Diarrhoea occurrence was 

then calculated as the percentage of piglets having a score of 3 or 4 in each pen (0, 

50 or 100%) over 3-days periods. The average daily gain (ADG) during the post-

weaning period (2 weeks after weaning) was measured by weighing the piglets on a 

weekly basis.  

3.3. Feed chemical analyses 

Diets were analysed for organic matter (ashing at 550°C for 6h, AOAC 923.03), 

dry matter (drying at 105°C for 24 h, AOAC 967.03), crude protein (N determination 

with Kjeltec Analyzer Unit 2300, Foss, Denmark, CP = N×6.25), ether extract 

(Soxhlet method using ether petroleum, AOAC 920.29), ash-corrected neutral and 

acid detergent fiber (Fibercap system, Foss, Denmark, Van Soest et al. 1991 [25]) 

and gross energy (1241 adiabatic bomb calorimeter, PARR Instrument, USA). Starch 

(total and resistant) was analysed with the enzymatic kit D-Glucose-HK (Megazyme, 

USA), quantifying glucose concentration after hydrolysis of starch with pancreatic 

amylase. 

3.4. Milk 

Colostrum was collected within one hour after the birth of the first piglet. Milk 

samples were collected after the intramuscular injection of 2ml of oxytocin on a 

weekly basis. Samples were filtered on sterile medical gauze and stored at -20°C until 

analysis. Protein, lactose and fat contents in milk and colostrum were determined by 

Fourier transform infrared spectroscopy on a Standard Lactoscope FT-MIR 

automatic (Delta Instruments, Drachten, The Netherlands). The predictive models 

provided by the manufacturer were originally designed for cow milk and were 

consequently adapted for sow milk by a slope and bias correction using a reference 

set of sow milk for which composition was analysed by standard wet chemistry 

methods. The R² for each parameter reached 0.99. The IgG and IgA concentrations 
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of colostrum were determined using specific anti-pig antibodies by ELISA (Bethyl 

Laboratories, Montgomery, USA and R&D Systems, Oxon, UK), following the 

manufacturer’s recommendations. The plates were read at 450nm on a 96-wells plate 

reader (Stat-fax 2100, awareness technology Inc, Palm City, USA). 

3.5. Sampling of intestinal tissues and contents 

Faeces were collected directly from the rectum of the sows in sterile bags at day 

106 of gestation and day 15 of lactation. They were immediately snap-frozen in liquid 

nitrogen and stored at -80°C until DNA extraction. Two days before weaning (day 

26 of lactation), 16 female piglets (8 DS, 8 RS, 1 piglet/sow) were euthanized by 

injection of a mix of Xylazine/Zoletil 100 (4 mg of xylazine, 2 mg of zolazepam and 

2 mg of tilamine/kg BW) for anaesthesia followed by bleeding.  Content from the 

caecum and the colon as well as tissue from the ileum and colon of the piglets were 

collected, snap-frozen and stored at -80°C until further analysis.  Tissue samples of 

5 cm were collected from the duodenum, jejunum and terminal ileum, rinsed with a 

saline solution and dehydrated in 4% formol prior to long term storage in 70% 

ethanol. Tissues were then embedded in paraffin, cut with a microtome using Thermo 

MX35 Ultra blades (Thermo Fisher Scientific, USA) and stained with haematoxylin 

and eosin. Villus heights and crypt depths were measured on 30 well-oriented couples 

villus/crypt per animal by 10-fold magnification microscopy (Olympus BX51 

Olympus, Japan). 

3.6. Microbiota composition 

DNA was extracted from the sows’ faeces (10 sows/treatment) and piglets colon 

contents (8 piglets/treatment) using Qiagen QIAamp Stool Minkit (Qiagen, Hilden, 

Germany), following the manufacturer’s instructions but adding two bead beating 

steps (FastPrep-24, MP Biomedicals, Illkirsh, France). Quality of DNA was checked 

on 1% agarose gel and the DNA concentration was assessed by a Nanodrop (Thermo 

Scientific NanoDrop 2000, USA). DNA was stored at -20°C until sequencing. 

Sequencing was performed by DNAVision (Gosselies, Belgium), using the Illumina 

MiSeq (2 × 300nt) and after amplifying, purifying and tagging the hypervariable 

regions V3-V4 (Forward primer: 5′-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGC

AG-3′ and reverse primer: 5′- 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATC

TAATCC-3′) following the 16 S Metagenomic Sequencing Library Preparation 

protocol (Part # 15044223 Rev. B) from Illumina.  
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3.7. Bioinformatics analysis 

Raw sequences of 16S rRNA were assigned to each sample, quality checked and 

trimmed using Basespace default parameters (Illumina). Sequences were assigned to 

97% ID OTUs by comparison to the Greengenes reference database 13.8 using the 

QIIME (Quantitative Insights Into Microbial Ecology) 1.9.0 software. Since samples 

contained variable number of sequences (62529 ± 4522 for sows, 94139 ± 13830 for 

piglets), diversity analyses were carried out on samples rarefied at the same 

sequencing depth (15973 for sows and 53592 for piglets) to avoid bias in sequencing 

depth between samples.  The Beta_diversity_through_plots.py script was used to 

assess differences in bacterial communities between groups of samples. Beta 

diversity was visualized using un-weighed and weighed UniFrac distances with 

Principal Coordinate Analysis (PCoA). The compare_categories.py script, which 

applied the adonis method on the previously obtained dissimilarity matrices, was used 

to determine whether communities differed significantly between groups of samples. 

In addition, the PERMANOVA procedure was performed by period using R studio 

software (R Studio, Boston, USA), considering the parity (primiparous vs 

multiparous) and the treatment as factors. Multiple_rarefactions.py and 

alpha_diversity.py scripts were applied to compute alpha diversity metrics, which 

evaluated diversity within a sample and generated rarefaction curves. Raw sequences 

have been uploaded in the European Nucleotide Archive database under the project 

number PRJEB25722.  

3.8. Short-chain fatty acids determination and calprotectin 

concentration 

Faeces, colon and caecum contents (day 26) were analysed by isocratic HPLC as 

detailed in Leblois et al. (2017) [26]. Briefly, 1g of sample was diluted in 5g of 

ultrapure water to reach a 6-fold dilution. Samples were then vortexed for 1 minute 

to ensure a good solubility and homogeneity of the samples. Aliquots of 2 ml were 

then centrifuged at 13,000 g, acidified with H2SO4 and filtered at 0.22 µm. Samples 

were then analysed for SCFA concentration on a Waters system equipped with an 

Aminex HPX-87H column (Bio-Rad, Hercules, CA, USA) combined with a UV 

detector (210nm) at 58°C. The mobile phase was H2SO4 5mM. Peaks were integrated 

with Empower 3 software (Waters, Milford, USA) after the encoding of a standard 

curve. Results are expressed as mmol.g-1 and molar ratios, taking into account the 

initial dilution. Calprotectin concentration in the colon contents of the piglets was 

assessed using Porcine Calprotectin ELISA Kit (MyBioSource, San Diego, USA) 

following the manufacturer’s recommendations. Absorbance was measured at 

450nm. 

  



Chapter 6. Article 3 
 

101 

 

3.9. Gene expression analysis 

RNA was extracted from frozen ileum and colon tissue (day 26) using ReliaPrep™ 

RNA Tissue Miniprep System kit (Promega, Madison, USA). RNA concentration 

was determined with a Nanodrop (Thermo Scientific NanoDrop 2000, USA) and 

integrity was checked on a 1% agarose gel. Then, 2 µg of RNA were converted to 

single-stranded cDNA using GoScript™ Reverse Transcription Mix (Promega, 

Madison, USA), following the manufacturer’s instructions. Specific regions of 

cDNA coding for housekeeping genes - glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) and beta actin (ACTB)- , tight junction proteins -zonula 

occludens-protein 1 (ZO-1) and Occludin (OCLN)- and proteins involved in the 

inflammatory response - tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), 

nuclear factor kappa B (NF-κB), transforming growth factor beta  (TGFβ), interferon 

gamma (IFNγ), interleukin 1 beta (IL-1β) and interleukin 10 (IL-10)- were then 

amplified with qPCR (StepOne Plus, Thermo Fisher Scientific, USA) using SYBR 

Premix Ex Taq II (TakaraBio). Primers and their reference are shown in Table 2. 

QPCR conditions were optimized to obtain primer efficiency values between 90 and 

110% (denaturation at 95°C for 5s, annealing at 60°C for 30s and elongation at 72°C 

for 30s) and primers specificity was verified through melting curves. GAPDH and 

ACTB were used as reference genes and were selected after verification of their 

stability for all experimental conditions.; gene expression was normalized using the 

2-ΔΔCt method setting the value of the DS pigs to 1 to allow comparisons.  

3.10. Statistical analyses 

All statistical analyses were performed on SAS 9.2 (SAS Inc, USA). Gut 

morphology was analysed with the NESTED procedure of SAS, with the treatment 

as fixed class factor and piglet as random factor; piglets’ bodyweight until weaning 

was determined with the mixed procedure of SAS, time being a repeated effect, 

sow(treatment) being a random effect and treatment and parity being fixed factors. 

Milk composition and sows’ performances were analysed with the repeated MIXED 

procedure of SAS; treatment and parity were used as fixed effects and time was used 

as a repeated factor. Duration of farrowing and expulsion rate were determined with 

the MIXED procedure of SAS, using parity and treatment as fixed effects. 

Calprotectin, gene expression and SCFA were analysed with the MIXED procedure 

of SAS, using the maternal treatment as fixed factor. Diarrhoea score, piglets’ 

bodyweight and average daily gain (ADG) post-weaning were analysed with the 

repeated MIXED procedure of SAS, with time as repeated factor and maternal 

treatment as fixed effect. Microbiota results were analysed with the non-parametric 

Kruskall-Wallis test added by Benjamini-Hochberg correction; maternal treatment 

was included in this test as fixed effect. Pearson’s correlations were determined 

between the abundance of Lactobacillus and of other genera with a relative 

abundance of >1% of the total microbiota using the proc CORR of SAS. P-values 
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<0.05 were considered as significant. For microbiota analysis, a 0.05<p<0.10 was 

considered as a trend.  

Table 14. Primers used for gene expression analysis. 

Primer Sequence (5’->3’) Reference Accession number 

ACTB F GGA-CTT-CGA-GCA-GGA-GAT-GG Dozois et al. 

(1997) 

XM_021086047 

  R GCA-CCG-TGT-TGG-CGT-AGA-GG   

GAPDH F CAT-CCA-TGA-CAA-CTT-CGG-CA Chatelais et 

al. (2011) 

NM_001206359.1  

  R GCA-TGG-ACT-GTG-GTC-ATG-AGT-C   

TNF-α F ACT-GCA-CTT-CGA-GGT-TAT-CGG Meissonnier 

et al. (2008) 

NM_214022.1 

  R GGC-GAC-GGG-CTT-ATC-TGA   

IL-6 F AGA-CAA-AGC-CAC-CAC-CCC-TAA 
Vigors et al. 

(2016) 

NM_214399 

  R 
CTC-GTT-CTG-TGA-CTG-CAG-CTT-

ATC 
  

TGFβ F GAA-GCG-CAT-CGA-GGC-CAT-TC Meurens et 

al. (2009) 

NM_214015 

  R GGC-TCC-GGT-TCG-ACA-CTT-TC   

IFNγ F 
TGG-TAG-CTC-TGG-GAA-ACT-GAA-

TG Royaee et al. 

(2004) 

NM_213948 

  R GGC-TTT-GCG-CTG-GAT-CTG   

NF-κB F CCT-CCA-CAA-GGC-AGC-AAA-TAG Alassane-

kpembi et al. 

(2017) 

ENSSSCT00000033438 

  R TCC-ACA-CCG-CTG-TCA-CAG-A   

IL-1β F ATG-CTG-AAG-GCT-CTC-CAC-CTC Gourbeyre et 

al. (2015) 

NM_214055 

  R TTG-TTG-CTA-TCA-TCT-CCT-TGC-AC   

IL-10 F CTG-CCT-CCC-ACT-TTC-TCT-TG Feng et al. 

(2015) 

NM_214041 

 R TCA-AAG-GGG-CTC-CCT-AGT-TT   

ZO-1 F TGA-GAG-CCA-ACC-ATG-TCT-TGA-A Vigors et al. 

(2016) 

XM_021098856 

  R CTC-AGA-CCC-GGC-TCT-CTG-TCT   

OCLN F CTA-CTC-GTC-CAA-CGG-GAA-AG Chen et al. 

(2013) 
NP_001157119.1  R ACG-CCT-CCA-AGT-TAC-CAC-TG 

https://www.ncbi.nlm.nih.gov/nuccore/XM_021086047.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_001206359.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_214022.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_214399.1
https://www.ncbi.nlm.nih.gov/nuccore/XM_021098856.1
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4. Results 

4.1. Zootechnical parameters 

No differences between treatments were observed concerning the duration (250 ± 

27 min for DS vs 243 ± 53 min for RS, p=0.95) or expulsion rate (one piglet every 

19±2 and 20±5 min for the DS and RS groups, p=0.63) of farrowing. Changes in 

bodyweight and backfat thickness between periods were not affected by the dietary 

treatment either (S1 Table).  The survival of piglets until weaning was not affected 

by the treatment (86.5% of piglets for DS vs 84.7% for RS, p=0.82). No impact of 

the maternal treatment or the sex was observed for piglets’ bodyweight until weaning 

(S1 Fig). None of these parameters were impacted by the parity of the sow.  

4.2. Colostrum and milk 

Globally, lower milk protein concentrations were observed in the RS sows than in 

the DS group (p=0.02). An interaction between the treatment and sow parity was 

observed (see Table 15, p<0.05), showing that for P3 sows, the milk protein 

percentage was lower at every time point for RS sows (Table 16). Fat percentage was 

not affected by the RS diet, but an interaction between parity and time was significant 

(p<0.05). Only in colostrum, parity influenced the fat concentration as the colostrum 

of first parity sows was richer in fat and then gradually decreased with parity. Milk 

lactose percentage was not impacted by the treatment (p=0.09) and a significant 

interaction between time and treatment was observed (p=0.01). For colostrum and 

milk samples collected during week 1, RS sows secreted more lactose (p<0.05) in 

their milk while this concentration was lower during the last week of gestation 

(p<0.05). Milk composition changed with time, as protein concentration decreased 

over time while lactose and fat increased (Table 16). 

Table 15. P-values of the treatment, time, parity and interactions for protein, fat and lactose 

content of the milk. 

 Protein Fat Lactose 

Treatment 0.02 0.74 0.14 

Time <0.001 <0.001 <0.001 

Parity 0.37 0.07 0.30 

Treatment*Time 0.11 0.11 0.01 

Treatment*parity 0.02 0.13 0.13 

Time*parity 0.43 0.02 0.59 

Treatment*Time*parity 0.43 0.32 0.93 
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Table 16. Composition (protein, fat and lactose) of colostrum and milk of sows fed 

digestible starch (DS) and resistant starch (RS) in function of parity. N=12 for the DS group 

and N=11 for the RS group after because of removal of one sow from the experiment. 

   Time 

 Diet Parity Colostrum Week 1 Week 2 Week 3 

 

DS 

P1 18.46 6.25 5.63 5.59 

 P2 18.61 6.32 5.39 5.16 

 P3 19.76 6.42 6.29 6.78 

Protein (%) P≥4 18.83 7.52 5.88 5.60 

 

RS 

P1 17.35 6.09 5.76 5.73 

 P2 18.36 6.01 5.80 5.97 

 P3 17.33 5.79 5.41 5.69 

 P≥4 17.99 5.85 5.89 5.63 

 Global SEM 0.33 0.16 0.1 0.14 

 

DS 

P1 9.22 8.90 9.29 8.57 

 P2 7.82 8.37 8.72 7.14 

 P3 7.78 8.43 9.87 10.46 

Fat (%) P≥4 5.34 8.96 8.46 7.62 

 

RS 

P1 8.76 8.69 9.70 9.94 

 P2 8.39 9.17 8.38 9.54 

 P3 6.94 8.03 7.55 9.01 

 P≥4 6.01 8.95 8.48 8.74 

 Global SEM 0.37 0.31 0.28 0.35 

 

 

Lactose (%) 

DS 

P1 2.81 4.75 4.96 4.91 

P2 2.75 4.92 5.13 5.17 

P3 2.67 4.75 4.86 4.99 

P≥4 2.69 4.88 5.02 5.18 

RS 

P1 2.88 4.89 4.89 4.86 

P2 2.83 4.88 5.13 4.86 

P3 3.07 4.98 5.10 4.95 

P≥4 2.97 4.98 5.02 5.03 

Global SEM 0.05 0.03 0.04 0.03 
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Immunoglobulin G, the most abundant Ig in colostrum, was not affected by the 

dietary treatment (55.2±4.17 mg/ml for DS group vs 52.1±2.69 mg/ml for the RS 

group, p=0.80) but the parity tended (p=0.06) to affect the IgG concentration, milk 

of P≥4 sows having higher IgG concentration than P1 and P3 sows (66.23±5.97 vs 

48.93±4.41 and 48.58±2.21 mg/ml, respectively). IgA concentration in colostrum 

was not affected by the treatment (p=0.07) but an effect of the parity was observed 

(p<0.01), IgA concentration being the lowest for the first parity (Figure 14) 

 

  

Figure 14. IgA concentration (mg/ml) in colostrum of sow. DS sows 

are represented with the black bar (N=12) and RS sows with grey bars 

(N=11) sows. Results are expressed as mean+SEM. 
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4.3. Microbiota of sows’ faeces 

Microbiota composition of the sows was determined during gestation and lactation; 

the effects of treatment and period were assessed. The number of observed OTUs and 

bacterial diversity (Shannon and Chao1 indexes) did not show any differences 

between treatments within each period. However, a different microbiota composition 

was observed between periods as seen by the PCoA discriminating gestation and 

lactation (Figure 15). Between gestation and lactation, a trend almost reached 

significance for a higher bacterial diversity during gestation as represented by the 

Shannon index (Gestation=7.8±0.3 and lactation=7.6±0.3, p=0.06). Although 

bacterial diversity did not differ between treatments (Shannon index, P >0.10), the 

composition of the microbiota was affected during gestation as shown by the PCoA 

analysis (Figure 16). This clustering disappeared during the lactation period (S2 Fig). 

Statistical analyses for beta diversity showed the effect of the diet during gestation 

(p=0.001) but no more during lactation (p=0.56), while the parity did not seem to 

impact beta diversity, even though a trend was present (p=0.09 during gestation and 

p=0.07 during lactation). 

 

 

 

 

 

 

 

 

 

Figure 15.  PCoA discriminating periods. Individual red dots are the fecal samples of sows 

during gestation (N=20) while blue squares are individual fecal samples of lactating sows 

(N=20). 
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Figure 16. PCoA discriminating dietary treatments during gestation. Red squares represent 

the faecal microbiota composition of  sows fed DS during gestation (N=10) while blue dots 

represent microbiota of sows fed RS diet  (N=10). 

The clustering between treatments during gestation translated differences in 

microbiota composition both at the phylum and genus levels. At the phylum level, 

the most abundant phyla during both periods for the two groups were Firmicutes, 

Bacteroidetes and Spirochaetes. Differences in microbial composition between 

treatments were observed during gestation as Firmicutes (p<0.01, FDR < 0.05) and 

Euryarchaeota (p<0.05, FDR=0.05) proportions in the faecal microbiota of RS sows 

increased while Bacteroidetes (p<0.01, FDR<0.05), Spirochaetes (P<0.01, 

FDR<0.05) and Tenericutes (P<0.01, FDR=0.17) relative abundances decreased 

compared to the DS treatment. During lactation, only the minor Phylum 

Lentisphaerae (p<0.01, FDR=0.12) proportion increased in the RS group compared 

to the DS group. The ratio Firmicutes:Bacteroidetes was impacted by the dietary 

treatment during gestation (1.59±0.07 for DS vs 2.11±0.15 for the RS sows, p=0.005) 

while no effect of the dietary treatment was observed during lactation (2.36±0.32 for 

DS vs 2.43±0.17 for RS sows, p=0.84). 

At the genus level (Table 17), the major differences in sows’ faecal microbiota 

composition between treatments also appeared during gestation.  The most abundant 

genera were an unclassified Ruminococcaceae, Prevotella, unclassified 

Bacteroidales and Clostridiales, and Treponema. Within these major components of 

faecal microbiota, the unclassified Ruminococcaceae was increased (p<0.05) and 

Treponema was decreased (p<0.05) significantly during gestation in the RS group; 

this difference disappeared during lactation. Twelve other genera differed (p<0.05) 

between gestation while only 6 genera differed during lactation; the relative 
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abundances of Bifidobacterium, Coprococcus, an Unclassified Clostridiales OTU2, 

Sharpea, Methanobrevibacter and an unclassified Peptostreptococcaceae relative 

abundances were increased (p<0.05) in the faeces of sows fed RS during lactation. 

While Oscillospira decreased during lactation. An unclassified Clostridiaceae, 

SMB53 and Turicibacter increased both during gestation and lactation. It is worth 

noting that the proportion of Lactobacilli jumped from a mean of 2.38±0.42% during 

gestation to 11.73±1.50% during lactation, but this difference could not be attributed 

to the drop of one particular genus as the Pearson correlation analysis did not reveal 

absolute r-values higher than 0.6 (data not shown). 
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Table 17. Relative abundances of the phyla and genera in sows’ faeces. Only genera present 

at >0.01% in the faecal microbiota of the sows fed either digestible starch (DS, n=10) or 

resistant starch (RS, n=10) -based diets during gestation and lactation were considered. 

Genus 
Gestation   Lactation  

DS RS P FDR SEM DS RS  P FDR SEM 

Actinobacteria  1.78 2.14 0.08 NS 0.22  1.88 1.9 NS NS 0.25 

Bifidobacterium 0.92 1.36 0.02 NS 0.21 1.18 1.15 NS NS 0.23 

Bacteroidetes 34.27  29.19 <0.01 0.03  0.96 28.69 27.08 NS NS 1.13 

Prevotella 12.11 8.8 NS NS 0.9 10.32 10.39 NS NS 0.91 

Unclassified_ 

Bacteroidales 
10.75 8.88 NS NS 0.62 8.54 7 NS NS 0.58 

Unclassified_S24-7 4.06 4.99 NS NS 0.52 2.9 3.39 NS NS 0.26 

Unclassified_RF16 1.53 0.8 0.01 NS 0.16 0.98 0.91 NS NS 0.11 

Unclassified_ 

p-2534-18B5 
1.44 1.97 0.07 NS 0.16 1.3 1.39 NS NS 0.16 

CF231 1.29 0.9 0.07 NS 0.11 1.18 1.32 NS NS 0.14 

Euryarchaeota  0.17 0.51 0.05 0.05  0.07 0.16 0.2 NS NS 0.03 

Unclassified_R4-45B 0.15 0.12 NS NS 0.01 0.05 0.13 0.02 NS 0.02 

Firmicutes 53.25  59.86 0.04 0.04  1.15 62.24 63.7 NS NS 1.27 

Unclassified_ 

Ruminococcaceae 
17.75 20.68 0.02 NS 0.59 17.1 17.27 NS NS 0.78 

Unclassified_ 

Clostridiales OTU1 
7.76 8.54 NS NS 0.28 7.21 8.17 NS NS 0.28 

Unclassified_ 

Lachnospiraceae 
3.71 3.48 NS NS 0.15 3.92 3.28 0.06 NS 0.14 

Phascolarctobacterium 2.9 2.52 NS NS 0.22 2.24 2.15 NS NS 0.12 

Unclassified_ 

Christensenellaceae 
2.79 3.3 NS NS 0.36 2.5 2.73 NS NS 0.32 

Streptococcus 2.74 2.03 NS NS 0.83 1.58 3.37 NS NS 0.58 

Oscillospira 2.24 1.92 NS NS 0.1 2.05 1.78 0.04 NS 0.07 

Lactobacillus 2.03 2.73 NS NS 0.42 13.11 10.35 NS NS 1.5 

Unclassified_ 

Clostridiaceae 
1.22 1.84 0.02 NS 0.11 1.59 2.07 0.02 NS 0.12 

Coprococcus 0.83 1.22 0.02 NS 0.08 1.28 1.4 NS NS 0.09 

Unclassified_ 

Clostridiales OTU2 
0.49 0.79 0.01 NS 0.05 0.5 0.56 NS NS 0.03 

SMB53 0.49 0.79 0.05 NS 0.07 1.05 1.55 <0.005 NS 0.08 

Turicibacter 0.33 1.1 <0.005 NS 0.12 0.65 1.29 0.01 NS 0.12 

Sharpea 0.21 0.79 0.03 NS 0.15 0.05 0.11 NS NS 0.03 

Methanobrevibacter 0.12 0.46 0.01 NS 0.06 0.13 0.17 NS NS 0.03 

Helicobacter 0.12 0.06 0.04 NS 0.02 0.03 0.05 NS NS 0.01 
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Continuation of Table 17. 

 

4.4. Microbiota of the colonic content of piglets at 26 days of 

age 

The main abundant Phyla in the colon of piglets before weaning were Firmicutes 

(44.2±2.9%), Bacteroidetes (39.6±1.8%), Proteobacteria (6.9±1.0%) and 

Fusobacteria (5.7±1.9%). They were not impacted by the maternal dietary treatment, 

neither was the ratio between Firmicutes and Bacteroidetes (1.35±0.16 for DS 

piglets; 1.02±0.16 for RS piglets). At the genus level, the microbiota was mainly 

composed of Prevotella, unclassified Ruminococcaceae, Lactobacillus and 

Bacteroides (see Table 18). None of the 10 most abundant genera in the colon of the 

piglets were significantly affected by the maternal diet, while only genera present at 

a lower relative abundance than 1% of the total microbiota showed a trend (p<0.10), 

including Veillonella, unclassified Clostridiales, Pasteurellaceae and 

Dethiosulfovibrionaceae and Brachyspira. 

4.5. SCFA, calprotectin concentration in digesta and gut 

morphology 

Total content and molar ratios of individual SCFA and branched-chain fatty acids 

(BCFA) were not affected by the dietary treatment neither in the faeces of sows nor 

in the intestinal contents of piglets (S2 and S3 Tables). Calprotectin concentration in 

the colon of piglets did not differ (p=0.85) either (39.03 ± 2.56 and 38.45 ± 1.58 

pg/ml for piglets born from DS and RS sows, respectively). Maternal dietary 

treatment had no effect on villus height, crypt depth and the villi/crypts ratio (V:C), 

either in the duodenum, the jejunum or the ileum of the piglets (S4 Table). 

  

Genus 
Gestation   Lactation   

DS RS P FDR SEM DS RS P FDR SEM 

Proteobacteria 2.92  2.29 NS NS 0.24  1.46 1.75 NS NS 0.13 

Campylobacter 0.97 0.67 0.07 NS 0.08 0.31 0.34 NS NS 0.04 

Unclassified_ 
0.12 0.2 0.02 NS 0.01 0.23 0.33 0.05 NS 0.03 

Peptostreptococcaceae 

Spirochaetes 5.25  3.6 0.03 <0.01  0.28 3.96 3.5 NS NS 0.26 

Treponema 4.2 3.1 0.01 NS 0.23 3.25 2.72 NS NS 0.22 

Sphaerochaeta 1.05 0.5 <0.005 NS 0.1 0.71 0.78 NS NS 0.08 

Tenericutes  0.35 0.24 0.04 NS  0.03 0.38 0.35 NS NS 0.03 

Anaeroplasma 0.18 0.09 0.08 NS 0.02 0.13 0.12 NS NS 0.01 

L7A E11 0.11 0.19 0.07 NS 0.02 0.06 0.08 NS NS 0.01 
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Table 18. Relative abundances in piglets' colonic contents (N=7 for DS piglets, N=8 for RS 

piglets). Results showed are only for the top 10 genera and the genera with p<0.10 and 

relative abundance >0.01%. 

Genus DS  RS  P FDR SEM 

Bacteroidetes 41.48 37.88 NS NS 1.76 

Prevotella 19.39 14.68 NS NS 1.92 

Bacteroides 5.44 8.25 NS NS 1.24 

Unclassified_Bacteroidales OTU1 4.51 4.86 NS NS 0.54 

Unclassified_S24-7 4.34 3.43 NS NS 0.59 

Unclassified_Bacteroidales OTU2 2.84 2.91 NS NS 0.45 

  
     

Firmicutes 42.73 45.42 NS NS 2.88 

Unclassified_Ruminococcaceae 12.19 13.43 NS NS 1.38 

Lactobacillus 5.55 3.94 NS NS 1.02 

Unclassified_Clostridiales OTU1 3.18 6.46 NS NS 1.18 

Phascolarctobacterium 2.95 3.71 NS NS 0.25 

Oscillospira 2.37 2.75 NS NS 0.27 

Veillonella 1.09 0.44 0.08 NS 0.20 

Unclassified_Clostridiales OTU2 0.03 0.01 0.06 NS 0.00 

  
     

Fusobacteria 4.91 6.37 NS NS 1.94 

Fusobacterium 4.91 6.37 NS NS 1.94 

  
     

Proteobacteria 7.89 6.12 NS NS 1.03 

Unclassified_Enterobacteriaceae 3.21 1.92 NS NS 0.74 

Unclassified_Pasteurellaceae 0.01 0.03 0.08 NS 0.01 

  
     

Spirochaetes 0.75 1.46 NS NS 0.33 

Brachyspira 0.01 0.00 0.06 NS 0.00 

  
     

Synergistetes 0.12 0.57 NS NS 0.22 

Pyramidobacter 0.11 0.55 NS NS 0.21 

Unclassified_Dethiosulfovibrionaceae 0.00 0.01 0.07 NS 0.00 

 

4.6. Gene expression 

In the ileum and colon of piglets, no differences were observed for cytokines 

involved in inflammatory processes, but an effect of the maternal diet was observed 

on tight junction protein expression. Indeed, ZO-1 was more expressed in the ileum 

of piglets born from RS mothers (Table 19). OCLN tended to be more expressed in 

the ileum of RS piglets without reaching significance (p=0.08).   
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Table 19. Relative gene expression in the ileum and colon of piglets at weaning. The 2-ΔΔCt  

value of DS piglets is set at for each gene 1 to allow comparisons.  

Gene  
Ileum Colon 

DS 

(n=7) 

RS 

(n=8) 
SEM P 

DS 

(n=8) 

RS 

(n=8) 
SEM P 

         

TNF-α 1.00 0.91 0.07 NS 1.00 1.02 0.16 NS 

IL-6 1.00 0.95 0.21 NS 1.00 2.55 1.04 NS 

NFκB 1.00 0.99 0.03 NS 1.00 1.06 0.06 NS 

TGFβ 1.00 0.91 0.04 NS 1.00 1.00 0.11 NS 

IFNγ 1.00 0.56 0.17 NS 1.00 0.83 0.34 NS 

IL-1β 1.00 0.84 0.21 NS 1.00 0.52 0.32 NS 

IL-10 1.00 1.11 0.23 NS 1.00 2.08 0.66 NS 

ZO-1 1.00 1.16 0.03 0.02 1.00 1.23 0.08 NS 

OCLN 1.00 1.38 0.09 0.08 1.00 0.80 0.20 NS 

 

4.7. Performances of piglets after weaning 

The maternal treatment did not affect the ADG of the piglets (82.07±15.43g/day 

and 70.48±13.71g/day for the DS and RS piglets respectively during the first week 

post-weaning, 167.49±20.13g/day and 206.30±21.31g/day for the DS and RS pigs 

respectively during the second week post-weaning). Bodyweight of the piglets was 

not affected by the maternal dietary treatment either (6.71±0.31kg and 6.66±0.30kg 

for DS and RS pigs one week after weaning and 7.88±0.38kg and 8.35±0.36kg for 

DS and RS pigs 2 weeks after weaning, P for the treatment=0.98). 

A time effect (p<0.001) and an interaction between time and treatment (p=0.005) 

was observed for the faecal scoring practised after weaning (Figure 17). On day 7, 

RS piglets had a lower score than DS piglets while they had a higher score on day 13, 

without reaching significance (p<0.10).The diarrhoea occurrence was calculated on 

3-days intervals. The diarrhoea occurrence increased from period 1 to 2 and from 

period 4 to 5 (p<0.001, S3 Fig).  
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5. Discussion 

The main objective of this study was to investigate the maternal effect of a diet rich 

in pea starch as a source of RS on the intestinal microbiota and gut health-related 

parameters of the progeny. The hypothesis was that including resistant starch in the 

diet of the sows during gestation and lactation would favourably modify their milk 

and/or microbiota composition and that it would in turn affect piglets’ microbiota 

profile and their absorptive and immune abilities.  

The unaffected growth performances of sows and piglets observed in our study is 

desirable as inclusion of RS, lower in energy content than its digestible counterpart, 

should not impair the performances of the animal. Yan et al. (2017) fed sows high 

amylose maize (65% during gestation, 60% during lactation) and observed a lower 

birthweight for piglets born from high amylose sows. However, these piglets were 

able to catch up during lactation thanks to a higher fat content of the milk. In our 

study, no impact on the milk fat was observed. A reason for this discrepancy between 

the present study and Yan et al.’s (2017) may reside in the fact that different breeds 

were used as breed can impact fat concentration (Farmer et al. 2004) and that the 

amount of RS incorporation in the diet differed. In our study, parity as only factor did 

not affect the milk fat percentage but the interaction between parity and time was 

Figure 17. Piglets' faecal score during 2 weeks post-weaning. Score was 

assessed daily for 15 days. 
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significant (p=0.02), showing that the colostrum of gilts (parity 1) contained more fat 

than other parities.  

Even though no difference in fat content was observed, other nutritional 

components of milk were affected by the sows’ diet. In particular, a decrease in 

protein concentration was observed for the RS sows compared to the DS group, 

together with a higher concentration of lactose in colostrum and milk collected one 

week after farrowing, while the opposite was observed during the last week of 

lactation. The lower milk protein concentration could be attributed to a slightly lower 

analysed protein content of the RS lactation diet. The discrepancy between our study 

and Loisel et al. (2013), who did not observe any increase in lactose concentration in 

milk during the whole lactation period after feeding sows a high fibre gestation diet, 

can be explained by the fact that the type of supplementation given to sows 

differentially affects lactose concentration (Hurley 2015). The increase in lactose 

concentration in RS milk in the beginning of lactation was probably too small to result 

in bodyweight difference for the piglets or to affect gut morphology. However, as the 

milk yield was not measured in this study, it cannot be excluded that DS sows had a 

higher milk yield, compensating the richer milk of RS sows. In the future, analysing 

the composition of milk oligosaccharides would be interesting, as oligosaccharides 

are considered as prebiotics, shaping the gut microbial communities of the piglets and 

are present in 29 forms in sows’ milk (Tao et al. 2010). 

Microbiota results showed that in the faeces of the sows, more genera differed 

between dietary treatments during gestation than during lactation, as already 

observed by Leblois et al. (2017) when feeding sows a high wheat bran diet. During 

gestation, even if the bacterial diversity and richness were not affected by the diet, 

we observed a clustering per dietary treatment on the PCoA graph that can be 

explained by differences both at the phylum and genus levels. Interestingly, during 

gestation, the RS group had a higher Firmicutes to Bacteroidetes ratio. As an 

increased Firmicutes proportion is usually related to a higher extraction of energy 

from the diet (Maga et al. 2012) and an increase in Bacteroidetes in humans has been 

associated with weight loss (Turnbaugh & Gordon 2009); a higher ratio 

Firmicutes:Bacteroidetes would be thus desired in animal production. However, in 

the short term, the altered ratio observed during gestation did not lead to any 

bodyweight gain differences between the two groups of sows. In humans however, 

Martinez et al. (2010) observed decreased abundance of Firmicutes and increased 

Bacteroidetes, hence a decreased Firmicutes:Bacteroidetes ratio, when adding 

chemically modified RS4 in the diet.  Surprisingly, this was not observed for native 

RS starch granules (RS2) supplementation.  

In agreement with the study of Sun et al. (2015) who fed growing pigs raw potato 

starch and analysed the microbiota in the proximal colon, our study also showed an 

increase in the abundance of Turicibacter and Coprococcus and a decrease in 

Treponema and Oscillospira relative abundances in sows’ faeces. Interestingly, 

Turicibacter has been reported to be related to host gut immune status as this genus 

decreased or disappeared in immunodeficient animals (Allen et al. 2015). In addition, 
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the increase in the beneficial genus Bifidobacterium due to RS observed during 

gestation is in line with other studies (Bird et al. 2007; Martinez et al. 2010). 

Therefore, the increase in Bifidobacterium and Turicibacter observed in the current 

study migh suggest a better gut health. In contrast with Bird et al. (2007) and Haenen 

et al. (2013), no effect on Lactobacillus relative abundance in sows’ faeces was 

observed. Unfortunately, those microbial changes were not transferred to the 

offspring. It is noteworthy that effects and relative abundances of the genera differ 

between studies, the main reasons residing in the RS types used, breeds, environment, 

age, physiological stage, part of the gut studied, choice of hypervariable region for 

sequencing, and DNA extraction protocols/kits. 

While a treatment effect was observed for the sow’s faecal microbiota during 

gestation, these differences disappeared during lactation. Even though ADF and NDF 

differences between DS and RS diets existed only during gestation, we assume that 

the microbiota difference is mainly due to the RS difference, for the following 

reasons. Firstly, RS is more extensively fermented than cellulose and hemicellulose 

(represented by ADF and NDF, Bindelle et al. 2008). Secondly, the observed genera-

changes due to the RS treatment (for which ADF and NDF fractions were lower than 

in DS diet) during gestation are in line with other studies feeding pigs with RS 

(Haenen et al. 2013; Sun et al. 2015) and are oriented to fermentative-type bacteria 

(increased Firmicutes and Ruminococcaceae). Therefore, we assume the observed 

changes during gestation can be attributed to the RS rather than the difference in 

hemicellulose and cellulose content.  

The lack of differences in sow’s faecal microbiota between treatments during 

lactation is difficult to explain. However, this is in line with our previous study on 

wheat bran (Leblois et al., 2017) for which microbiota changes occurred during 

gestation when feeding sows diets containing the same ADF content but variable 

amounts of NDF (22% vs 25%) and wheat bran (0 vs 24%). Hence, it cannot be 

excluded that the hemicellulose difference existing during only gestation could as 

well have interfered with the absence of microbial changes during lactation. On the 

other hand, physiological and environmental changes that the sows face at farrowing 

and the stresses they encounter throughout the lactation period (manipulation of 

piglets, milking of the sows) might have such an impact on the microbiota that they 

can mask the effects of the dietary treatment. Indeed, Paßlack et al. (2015) have 

already shown a more important time effect (gestation/farrowing/lactation) on the 

bacterial composition of sows’ faeces than inulin effect. 

The microbiota changes occurring around farrowing and lactation were probably 

responsible for the absence of difference between the microbiota of piglets born from 

DS and RS sows. The similar microbiota between piglets was reflected by the same 

total and individual SCFA production in the caecum and colon of the piglets. Piglets’ 

microbiota composition considerably differed from the microbiota of the sows, which 

is in agreement with Leblois et al. (2017) and resides in the fact that microbiota still 

did not reach a stable community that can only be achieved after weaning, maturation 

and introduction of solid feed. Moreover, piglets’ microbiota is not only acquired 
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from bacteria present in sows’ faeces, but also from bacteria present in sows’ vaginal 

tract, milk and in the environment and is unstable in the neonatal gut until reaching a 

climax community with aging (Bian et al. 2016). It can thus be suggested that changes 

induced in sows’ faecal microbiota induce limited alterations in the colonic 

microbiota of the piglet. 

The immune competence of piglets relies both on the microbial colonization 

(Schokker et al. 2014) and on the passive immunity acquired from the mother at birth 

via immunoglobulins transmitted in the colostrum (Theil et al. 2012). Using seaweed 

extract, Leonard et al. (2012) observed an increased concentration of IgG in 

colostrum of supplemented sows. In another study (Loisel et al. 2013), feeding sows 

a high fibre diet during gestation decreased IgA concentration 24h after parturition. 

In our study, IgA concentration in colostrum of RS sows showed a trend (p=0.07) for 

a decrease, while IgG concentration was not affected. A lower concentration of IgA 

in sows’ colostrum would be undesirable as IgA contributes to the passive immunity 

of the piglets. 

The effect of the maternal supplementation with pea starch on the piglets was 

limited, as the milk composition was barely affected and as the microbiota of piglets 

was not affected by the maternal treatment. It is then likely that the performances and 

immune competence of the piglets remained unaffected as observed by similar litter 

bodyweight gains and percentage of weaned piglets for both treatments. As important 

as colostrum composition, the microbiota is crucial for the maturation of the gut 

immune system and has been shown to be the most important factor in the 

development of the intestinal immune system; moreover, different diets and 

environments inducing differences in microbiota have been shown to lead to 

differential immune cells development (Everaert et al. 2017). As no difference in 

microbiota composition was observed in those piglets raised in the same 

environment, it seems logical that the immune parameters of the piglets were not 

affected by the maternal treatment, as determined by the gene expression analysis. In 

contrast, Heim et al. (2015b) showed that seaweed-derived polysaccharides in the 

diet of gestating and lactating sows impacted the expression of inflammatory 

cytokines (higher expression of IFNγ, IL-1, TGFβ1 and TNFα and lower expression 

of IL-10 and IL-6 in the ileum tissue) of piglets.  

However, the protein ZO-1 was more expressed in the ileum of RS piglets, while 

OCLN showed a trend (p=0.08) for a higher expression. ZO-1 is called a “plaque 

protein” and is involved in the strengthening of tight junction proteins by interacting 

with claudins that are involved in the closure of the gut membrane and also with 

junctional adhesion molecule Jam-A that is involved in the reduction of intestinal 

permeability (Ulluwishewa et al. 2011). A higher expression of ZO-1 is thus 

beneficial for piglets as this will induce a stronger closure of the gut epithelium and 

a lower chance of translocation for pathogens, as tight junction proteins are 

responsible for paracellular permeability (Chen et al. 2013). It is then likely than RS 

piglets would be less sensitive to pathogens at weaning, together with a lower passage 

for water loss causing diarrhoea. However, no significant differences on the faecal 
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score or diarrhoea occurrence during the 2-weeks post-weaning period were observed 

for piglets born from DS and RS sows, and bodyweight gain or ADG were not 

affected either.  

Thus, using pea starch in sows’ diets is not detrimental on piglets’ health but to 

obtain more conclusive results, it may be required to record faecal consistency for a 

longer period and to collect samples of intestinal tissues and contents further along 

during the post-weaning phase. In conclusion, the induced microbiota changes due to 

the diet of the sow did not affect the microbiota of piglets at weaning. However, milk 

composition can be affected by the inclusion of resistant starch in the diet of sows. 

Furthermore, the performances of the animals were not impacted by this 

supplementation and only minor effects of the tight junctions of piglets’ intestine 

were observed. 
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S1 Table. Bodyweight and backfat changes of the sows between periods. 

 

 

 

 

 Period DS RS SEM P-value 

Bodyweight 

changes (%) 

Day 80- day 104 4.04 4.14 0.59 0.94 

Day 104 - weaning -19.91 -20.01 0.96 0.96 

Backfat 

changes (%) 

Day 80- day 104 -1.99 -0.41 1.69 0.65 

Day 104 - weaning -24.02 -27.06 2.68 0.58 

S1 Fig. Piglets’ bodyweight from birth until weaning for maternal DS and RS treatments. 
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S2 Table. Total SCFA and molar ratios of individual SCFA and BCFA in piglets’ caecum 

and colon contents. 

 RS DS SEM P value 

Sum (mmol/g) 10.55 8.89 0.88 0.35 

% acetic acid 58.29 60.41 0.99 0.29 

% propionic acid 21.86 21.96 0.54 0.93 

% butyric acid 10.66 9.88 0.4 0.35 

 

 

S2 Fig. PCoA discriminating dietary treatments during 

lactation. Red squares represent the faecal microbiota 

composition of  sows fed DS during gestation (N=10) while 

blue dots represent microbiota of sows fed RS diet  (N=10). 
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S3 Table. Total SCFA and molar ratios of individual SCFA and BCFA in piglets’ caecum 

and colon contents 

 Caecum Colon 
 DS RS p-values DS RS p-values 

Sum (mg/g) 11.0±1.5 8.7±0.9 NS 5.90 ± 1.02 4.82 ± 0.66 NS 

Acetate (%) 61.9±2.0 59.3±2.3 NS 53.74 ± 2.95 52.12 ± 2.39 NS 

Propionate (%) 20.7±1.0 21.7±1.2 NS 21.52 ± 1.12 23.17 ± 1.88 NS 

Butyrate (%) 8.5±0.8 10.5±0.9 NS 10.18 ± 1.76 10.16 ± 1.78 NS 

Isobutyrate (%) 2.3±0.1 2.1±0.4 NS 3.83 ± 1.53 2.23 ± 0.69 NS 

Isovalerate (%) 1.7±0.2 2.0±0.2 NS 2.8 ± 0.75 2.28 ± 0.60 NS 

Valerate (%) 4.1±0.4 3.5±0.8 NS 3.13 ± 0.71 2.55 ± 0.91 NS 

 

S4 Table. Gut morphology (villus height, crypt depth, villus/crypt ratio) in the duodenum, 

jejunum and ileum of 26-days old piglets. 

Villus height 

(µm) 
DS RS SEM P treament P individual 

Duodenum 400.9 397.6 4.35 0.87 <.0001 

Jejunum 366.4 406.6 4.43 0.16 <.0001 

Ileum 364.8 360.4 4.07 0.87 <.0001 

N=240/treatment   
   

 

  

   

Crypt depth 

(µm) 
DS RS SEM P treament P individual 

Duodenum 313.2 340.3 3.77 0.32 <.0001 

Jejunum 289.1 298.2 3.18 0.72 <.0001 

Ileum 250.1 222.5 2.67 0.14 <.0001 

N=240/treatment  
    

 
 

    

Ratio V:C (µm) DS RS SEM P treament P individual 

Duodenum 1.36 1.27 0.02 0.55 <.0001 

Jejunum 1.31 1.54 0.04 0.31 <.0001 

Ileum 1.53 1.71 0.02 0.26 <.0001 

N=240/treatment   
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S3 Fig. Diarrhoea occurence for weaned piglets during 15 days, divided in 3-days periods. 

 



 

 

7 
Maternal dietary resistant starch has 

lasting effects on their progeny’s gut health 

when challenged with a high fat diet 
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Following the short-term experiment that aimed at unravelling the effects of 

introducing RS in the diet of pregnant and lactating sows on the gut health of the 

progeny at weaning, a long term experiment was led. This experiment aimed at 

investigating whether the maternal diet supplementation could alter the metabolism 

and microbiota of their progeny submitted to a high fat challenge in the later life. 

Below is a small paper concerning this topic but some other results are still waited to 

complete the discussion and to submit the paper in a journal.  
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1. Introduction 

Obesity is a metabolic trouble that affected 650 million of adults in 2016 and is 

related to several health disorders; the first symptom of obesity is overweight, as 

individuals are considered as obese when BMI>30 (World Health Organization). 

Moreover, obesity is related to low grade body inflammation represented by an 

increased expression of IL1β, TNF-α, MCP-1 and IL-6 in muscle, liver and adipose 

tissue (Cani & Delzenne 2009). In order to investigate the possible dietary solutions 

to counteract the rise of obesity, animals are most often used as models for humans 

and in particular rodents were historically the preferred model due to their low cost, 

ease of handling and short experimental time (Guilloteau et al. 2010a; Gonzalez et al. 

2015). Alternatively, the pig is more and more used due to its similar gastrointestinal 

tract physiology, omnivorous diet and microbiota (Guilloteau et al. 2010a; Heinritz 

et al. 2013). Possessing similar microbiota is of importance as microbiota plays 

several roles and is involved in obesity. The roles of the gut microbiota include the 

extraction of energy from undigested carbohydrates by production of short-chain 

fatty acids (SCFA) after fermentation that are absorbed by the host, the maintenance 

of the barrier integrity of the gut by increasing the mucus layer thickness and the 

settling of the gut immune system (Sommer & Bäckhed 2013). Microbiota has been 

shown to be involved in the aetiology of obesity as faecal transplantation of obese 

mice microbiota to germ free (GF) mice led to the appearance of the obese phenotype 

of these mice (Turnbaugh et al. 2006). In case of obesity, the ratio between Firmicutes 

and Bacteroidetes is increased, translating a higher energy extraction from the diet 

(Maga et al. 2012). Moreover, the abundance of some beneficial bacterial genera, 

including Bifidobacterium, is decreased in case of obesity (Cani & Delzenne 2009). 

As this genus is involved in the strengthening of the epithelial barrier, a lower 

abundance leads to higher permeability of the membrane. In addition, a high fat diet 

increases the production of chylomicrons and causes their accumulation in the 

paracelullar space, also loosening the tight junctions (Boroni Moreira et al. 2012). 

Thus, a high fat diet leads to an increased permeability of the epithelium and allows 

the passage of toxins like lipopolysaccharide (LPS). This molecule is produced by 

Gram negative bacteria, transported to the blood stream by chylomicrons and thus 

seems to be a key molecule in the appearance of the typical low grade inflammation 

observed after high fat feeding.  

Short-chain fatty acids, the end-products of microbial fermentation, are important 

energy sources for the host. Indeed, acetate will mainly be transported to the liver 

where it will be used as energy source but also as a precursor for other molecules 

production, including cholesterol; propionate will be used for gluconeogenesis (den 

Besten et al. 2013) and butyrate is the preferred energy source of enterocytes 

(Guilloteau et al. 2010b) and exerts anti-inflammatory properties by activating the 
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intestinal alkaline phosphatase, an intestinal enzyme responsible for the 

detoxification of LPS (Hinnebusch et al. 2003; Melo et al. 2016).  

As microbiota is very important for barrier function, immune response and 

bodyweight gain, a strategy to avoid low-grade inflammation and obesity is to act on 

microbiota. For this, several solutions are envisaged that are mainly nutritional, using 

either probiotics (living beneficial bacteria, e.g. Bifidobacterium) or prebiotics 

(Mulders et al. 2018). Prebiotics are substrates that escape enzymatic digestion, are 

fermented by the microbiota and selectively promote the growth of beneficial bacteria 

within the microbiota at the expense of pathogens (Gibson et al. 2004). The 

establishment of a beneficial microbiota occurs early in life and there exists a transfer 

of bacteria from the sows to the progeny, as piglets are in contact with sows’ faeces 

during the whole lactation period. Thus, reaching a beneficial microbiota for piglets 

with long lasting effects could be achieved by the use of prebiotics in sows’ diet, with 

the hypothesis that these prebiotics could positively affects sows and thus piglets’ 

microbiota (Schokker et al. 2014; Arnal et al. 2015). In this study, the emphasis was 

put on the use of dietary fibre in the form of resistant starch (RS) in the diet of sows 

in order to promote the establishment of a beneficial microbiota as early in life as 

possible for their progeny. Resistant starch can be defined as the proportion of starch 

able to escape enzymatic digestion due to its chemical and physical properties and 

can thus be fermented in the large intestine. It is considered as a prebiotic as it can 

selectively favour beneficial bacteria that exert fermentative and anti-inflammatory 

properties.  

Thus, the research question of this study was to determine whether the inclusion of 

resistant starch in the diet of gestating and lactating sows could impact the ability of 

the piglets to cope with a high fat challenge, alleviating the symptoms of low-grade 

inflammation and/or obesity, by acting on the microbiota. 

2. Materials and methods 

2.1. Animals, diets and housing 

Twenty-four Landrace sows were used during this animal experiment; they were 

inseminated with Piétrain semen, housed in groups on straw from 3 days after 

artificial insemination (AI) until one week before farrowing where they were housed 

in individual farrowing units equipped with wood shavings and a heat lamp for 

piglets. Sows and piglets were housed at the Walloon agricultural research centre in 

Gembloux (Belgium). All procedures led on the animals were approved by the ethical 

committee of the University of Liège (protocol n°1661). Sows were fed a standard 

diet during gestation until day 88. At day 88 of gestation, sows were divided in two 

groups, one group (n=12) receiving a diet containing 33% of standard maize starch, 

considered as digestible (DS) while the other group (n=12) received a diet rich in pea 

starch (Nastar, Cosucra, Belgium), considered as resistant starch (RS) until the end 

of lactation (28 days). The diets were adapted for nutritional requirements of sows 
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for the gestation and lactation periods (see composition in Table 20). At weaning (28 

days of age), 44 female piglets (22/DS sows, 22/RS sows, 6 sows/treatment) were 

moved to the centre for animal production of Liège University in Gembloux. The 

temperature on the day of arrival was of 26°C, piglets were housed on grates, two 

littermates being housed in each pen.  

Piglets were fed a standard weaning diet during 21 days, devoid of antibiotics, 

organic acids or NSP enzymes. At day 22 post weaning (PW), piglets were fed either 

a control diet (CON) containing 10% of maize starch (Roquette, Lestrem, France) or 

a high fat diet (HF) containing 10% of palm oil (Mosselman S.A., Ghlin, Belgium) 

to induce a high fat challenge. During this challenge, the feeds provided were a 

grower 1 diet (11-25 kgs) and followed by a grower 2 diet (25-50 kgs) to reach their 

nutritional requirements considering their bodyweight. The animal experiment ended 

10 weeks post-weaning with slaughtering. Five piglets facing too severe weight loss 

after weaning had to be treated with antibiotics and were thus out of the experiment, 

while one pig died by sudden death. 

2.2. Piglets’ performances 

Piglets’ bodyweight was recorded weekly during the whole experiment. Two days 

before slaughtering, the backfat , muscle thicknesses and meat percentage were 

determined using a Piglog 105 lean meater (Carometec, Smørum, Denmark). The 

number of pigs affected by umbilical hernia was also recorded at the end of the 

experiment. 

2.3. Blood sampling and analysis 

Six weeks after the beginning of the high fat challenge, piglets were fasted for 12 

hours and blood was sampled in 9-ml serum tubes (S-monovette, Sarstedt, Germany). 

After centrifugation at 2000g for 10 minutes, the supernatant (serum) was collected 

and stored at -20°C until further analysis. Serum triglycerides (TG), total cholesterol 

(TC) and high density lipoprotein (HDL) were analyzed with TRIGL, CHOL2 and 

HDLC3 packs on a Cobas 8000 instrument (Cobas, Roche, Switzerland). The low 

density lipoprotein (LDL) concentration was calculated following Friedewald et al. 

(1972) formula: LDL=TC-HDL-TG/5. 

2.4. Sampling of intestinal tissue and content 

At the end of the experiment (10 weeks post-weaning), the 38 remaining piglets 

were firstly profoundly anesthetized with a mix of Xylazine and zoletil 100 (4 mg of 

xylazine, 2 mg of zolazepam and 2 mg of tilamine/kg) and were then euthanized by 

bleeding. . The length of the intestinal tract was measured and the pH of the ileum 

and proximal and distal colon was measured using a pH-meter. Contents of caecum, 

proximal and terminal colon were collected in sterile ml tubes and stored at -80°C 

until further analyses. Mucus of the proximal colon was obtained after emptying the 
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colon with saline solution and scratching on a cold surface; mucosa was then snap-

frozen in liquid nitrogen and stored at -80°C until RNA extraction.  

Table 20. Ingredients and analyzed chemical composition of grower diets fed to pigs. 

Ingredient 
Grower 1 (11-25 kg) Grower 2 (25-50 kg) 

CON HF CON HF 

Barley 17.7 17.7 11.25 11.25 

Maize 13.5 13.5 9.4 9.4 

Wheat 13 13 27 27 

Soybean meal 48% 12.1 12.1 14.2 14.2 

Palm oil - 10 - 10 

Maize starch 10 - 10 - 

Golden soy 9 9 0 0 

Nutex 68 (Dumoulin Inc) 4.5 4.5 0 0 

Bread flour 4.5 4.5 4.95 4.95 

Biscuit flour 4.5 4.5 4.95 4.95 

Wheat bran 3.6 3.6 2.34 2.34 

Rapeseed meal 2.2 2.2 4.95 4.95 

Sunflower meal 0 0 3.15 3.15 

Chalk 1.5 1.5 1.36 1.36 

Beet pulp 1.3 1.3 1.8 1.8 

Fat 0 0 1.67 1.67 

Maize gluten 0 0 1.188 1.188 

Amino acids (Thr, Try, Met, Lys) 1.132 1.132 0.775 0.775 

Minerals & Vitamins 0.603 0.603 0.369 0.369 

Salt 0.4 0.4 0.333 0.333 

Molasses 0 0 0.36 0.36 

     

Analysed chemical composition 

DM (%) 88.8 89.7 89.94 89.41 

CP 18.03 17.81 18.40 18.84 

EE 5.05 15.94 4.77 14.88 

ADF 5.15 5.55 5.29 5.37 

NDF 12.69 13.83 13.65 14.65 
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2.5. Short-chain fatty acids (SCFA) determination 

Piglets’ caecal and colonic contents were diluted in ultrapure water to reach a 5-

fold dilution before passage on HPLC for SCFA determination. Samples were 

centrifuged at 13,000g for 15 minutes, acidified and filtered on 0.22µm filters. The 

quantitation of SCFA was performed on isocratic HPLC equipped with a Waters 

system fitted with an Aminex HPX-87H column (Bio-Rad, Hercules, CA, USA) 

combined with a UV detector (210nm). Sulfuric acid (5mM) was used as mobile 

phase at a flow rate of 0.6ml/min. SCFA concentrations were quantified by 

integration of each peak with Empower 3 software (Waters, Milford, USA) after 

encoding a standard curve. The results are transformed to be expressed in mmol.g-1, 

taking into account the sample dilution. Molar ratios were then calculated for every 

SCFA. 

2.6. Microbiota composition and calprotectin concentration 

DNA was extracted from proximal colon of 32 piglets (8/treatment) using 

QiagenQIAamp Stool Minikit (Qiagen, Hilden, Germany) following the 

manufacturer’s recommendations with the addition of two bead beating steps 

(FastPrep-24, MP Biomedicals, Illkirsh, France) during 3 minutes by 30” intervals 

with 30” intermittent cooling, at a speed of 6M/s. Quality of DNA was checked on 

1% agarose gel and the DNA concentration was assessed by a Nanodrop (Thermo 

Scientific NanoDrop 2000, USA). DNA was stored at -20°C until sequencing. 

Sequencing was performed by DNAVision (Gosselies, Belgium), using the Illumina 

MiSeq (2 × 300nt) and after amplifying, purifying and tagging the hypervariable 

regions V3-V4 (Forward primer: 5′-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGC

AG-3′ and reverse primer: 5′- 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATC

TAATCC-3′) following the 16 S Metagenomic Sequencing Library Preparation 

protocol (Part # 15044223 Rev. B) from Illumina. Calprotectin concentration in the 

colon contents of the piglets was assessed using Porcine Calprotectin ELISA Kit 

(MyBioSource, San Diego, USA) following the manufacturer’s recommendations. 

Absorbance was measured at 450nm. 

2.7. Gene expression 

RNA was extracted from proximal colon mucosa with ReliaPrepTM RNA Tissue 

Miniprep System kit (Promega, Madison, USA) using bead beating to disrupt the 

tissue. The concentration of RNA was assessed on a Nanodrop (Thermo Scientific 

Nanodrop 2000, USA) and all concentrations were aligned in order to use 1µg of 

RNA in the reverse transcription. The RNA integrity was verified on 1% agarose gel. 

RNA was then retro-transcribed into single-stranded cDNA with GoScriptTM Reverse 

Transcription Mix (Promega, Madison, USA). Specific regions of cDNA coding for 
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house keeping genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 

400nM) and β-actin (ACTB, 300nM), for tight junction proteins zonula occludens 1 

(ZO1, 200nM) and occludin (OCLN, 200nM) and for cytokines and molecules 

related to inflammation interferon-γ (IFNγ, 400nM), Tumour Necrosis Factor α 

(TNFα, 200nM) and Interleukin 1β (IL1β, 400nM) were amplified with qPCR using 

the SYBR Premix Ex Taq II (TakaraBio) with 3-steps: 95°C for 5”, 60°C for 30” and 

72°C for 30”. All primers efficiencies were optimized between 90 and 110% and their 

specificity was checked on the melting curve. GAPDH and ACTB were used as 

reference genes after confirming their stability and the 2-ΔΔCt method was used. The 

list of primers is available in Table 21. 

. 

2.8. Bioinformatics and statistical analyses 

Raw sequences of 16S rRNA were assigned to each sample, quality checked and 

trimmed using Basespace default parameters (Illumina). Sequences were assigned to 

97% ID OTUs by comparison to the Greengenes reference database 13.8 using the 

QIIME (Quantitative Insights Into Microbial Ecology) 1.9.0 software. Since samples 

contained variable number of sequences (90903±5396), diversity analyses were 

carried out on samples rarefied at the same sequencing depth (47788) to avoid bias 

in sequencing depth between samples.  The Beta_diversity_through_plots.py script 

was used to assess differences in bacterial communities and functional composition 

between groups of samples. Beta diversity was visualized using un-weighed and 

weighed UniFrac distances with Principal Coordinate Analysis (PCoA). The 

compare_categories.py script, which applied the adonis method on the previously 

obtained dissimilarity matrices, was used to determine whether communities differed 

significantly between groups of samples. Multiple_rarefactions.py and 

alpha_diversity.py scripts were applied to compute alpha diversity metrics, which 

evaluated diversity within a sample and generated rarefaction curves.  For microbiota 

composition, a non-parametric test was used as normality of the data was not 

achieved. For this, the proc NPA1WAY of SAS was used, either considering the 

maternal diet, the pig diet or both in a 4-treatments setup, non-parametrical tests not 

allowing the 2-ways analysis. 

For the other parameters, all statistical analyses were performed with SAS 9.2 

software (SAS Inc, USA) using the MIXED procedure of SAS, including the 

maternal diet and the pig treatment in a two-ways ANOVA. Normality of the data 

was tested with Shapiro-Wilk’s test and variance equality with Levene’s test.  
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Table 21. Primers used for the qPCR analysis. 

 

 

Primer Sequence (5’->3’) Reference Accession number 

ACTB F GGA-CTT-CGA-GCA-GGA-GAT-GG Dozois et al. 

(1997) 
XM_021086047  

  R GCA-CCG-TGT-TGG-CGT-AGA-GG 

GAPDH F CAT-CCA-TGA-CAA-CTT-CGG-CA Chatelais et 

al. (2011) 
NM_001206359.1  

  R GCA-TGG-ACT-GTG-GTC-ATG-AGT-C 

TNF-α F ACT-GCA-CTT-CGA-GGT-TAT-CGG Meissonnier 

et al. (2008) 
NM_214022.1 

  R GGC-GAC-GGG-CTT-ATC-TGA 

IFN-γ F TGG-TAG-CTC-TGG-GAA-ACT-GAA-TG Royaee et al. 

(2004) 
NM_213948 

  R GGC-TTT-GCG-CTG-GAT-CTG 

IL1β F ATG-CTG-AAG-GCT-CTC-CAC-CTC Gourbeyre et 

al. (2015) 
NM_214055 

  R TTG-TTG-CTA-TCA-TCT-CCT-TGC-AC 

ZO-1 F TGA-GAG-CCA-ACC-ATG-TCT-TGA-A Vigors et al. 

(2016) 
XM_021098856  

  R CTC-AGA-CCC-GGC-TCT-CTG-TCT 

OCLN F CTA-CTC-GTC-CAA-CGG-GAA-AG Chen et al. 

(2013) 
NP_001157119.1   R ACG-CCT-CCA-AGT-TAC-CAC-TG 

https://www.ncbi.nlm.nih.gov/nuccore/XM_021086047.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_001206359.1
https://www.ncbi.nlm.nih.gov/nuccore/NM_214022.1
https://www.ncbi.nlm.nih.gov/nuccore/XM_021098856.1
https://www.ncbi.nlm.nih.gov/ipg/NP_001157119.1/
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3. Results 

3.1. Performances 

Table 22. Backfat thickness, muscle thickness, meat percentage and bodyweight of pigs 

after the high fate challenge. (n=9 for DS CON, DS HF, RS CON and n=11 for RS HF) 

 

The HF challenge impacted backfat thickness and the meat ratio (p<0.001, Table 

22), as challenged pigs had a higher BF thickness (5.9 ± 0.2mm for CON pigs vs 7.9 

± 0.4mm for HF pigs) and subsequent lower meat percentage (63.5 ± 0.3% for CON 

pigs vs 62.0 ± 0.3% for HF pigs). Muscle thickness and final bodyweight at 

slaughtering were not impacted by the maternal or high fat treatments. Neither the 

maternal nor the pig diets impacted the weekly bodyweight gain of the animals (data 

not shown). 

  

Treatment BFT1 MT Meat % 
BW 10 

weeks PW 

DS CON 6.0 42.3 63.5 37.6 
DS HF 7.1 44.0 62.7 35.4 
RS CON 5.8 40.6 63.4 38.0 
RS HF 8.5 42.5 61.5 36.2 
Global SEM 0.3 1.0 0.2 0.9 

P-values     
Maternal treatment NS NS NS NS 
HF treatment <0.001 NS <0.001 NS 
Interaction NS NS NS NS 
1BFT: backfat thickness (mm), MT: muscle thickness (mm), BW: bodyweight (kg) 
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3.2. Cholesterol 

Table 23. Total cholesterol (mg/dl), triglycerides (mg/dl), high density lipoprotein (mg/dl), 

low density lipoprotein (mg/dl) and ratio in pigs' fasted plasma after 6 weeks of HF 

challenge (n=8/treatment). 

 Treatment 
TC1 TG HDL LDL 

ratio 
LDL/TC 

DS CON 95.3ab 40.7b 46.3b 40.8a 42.6a 

DS HF 105.3a 44.0b 58.7a 37.8ab 35.9b 

RS CON 86.4b 38.3b 43.8b 35.0ab 40.4ab 

RS HF 101.7a 54.0a 59.6a 31.3b 30.1c 

Global SEM 2.66 1.91 1.90 1.55 1.27 

P-values           
Maternal 

treatment 
NS NS NS <0.05 <0.05 

HF treatment 0.01 <0.01 <0.001 NS <0.001 
Interaction NS 0.07 NS NS NS 
1TC: total cholesterol; TG: triglycerides; HDL: high density lipoprotein; LDL: low density lipoprotein 

Within every treatment in the same column, values having a different superscript letter are significantly 

different (p<0.05). 

 

Total cholesterol, triglycerides and HDL concentrations increased with HF 

challenge (Table 23), while the ratio between LDL and total cholesterol decreased. 

Moreover, LDL was decreased for piglets born from RS sows compared to DS sows, 

leading to a lower LDL/TC ratio for these pigs.  

3.3. Microbiota and SCFA production 

No differences in microbiota diversity or richness were observed between dietary 

treatments (p<0.10). The global microbiota composition was not affected by the 

maternal or pig treatment either, as observed by the PCoA in the Figure 18. 

At the phylum level, this was translated by no impact of maternal diet or HF 

challenge on the relative abundance of the different phyla, as presented in Figure 19. 

Only the minor phylum Planctomycetes was affected by the pig treatment (0.019 ± 

0.005 for CON; 0.004 ± 0.001 for HF pigs). The ratio between Firmicutes and 

Bacteroidetes was not impacted (P>0.05) by the treatments either (1.71 ± 0.18 for DS 

CON; 1.39 ± 0.09 for DS HF; 1.58 ± 0.14 for RS CON; 1.64 ± 0.14 for RS HF).  
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Figure 18. Principal component analysis of the microbial composition of the colonic 

contents. Red dots are DS CON pigs, blue dots are DS HF pigs, orange dots are RS CON 

pigs, green dots are RS HF pigs (n=8/treatment). 
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Figure 19. Proportion of the main abundant phyla in the different pigs groups 

(n=8/treatment). 

Maternal treatment impacted the total production of SCFA in the caecum and 

proximal colon of the pigs (Table 24), pigs born from RS sows having a higher SCFA 

production than pigs born from DS sows. An interaction between maternal and pig 

treatment (p=0.04) was observed in the caecum as within the HF treatment, pigs born 

from RS sows had a significantly (p<0.01) higher total SCFA production than pigs 

born from DS sows. In the caecum of pigs, acetate and propionate productions were 

impacted by the high fat challenge, as propionate production was increased in 

challenged pigs at the expense of acetate. In the distal colon, acetate production was 

however differentially affected (interaction p=0.02): within the DS pigs, challenged 

pigs had a significantly lower acetate production (p=0.048) than CON pigs; within 

the HF treatment, RS_HF pigs had a significantly higher acetate production than 

DS_HF pigs (p=0.03). Butyrate production was not affected by either of the 

treatments within all intestinal segments.  
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Table 24. Total SCFA production and molar ratios of acetate, propionate and butyrate in the 

large intestinal contents of the pigs born from DS or RS sows and fed CON or HF diets. 

  

 

Maternal 

treatment 

Pig 

treatment 
Sum 

% 

acetate 

% 

propionate 

% 

butyrate 

Caecum 

DS 
CON (n=8) 9.24ab 62.49 27.03 10.08 

HF (n=9) 7.62b 59.18 29.50 9.73 

RS 
CON (n=9) 9.29a 59.52 28.24 10.19 

HF (n=12) 10.09a 56.00 29.89 9.19 

  Global SEM 0.31 0.85 0.44 0.27 

P-values 

P mother 0.03 0.06 NS NS 

P pig NS 0.04 0.02 NS 

P interaction 0.04 NS NS NS 

Proximal 

colon 

DS 
CON (n=8) 8.89 60.40 28.02 10.54 

HF (n=9) 8.76 58.30 28.55 10.26 

RS 
CON (n=9) 9.58 59.30 28.69 10.53 

HF (n=12) 10.29 56.20 29.31 9.50 

  Global SEM 0.23 0.76 0.46 0.27 

P-values 

P mother 0.01 NS NS NS 

P pig NS 0.09 NS NS 

P interaction NS NS NS NS 

Distal 

colon 

DS 
CON (n=8) 7.93 55.01a 22.64 14.23 

HF (n=9) 8.89 51.03b 23.23 16.24 

RS 
CON (n=9) 9.35 52.51ab 21.97 16.36 

HF (n=12) 8.61 54.91a 22.95 15.11 

  Global SEM 0.22 0.68 0.36 0.44 

P-values 

P mother NS NS NS NS 

P pig NS NS NS NS 

P interaction 0.06 0.02 NS 0.07 
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3.4. Intestinal inflammation and permeability of the colon 

The maternal treatment significantly impacted the gene expression in the colon of 

challenged pigs (Figure 20). Indeed, TNF-α, ZO1 and OCLN were more expressed 

(p<0.05) in the colon of pigs born from RS sows, while IFNγ was down-expressed in 

the colon of these pigs (p<0.05). IL1β was not impacted by the maternal diet. None 

of these genes expression was impacted by the high fat diet. Calprotectin 

concentration tended (p=0.08) to be lowered in the faeces of pigs born from RS sows 

(87.8 ± 2.6 ng/ml for the DS pigs vs 82.1±1.7 ng/ml for the RS pigs). 

 

Figure 20. Gene expression of inflammatory cytokines and tight junction proteins in the 

proximal colon of pigs  (n=8/treatment). P<0.05 is represented by * and P<0.001 is 

represented by ***. 



Chapter 7. Article 4 
 

139 

 

4. Discussion 

The research question of this study was to determine whether maternal resistant 

starch supplementation could alleviate the adverse consequences of a high fat 

challenge to their progeny later in life. Indeed, the health and metabolism of piglets 

could be impacted by the sows’ diet and early environment as proposed by the theory 

of developmental origins of health and disease (Gluckman & Hanson 2006). This 

question relies on the hypothesis that resistant starch can promote beneficial 

microbiota in the sow gut that will colonize the gut of their offspring early in life, 

with long lasting effects on gut health, as bacteria are involved in SCFA production 

(den Besten et al. 2013), immune modulation (Everaert et al. 2017) and barrier 

function (Boroni Moreira et al. 2012). Alternatively, the maternal treatment could 

program the metabolism of the progeny. 

The primary question was whether the applied HF challenge was sufficient to 

induce early physiological effects related to fatness/obesity (namely increased 

backfat thickness and cholesterol) and low grade inflammation. Then, the effects of 

the maternal diet on these symptoms were investigated. 

The HF challenge seemed to be promising for inducing dyslipidaemia, as total 

cholesterol, triglycerides and HDL production were increased in HF pigs’ plasma. 

The ratio between LDL and TC was impacted by the HF diet and was surprisingly 

lower for HF pigs, which could be attributed to hepatic regulation following a chronic 

high fat exposure (Panasevich et al. 2018). Moreover, the backfat deposition was 

increased after 7 weeks of HF challenge. Dyslipidaemia and increased body fat are 

indicative of development of obesity (Torres-Rovira et al. 2012) but possibly the 

experiment did not last long enough to induce inflammation of the gut. Alternatively, 

liver samples could be more indicative of low grade inflammation and could give 

more insights in establishing whether the high fat challenge was severe enough. 

RNA-seq results on liver samples are still under analysis and could thus give us better 

insights on the inflammatory status and the metabolic programming of the animals. 

In addition, HF diet did not affect microbiota composition, nor the ratio 

Firmicutes:Bacteroidetes. This ratio is however being questioned (Panasevich et al., 

2008) for being a suitable indicator for obesity, as different studies on pigs and 

humans did not observe this shift in obese subjects (Heinritz et al. 2016; Lopez-

Contreras et al. 2018). The impact of feeding HF diets on the microbiota differs 

widely depending on the fat source, percentage of inclusion in the diet and animal 

species used. For example, Feng et al. (2015) only observed a minor difference in 

microbiota composition when feeding growing pigs 5% soybean oil compared to a 

basal diet, while Hamilton et al. (2015) observed an effect on the abundance of 

several microbial genera in the caecum of rats fed 45% of fat. Taking the results of 

the microbiota together, the HF challenge did not induce profound changes in 

microbial structure. In addition, the maternal diet did not induce changes in the 

microbial composition of the progeny either. Maternal transfer is thought to occur 

mainly during the lactation period, with sows’ faecal microbiota being in contact with 
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piglets and milk nutrients playing a role. Previously, we showed that the inclusion of 

resistant starch in gestation and lactation diets induced changes in faecal microbiota 

of sows fed RS during gestation but this differential microbiota was not maintained 

throughout lactation and did not affect the microbiota of the offspring at 26 days of 

age (Leblois et al. 2018). In line with this, no maternal effect appeared either on week 

10 post-weaning, a time point with a more stable microbiota than at weaning (Bian 

et al. 2016); these results are in line with Arnal et al. (2015) who fed antibiotics to 

gestating and lactating sows without an impact on offspring’s colonic microbiota on 

the short (14, 21, 28 and 42 days of age) and long (169 days of age) term.  

Even though the microbiota was not affected by the maternal and HF treatments, 

SCFA production was impacted by both. High fat challenge impacted individual 

molar ratios of SCFA in the caecum of pigs: acetate proportion was decreased with 

the HF diet, together with a higher propionate production. These individual SCFA 

have been related to cholesterol production. Indeed, a direct acetate supplementation 

in the diet was shown in humans to reduce hypercholesterolemia (Kondo et al. 2009). 

On the opposite, propionate has been shown to be negatively correlated with 

cholesterol production (den Besten et al. 2013). Thus, the lower acetate production 

could be related to higher cholesterol while higher propionate should be related to 

lower cholesterol production. Even though these effects seem to be antagonistic, we 

observed in this study an increase of total and HDL cholesterol and triglycerides 

blood concentrations. In addition, acetate has also been shown to be related to a lower 

BW and fat deposition in human subjects (Kondo et al. 2009). In this study, pigs fed 

the HF diet and having the lower acetate production had the greatest backfat 

deposition. 

On the other hand, maternal diet only impacted total SCFA production, as pigs born 

from RS sows had a higher total SCFA production than pigs born from DS sows, 

which is in line with Le Bourgot et al. (2014) who fed sows short chain fructo-

oligosaccharides. This effect can be considered as beneficial as increased SCFA 

production is related to lower risk of metabolic diseases and cancer (Heinritz et al. 

2016). Even though the maternal diet did not impact the microbiota composition nor 

the molar ratios of individual SCFA, the decreased LDL concentration and LDL/TC 

ratio for pigs born from RS sows suggest a metabolic programming of the piglets, 

which might be beneficial for their health as LDL is considered to be the “bad” 

cholesterol promoting atherosclerosis (Puccinelli et al. 2015).  

Moreover, parameters related to inflammation and permeability of the gut mucosa 

were impacted by the maternal diet. Indeed, maternal RS might have decreased 

intestinal permeability as the expression of both OCLN and ZO1, part of the tight 

junction complex, increased. Impact of the maternal diet on transcellular permeability 

but not on paracellular was reported by Arnal et al. (2015) on the long term (169 days 

of age of the piglets) but the HF diet did not induce changes either. While HF feeding 

did not impact the inflammatory status of the colon, maternal RS diet increased TNF-

α expression but lowered IFNγ expression. Other studies feeding sows prebiotics 

pointed out a more developed immune system for the piglets born from the 
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supplemented sows (Le Bourgot et al. 2014), increased ileal expression of IFNγ and 

TNF-α (Heim et al. 2015b) or no impact of the maternal diet (Leonard et al. 2012). 

All these studies were led on nearly weaned piglets, with digestive tract and gut 

immune system not being fully developed, rendering the comparison difficult. RNA 

sequencing of liver samples could give use better insights in the role of maternal diet 

on the development of low grade inflammation for HF treated pigs and on the 

metabolic programming in general. 

To summarize, sows’ supplementation and later high fat diet did not impact 

significantly the microbiota of the pigs. Interestingly, maternal diet increased total 

SCFA production, which is health-promoting and at the same time induced a decrease 

of LDL and LDL/TC ratio, together with decreased colonic permeability, suggesting 

a maternal nutritional programming of the progeny. RNA sequencing results on liver 

samples will bring further information concerning the development of other 

symptoms related to metabolic troubles and the impact of maternal diet on the 

metabolism of their progeny. 
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Overview 

During this PhD, the focus was put on the early programming of piglets’ intestinal 

microbiota and health using the mother as an indirect strategy affecting bacteria and 

nutrients transmission. Indeed, the hypothesis was that introducing dietary 

fermentable fibres in sows’ diet during pregnancy and lactation would alter their 

microbiota and milk composition that would in turn allow the establishment of a 

beneficial gut microbiota as early in life as possible, as piglets’ microbiota is acquired 

from their mothers’ (contact with maternal faeces) and is also affected by milk 

composition. Furthermore, an altered microbiota and/or milk composition could 

allow piglets to cope the weaning stress as these parameters influence gut architecture 

and immune system. 

 Moreover, an altered microbiota could also have the ability to help pigs cope with 

a dietary fat challenge later in life which was tested in the second animal experiment. 

This experiment aimed at inducing inflammation and obesity in pigs, using this 

animal as a model for Human.  

The main results of the short-term experiments for two animal trials are 

summarized in Figure 21 and Table 25 and will be discussed below.

Figure 21. Main results of the two animal experiments led during this PhD thesis. Green V signs 

indicate a change observed for the studied parameter while the red X sign indicate no change. 
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Table 25. Main results of the PhD thesis with the two animal experiments using either 

wheat bran (WB) or resistant starch (RS) until weaning 

Parameters WB RS 

% fibre inclusion 

in the diet 

- Gestation 24% 33% 

- Lactation 14% 33% 

Time of 

supplementation 
 Day 43 after AI Day 88 after AI 

Microbiota of 

sows 

- Gestation 

PCoA clustering PCoA clustering 

No phylum difference 
Phyla differences: ratio 

Firmi/Bactero increased for RS 

13 genera significantly 

different 

14 genera significantly 

different (Bifidobacterium) 

- Lactation 

no PCoA clustering no PCoA clustering 

No phylum difference No phylum difference 

2 genera significantly 

different 
6 genera significantly different 

Milk composition 

- Fat Only parity effect Trend for parity effect only 

- Lactose Globally increased for WB 
Increased RS sows first two 

weeks, decreased last week 

- Protein Only parity effect Lower for RS 

-Ig /* Trend for lower IgA in RS 

Microbiota of 

piglets 

 No phylum difference No phylum difference 
 Trend for 4 genera No genera difference 

Gut morphology 

- Villus height Higher duodenum / 

- Crypt depth / / 

- Ratio V:C Higher duodenum & jejunum / 

Gene expression 

- Inflammation / / 

- Tight junctions / 
Higher ZO-1 expression in RS 

piglets’ ileum 

 
*/ : no impact with the sows' diet supplementation 



Early life programming of piglets’ microbiota and gut health by maternal dietary fibre  
 

146 

 

Choice of ingredients and percentage of inclusion in 

the diet 

Two ingredients were used during this PhD, namely wheat bran and pea starch. 

These ingredients were selected on their ability to be fermented in the large intestine 

of the pigs and their aptitude to favour the growth of beneficial bacteria. The choice 

of WB and RS was based on literature (see point 4 from the introduction). For RS, 

different sources are available. This choice was made after in vitro fermentation in 

which pea starch showed the best ability to be largely and rapidly fermented, together 

with a high proportion of butyrate produced during fermentation compared to other 

RS sources (see chapter 5). The incorporation rate differed for both animal 

experiments. The purpose was to include as much fermentable ingredient as possible. 

For WB, as it is already used at a rate of around 15% in sows’ diet during gestation, 

we tested 24% as diets containing 24% of dietary fibre had already been reported 

without impairing production parameters (Loisel et al. 2013). During lactation, as the 

sow needs more energy, we were limited to incorporation of 14% of WB in the diet, 

as wheat bran also contains other non-energetic compounds, such as lignin (Kamal-

Eldin et al. 2009). In contrast with the complicated WB diet formulation, RS diet was 

much easier to formulate as a complete replacement of DS by RS was done. As RS 

does not contain lignin or any other non-energetic ingredients, the high incorporation 

rate (33%) during gestation could be carried on during lactation. This high 

incorporation rate was based on literature as higher rates had already been reported 

for sows or pigs (70%, 34% or 65 % of RS in the diet) with associated microbial 

changes (Regmi et al. 2011; Haenen et al. 2013; Yan et al. 2017, respectively) 

Microbiota of the sow and offspring 

Two animal experiments were conducted, with wheat bran and resistant starch as 

feed supplement in sows’ diet. A first conclusion that can be drawn from the two 

animal experiments performed is that both WB and RS have the ability to impact 

sows’ microbiota during gestation, this effect being stronger for RS than WB, as even 

the phyla abundance was impacted by the RS diet. Indeed, RS supplementation 

increased the proportion of Firmicutes to Bacteroidetes, which is an indicator for 

higher energy harvest from the diet (Maga et al. 2012), a beneficial effect for animal 

production. However, WB supplementation did not lead to the expected increase of 

butyrate-producing genera, namely Clostridium, Anaerostipes, Blautia, Butyrivibrio, 

Coprococcus, Dorea, Lachnospira, Pseudobutyrivibrio, Roseburia, 

Faecalibacterium, Oscillospira, Ruminococcus, Megasphaera and Butyricimonas 

(Louis & Flint 2009; Levine et al. 2013; Bian et al. 2016) or the relative abundance of 

health promoting bacteria (Lactobacillus, Bifidobacterium) even though 

Lactobacillus relative abundance in WB sows was higher than CON sows, without 

reaching significance, probably due to the high variability between animals. On the 

other hand, RS increased the abundance of Bifidobacterium and of the fermentative 
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family Ruminococcaceae during gestation. Thus, RS may be a more adequate 

candidate to be incorporated in the diet of animals to promote a healthy microbiota.  

The stronger impact of RS on sows’ microbiota during gestation could be the 

result of the higher incorporation rate in the diet (33% for RS vs 24% for WB) and a 

higher fermentability of the substrate. Indeed, WB is mainly composed of insoluble 

fibres; this type of fibre needs a longer transit time and the extent of degradation will 

depend upon the degree of lignification (Govers et al. 1999; Bach Knudsen & Canibe 

2000) while RS is more rapidly available for degradation by bacterial fermentation 

(Govers et al. 1999). The main sites of fermentation of the two substrates also differ, 

as WB is mainly fermented in the colon and RS in the caecum (Govers et al. 1999; 

Haenen et al. 2013; Nielsen et al. 2014). Moreover, the amount of ADF between Con 

and WB diets did not differ, even though the formulation was supposed to induce 

differences in non-starch polysaccharide content. ADF and NDF measurements in 

the case of RS are not of interest, as they do not include the amount of RS available 

for fermentation.  An interesting perspective would be the introduction of both WB 

and RS substrates in the diet of the animals, as WB introduction has been shown in 

growing pigs to shift RS fermentation from the caecum to distal colon, increasing 

butyrate production (Govers et al. 1999). 

The two animal experiments were led on different sows, with different age and 

parity. It can actually be observed that for the CON sows of each experiment, the 

relative abundance of the phyla were different from one to another study despite the 

same trend for an increase and/or decrease of particular phyla between gestation and 

lactation in every experiment. For example, Firmicutes proportion was higher in the 

first animal experiment than in the second while Bacteroidetes, Spirochaetes and 

Proteobacteria were lower. Even though the control diet differed between 

experiments, this highlights the inter-studies variability. 

Two supplementation durations were studied, as WB feeding began 43 days after 

AI and RS diet 88 days after AI. What is relevant from these two studies is that 

feeding sows the fibre diet one month before farrowing seemed sufficient to induce 

profound microbial (Phyla) changes. However, the time for adaptation should not be 

too short as Sappok et al. (2015) highlighted the need of more than 19 days for sows’ 

microbiota adaptation and stabilization.  

Even though microbiota differentiation between groups was observed for both 

ingredients during gestation, the clustering was not observed anymore during 

lactation. Using 3% inulin, Paßlack et al. (2015) observed a time effect (gestation vs 

lactation) for specific bacterial genera and had the same conclusion for two genera 

(Enterobacteria, Enterococci) for which a diet effect was observed during gestation 

but not anymore after farrowing. From the second animal experiment, it is clear that 

the global microbiota composition is different during gestation and lactation. In 

agreement with Tan et al. (2016), an increase in Firmicutes and a decrease in 

Proteobacteria relative abundances from gestation to lactation has been observed for 

both experiments (Tan et al. 2016). A differential microbiota composition has also 

been observed between early and late pregnancy in humans (Koren et al. 2012) and 
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sows (Larivière-Gauthier et al. 2017) as well as in ruminal bacterial communities of 

cows pre- and post-partum (Pitta et al. 2014). Mechanisms responsible for the 

microbial shifts are not well known, but it seems that the diet change happening for 

lactation may be responsible together with metabolic changes. It is noteworthy that 

stresses occurring at farrowing and during lactation (milking, piglets’ handling) may 

also be partly responsible for the microbial shifts observed during the lactation 

period. 

In addition, during the first animal experiment, wheat bran was replaced in the CON 

diet by other fermentable components such as cocoa pods, which might have 

contributed to the microbial differences between treatments observed during 

gestation, causing interferences in the study. In the future, testing the two types of 

diets in vitro before an animal experiment would be interesting to get insights in the 

fermenting ability of both supplemented and non-supplemented diets. Moreover, an 

ideal experimental setup would include the screening of faecal microbiota of sows 

before the diet change in order to select sows with the lowest inter-individual 

variations, but this would be costly and time consuming. In addition, the reliability 

would not be maximal as microbiota disruptions might be expected because of stress. 

 

As no difference in microbiota composition remained between CON and 

supplemented sows during lactation, it might explain that microbiota of the piglets at 

weaning age (26 days old) did not differ to a large extend (WB) or not at all (RS) 

between piglets born from control or fibre sows. For future research, it would be 

interesting in the first place to describe the microbiota of sows around farrowing: a 

few hours before, during farrowing and a few hours after, to get a better picture of 

when this microbial shift happens. Then, it would be interesting to analyse the 

microbiota of the piglets within the first days of life, as their microbiota is closer to 

their mother’s within the first days than after several weeks (Bian et al. 2016).  

As microbiota of piglets at weaning barely (WB) or did not differ (RS) between 

maternal treatments, it is not surprising that the impact on the SCFA was limited. 

Indeed, for the WB experiment, only valerate was impacted in all intestinal 

compartments, as a lower concentration was observed for piglets born from WB 

sows, which can be considered beneficial as valerate is an end-product of protein 

fermentation that also produces toxic compounds (Yao et al. 2016). However, 

butyrate production was lowered in the caecum of WB piglets, which was not desired. 

RS supplementation on the other hand did not lead to any SCFA changes at weaning. 

However, on the long term (11 weeks after weaning), the maternal diet increased 

significantly the total production of SCFA in the caecum and proximal colon of pigs 

born from RS sows; this might be beneficial as a higher production of SCFA has been 

related to a lower risk of metabolic diseases and cancer (Heinritz et al. 2016). 
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Microbiota results thus suggest that WB and RS are good candidates to be 

incorporated in pigs’ diet, but their effect on the progeny is rather limited. Therefore, 

using these ingredients in the diet of pre-weaned or newly weaned pigs may be a 

more promising approach to induce early colonization of beneficial bacteria within 

the intestinal microbiota and decrease the occurrence of PWD and the related 

antibiotics use. Particular attention should however be given to the palatability and 

digestibility of diets containing dietary fibres. As weaning is already associated with 

lower feed intake, the diets should be palatable enough to be ingested by the pigs.  

Another hypothesis tested was that a transfer of microbiota could already occur 

during gestation and that piglets’ GIT may not be completely sterile at birth as 

commonly considered. This hypothesis is based on the work of Jiménez et al. (2005, 

2008) and Satokari et al. (2009) who found out bacteria in amniotic fluid, umbilical 

cord and placenta of women and in the meconium of new-borns. The analysis of 

umbilical cord blood in our first animal experiment revealed the presence of bacteria 

(including intestinal bacteria). However, in the colonic content of neonates we could 

not detect any DNA; this might be the result of the actual absence of bacteria within 

the GIT of the neonate or of a low sensitivity of the DNA extraction kit. Finding 

bacteria in all these neonatal/foetal tissues is new and also under contest (Willyard 

2018), as some authors (Hornef & Penders 2017) highlight the need for controls all 

over the sampling and DNA extraction process as contamination of the material is 

very easy. However, as Jiménez et al. (2005) inoculated pregnant mice with labelled 

E. faecium strain that they found back in the amniotic fluid and neonate’s meconium, 

it is reasonable to think that some bacteria may be transmitted to the offspring already 

before birth, even though the term “microbiota” may be overdone. Other researchers 

have also found bacteria in the placenta of woman after C-section (Satokari et al. 

2009; Aagaard et al. 2014), supporting further this maternal pre-birth transfer. One 

mechanism underlying this transfer in human has been summarized by Thum et al. 

(2012) and relies on the uptake of bacteria from the intestinal lumen by Peyer’s 

patches dendritic cells in the maternal gut, allowing a spreading in the whole body, 

including placenta, by the blood stream. However, the epitheliochorial placentation 

of the pigs may not allow the transfer of bacteria from the maternal to the foetal blood 

and may reinforce the contamination hypothesis; to our knowledge, no other study 

using animals harbouring epitheliochorial placentation could detect bacteria in foetal 

membrane, even though bacteria were found in the endometrium of healthy cows 

(Karstrup et al. 2017) and that viral and bacterial contaminations were reported for 

sows (see chapter 1, 2.1).  

Thus, even though maternal transfer of microbiota during gestation is still not 

widely spread and accepted, it is important to continue research in this direction, 

using more precautions concerning air and material contamination and using also 

quantitative methods for bacterial concentration determination rather than relative 

sequencing (Hornef & Penders 2017; Willyard 2018). 
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Milk composition 

Milk composition is very important for piglets’ growth (milk yield and nutrients), 

for beneficial bacterial establishment (presence of fermentable compounds s.a. 

oligosaccharides) and for the immune status of the piglets (acquisition of passive 

immunity by ingestion of maternal immunoglobulins). Therefore, acting on sows’ 

milk composition is crucial for the good development and health of the progeny. 

Several studies got interest in the modulation of milk nutrients and Igs composition 

by feeding sows different feed ingredients (dietary fibres, mannan, fat source – Loisel 

et al. (2013); Graugnard et al. (2014); Krogh et al. (2017), respectively). In the present 

studies, both WB and RS were able to impact nutrients composition of the milk, while 

effects on the Igs contents of colostrum were not significant. Fat percentage was 

neither affected by WB nor by RS supplementation; the protein percentage decreased 

for RS sows compared to DS sows while no impact was observed for WB 

supplementation. This lower protein percentage was translated by a trend for lower 

IgA concentration in colostrum. IgA is mostly locally produced in the mammary 

gland (secretory Iga, sIgA) and has been shown to reduce the concentration of 

pathogens in the faeces of piglets (Salmon et al. 2009). Thus, a lower IgA 

concentration in sows’ colostrum is not desirable as piglets rely on passive immunity 

provided by their mother. However, as the actual analysed crude protein content of 

the lactation RS diet was slightly lower than DS, it cannot be excluded that the lower 

milk protein concentration is due to the lower CP content of the diet rather than to the 

incorporation of RS. 

Lactose concentration was significantly impacted for both feed additives even 

though the numerical difference is rather small; WB increased globally lactose 

concentration while RS increased lactose in colostrum and milk sampled one week 

after farrowing while the opposite effect was observed during the last week of 

lactation. It is known that lactose is the less variable component in sows’ milk as it is 

responsible for drawing water into milk (Hurley 2015; Theil et al. 2012) but it is also 

the less variable component between animals (Hurley 2015), probably explaining the 

significance of results for both animal experiments. Lactose is one of the only milk 

components that is not affected by parity of the sows (Hurley 2015) and this was 

observed for both animal experiments. Lactose synthesis in the mammary gland is 

independent on blood glucose concentration but will vary depending on the amount 

of GLUT1 transporters; these transporters abundance are in turn influenced by the 

development of epithelial mammary cells (Theil et al. 2012). Thus, an explanation 

for a higher lactose concentration in the milk during the first weeks after farrowing 

for WB and RS sows could reside in a better development of epithelial cells from the 

mammary glands, allowing an increase of GLUT1 transporters and thereby an 

increased concentration of lactose in milk. In addition to fat, lactose constitutes an 

important energy source for piglets within the first weeks and could then be related 

to piglets’ growth. However, even though a globally increased lactose concentration 

was observed for high fibre sows, their piglets’ weekly performances were not 

affected.  
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As a parity effect was observed for milk protein, fat and Igs contents for both 

experiments, attention should be paid in the future on performing animal experiments 

with sows from the same parity in order to decrease the variability between milk 

components to omit the different feed allowance and different BW. 

The role of pro-inflammatory cytokines in milk is not totally understood; in the 

WB experiment, although results were not presented in paper 2, we quantified TNF-

α concentration in colostrum and milk and found a high variability between animals, 

together with high number of undetectable values. TNF-α may not be a good indicator 

to determine health or sickness of the sow and piglet, as its role is unclear and 

variability is huge, as already shown in humans (Hawkes et al. 1999) and sows 

(Nguyen et al. 2007). Indeed, no relationship could be found in humans between the 

production of pro-inflammatory cytokines in milk and any illness of the individuals 

(Hawkes et al., 1999). Moreover, as TNF-α is locally produced in the mammary gland 

(Nguyen et al., 2007), it might reflect a local infection of the mammary gland or these 

maternal cytokines might play an activating role on the immature immune system of 

the new-borns, as proposed by Hawkes et al. (1999). In addition, Zabielski et al. 

(2008) highlighted that TNF-α also acts as a signal for epithelial cells apoptosis after 

birth, which is undesirable for the piglet, except if it contributes to gut closure by 

replacement of foetal-type to adult-type enterocytes. 

It is important to note that all conclusions concerning milk composition should be 

taken carefully as the milk yield was not measured during these experiments. 

However, colostrum yield has been shown to be positively related to lactose 

concentration; thus it can be postulated that an increased milk yield is possible for 

fibre diets. Yet, measuring milk yield in the future may be interesting. This is possible 

by the calculation of the milk intake of the piglets with an equation developed by 

Devillers et al. (2004) widely used in studies (Foisnet et al. 2010; Loisel et al. 2013). 

Another perspective would be to determine the concentration of oligosaccharides in 

the colostrum, as they can be considered as prebiotics and are present in 29 forms in 

the sows’ milk (Tao et al. 2010). Trying to develop equations to predict 

immunoglobulins in the colostrum of sows is also planned as it was already done for 

cow’s colostrum (Elsohaby et al. 2018); the samples to increase the data set are still 

analysed by other teams. Moreover, even though sterile collection of milk samples 

was not possible during these experiments, it would be interesting in the future to 

achieve this in order to characterize the bacteria present in colostrum and milk, as it 

has been shown that a high amount of viable bacteria reach the mammary gland and 

are then major colonizers of the human and pig neonate gut (Mackie et al. 1999; Chen 

et al. 2018). 

  



Early life programming of piglets’ microbiota and gut health by maternal dietary fibre  
 

152 

 

Gut morphology 

Gut morphology is important for piglets’ health as it is related to nutrients 

absorption and renewal of the intestinal epithelium. Thus, acting on gut morphology 

early in life can be beneficial; in particular, increasing villus height before the 

weaning transition may be a good strategy to avoid the alterations in villus/crypt ratio 

that appear at weaning. Firstly, milk trophic factors, including IGF-1 and lactoferrin 

can impact villus height in the progeny, as has been shown in humans (Li et al. 2017). 

Then, nutrients may also play a role on the gut morphology, as dietary fat has been 

shown to increase villus height and then absorptive capacity of the gut (Feng et al. 

2015). An increased villus/crypt ratio can be associated with higher expression of 

nutrients transporters like SGLT1 (Heim et al. 2015a), therefore increasing the ability 

of the gut to digest feed. Then, microbiota present in the ileum, fermenting dietary 

undigested compounds, could also be related to gut morphology, and microbial 

exposure has been shown in germ-free mice to be related to shortening and widening 

of the villi that are part of increased mucus integrity (Bäckhed 2011). In the 

experiments led, only maternal WB had the ability to induce changes in piglets’ gut 

morphology, as duodenal villi were higher while the ratio between villi and crypts 

was higher in the duodenum and jejunum of the piglets. It might be interesting to see 

whether this higher ratio could partially prevent the villi atrophy happening after 

weaning. 

In the future, it may thus be more appropriate to measure the gut morphology after 

weaning in order to determine whether maternal diet could impact the severe villi 

shortening that commonly appears at weaning, even though the morphology before 

weaning can give us clues concerning the future ability of piglets to cope with the 

weaning transition. Measuring villus width, mucosa thickness or the number of goblet 

cells could also increase our knowledge concerning the ability of the epithelium to 

act as a barrier against pathogens and about the total absorptive surface of the gut. 

Inflammatory status and mucosal integrity 

In addition to gut morphology, tight junctions are indicators of a good barrier 

function of the mucosa, impairing the passage of antigens through the paracellular 

pathway. Any dysfunction of the barrier can lead to inflammation. Thus, increasing 

the expression of proteins like occludin and ZO-1 is important to reinforce the gut 

barrier and thus for piglets’ health. Considering the two animal experiments led, only 

maternal RS diet increased the gene expression of these proteins in the ileum of pre-

weaned piglets. This may indicate a higher integrity and lower permeability of the 

ileal mucosa and lower risk of inflammation, but this difference did not lead to 

differential diarrhoea scores. After weaning and the high fat challenge, maternal RS 

also increased the gene expression of both proteins in the colonic mucosa, without an 

impact of the high fat diet, which is in agreement with Arnal et al. (2014). For the 

future, using in vivo permeability measurements or Ussing Chambers would be more 



Chapter 8. General discussion 
 

153 

 

informative; in particular, Ussing chambers allow the determination of permeability 

using low (FITC-dextran, FD4, 4kD) and high (horseradish peroxidase, HRP, 40kD) 

molecular weight molecules for trans- and paracellular permeability determination, 

respectively (Arnal et al. 2014) with an electrical flux. This ex vivo technique is 

widely used to assess intestinal permeability for pigs and rodents (Mangell et al. 

2002; Wallon et al. 2005; Brun et al. 2007; Lallès et al. 2009). 

To determine the ability of the piglets to cope with a bacterial infection, the 

intestinal tissues of the animals were cultured ex vivo with LPS toxin extracted from 

ETEC O111:B4 strain and incubated for 2 hours at 39°C, 5% CO2. Our results 

showed that the LPS challenge did not increase the expression of TNF-α or TLR4 

compared to the control explants, suggesting that LPS did not induce the expected 

inflammation. Other authors using LPS extracted from the same E. coli strain at the 

same concentration (10µg/ml) had contrasting results, showing an increased TNF-α 

expression (Mukhopadhya et al. 2014; Bahar et al. 2016) or no impact of the 

challenge (Vigors et al. 2016) in the challenged tissue (colon and ileum, respectively). 

As in these studies animals were older thus with a more developed immune system, 

comparison is difficult. However, Leonard et al. (2012) observed an interaction 

between maternal diet and LPS treatment in the ileum on TNF-α expression, using 

26-days old piglets. This ex vivo system may thus not be the more appropriate and 

the dose of LPS and incubation time should be adapted; it is noteworthy that the 

variation between individuals cannot be excluded as a cause for inflammation failure.  

Other ex vivo techniques also exist to mimic ETEC infection, including a porcine 

intestine organ culture (PIOC) that has been described by Aarhus University 

(Denmark) and allows quantifying the adhesion of pathogens, including ETEC, on 

the mucosal surface of the small intestine. This technique uses intestinal segment (10-

15cm) that is filled with culture medium containing the pathogen. The segment is 

then sealed and incubated in culture medium for 1h, after which enumeration of 

pathogens is performed both on the inoculum and homogenised tissue to determine 

pathogen adhesion (Sugiharto et al. 2012). Another alternative would be infection 

trials, even though these cause biosecurity issues. 

Because of the inefficiency of the LPS challenge, the mRNA levels of cytokines 

and tight junction proteins were measured directly in uncultured mucosa for the 

second animal experiment. Short-term results show no impact of the maternal RS diet 

on the expression of molecules involved in the inflammatory process (TNF-α, IL-6, 

NFκB, TGF-β, IFN-γ, IL-1β and IL-10), which is in agreement with Heim et al. 

(2015a) when feeding sows laminarin or fucoidan. However, on the long term, the 

maternal RS diet seemed to reduce IFN-γ together with increasing the expression of 

TNF-α, making the interpretation of data difficult for whether maternal RS 

supplementation could impact the inflammatory status of their progeny’s gut.  

Taken this together, the maternal supplementation with WB or RS did not seem to 

impact the immune ability of the piglets on the short term, even though effects on the 

long term were observed. However, the permeability of the membrane seemed to be 
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impacted positively by the fibre diets, but this may be verified with Ussing chambers 

or in vivo permeability studies.  

High fat challenge 

The aim of the long-term high fat study was to determine whether sows’ diet could 

impact the ability of piglets to cope with the consequences of a high fat diet, namely 

appearance of an obese phenotype and global body inflammation. 

A recurrent question that is raised concerning the pig as a model for human is 

whether this animal is suitable to mimic obesity and development of the metabolic 

syndrome, including type 2 diabetes. From the literature, the pig model is encouraged 

in comparison to rodent models due to the multiple similarities concerning diet, 

physiology and sedentary behaviour (Torres-Rovira et al. 2012). Moreover, the 

microbiota of pigs and humans share similarities and the main site of fermentation 

occurs in the colon, whereas fermentation occurs in the caecum for rodents (Heinritz 

et al. 2013). Comparatively to rodents, pigs also present the same number of beta 

cells in the pancreas relative to their bodyweight as humans (Renner et al. 2016). 

However, the site of lipogenesis differs between species, as it occurs in adipose tissue 

for pig and liver for human (Heinritz et al. 2013).  

However, the use of the pig for description and cure of metabolic syndrome raises 

inevitably the limits of this model. Talking about the increase in fat deposition and 

appearance of insulin resistance that characterize the type 2 diabetes, conventional 

pigs may not be the most suitable model. Indeed, conventional pigs have been 

selected for leanness, resulting in barely any deposition of intramuscular or 

subcutaneaous fat even though fed ad libitum (Renner et al. 2016). Another problem 

with the use of conventional pigs is their fast growth that allows only the focus on 

infancy and adolescence in humans for studies. One way to study long term effect of 

a Western style diet is the use of minipigs, whose growth is rather limited and closer 

to humans’, even though these animals are costly (Renner et al. 2016). Another 

solution would be the use of breeds that have not been selected for leanness, like 

Iberian pigs that are able to present most of the symptoms of metabolic syndrome, 

namely higher bodyweight and backfat, dyslipidaemia and insulin resistance after a 

high fat challenge (Torres-Rovira et al. 2012). 

Even though getting obese pigs is very difficult, several parameters confirmed that 

pigs received a high amount of fat during the second animal experiment. Indeed, a 

higher backfat deposition and higher TG, TC and HDL levels in blood were observed 

for the HF animals, which are the first indicators of the development of an obese 

phenotype (Torres-Rovira et al. 2012). Dyslipidaemia had already been observed for 

conventional growing pigs (Puccinelli et al. 2015) and for Iberian pig (Torres-Rovira 

et al. 2012) after feeding the animals a high fat diet. Further analyses of RNAseq in 

the liver of pigs will give us better insights in the pathways that might affect liver 

cholesterol metabolism and biosynthesis. Microbiota composition was not affected 

by the diet either at the genus or phylum level and the ratio Firmicutes:Bacteroidetes 
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was not impacted. This is not surprising as Arnal et al. (2014) did not observe any 

microbiota changes related to the high fat diet either, using the same fat source at the 

same concentration in the diet. Gene expression of inflammatory cytokines or 

permeability in the colon of the animals was not affected, suggesting no chronical 

inflammation of the gut; however, we expect the inflammation to be detectable in the 

liver samples that will be analysed by RNAseq.  

In addition, it would be worth to determine the expression of TLR4 in the intestine, 

which is the receptor for LPS and quantifying LPS blood concentration would be 

interesting as obesity is related to endotoxaemia (Boroni Moreira et al. 2012). 

Thus, it is clear that the pig is a suitable model for studies concerning human 

metabolic disorders, even though the use of more rustic breeds or minipigs may be 

preferred. In this study, the level of incorporation of fat, the type of fat (saturated 

palm oil), the age of the pigs and the duration of the trial seemed appropriate. A longer 

duration could even have shown more impact on the appearance of the obese 

phenotype and microbiota, but the trial had to be shortened due to the high occurrence 

of umbilical hernias, mainly observed for the HF treated pigs. 

As microbiota did not differ between diets but the SCFA did, it raises the question 

of whether sequencing is appropriate or sufficient. As most bacteria amplified during 

the sequencing process cannot be cultured, their mode of action is still unknown and 

does not give insights in their role for gut health. Thus, combining sequencing data 

with metatranscriptomics data may be the most suitable in order to determine whether 

a diet would effectively promote the growth of bacterial groups having a desired 

functionality, like butyrate or antimicrobial peptides production. 

General conclusion and highlights of the thesis 

Using maternal nutrition with dietary fibres may not be the best strategy to affect 

the microbiota of the progeny. However, using WB or RS in the diet of animals has 

the ability to shape their gut microbiota and alter the milk composition of the sows 

that can in turn impact several health-related parameters of their progeny. Thus, 

research might focus on the use of these prebiotics after birth in order to promote the 

establishment of a beneficial microbiota and efficient immune system as early in life 

as possible. Adding a sampling time point after weaning could also be very 

informative in terms of alterations in gut morphology and global inflammation. 
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