Modelling the impact of drifting snow on the surface mass balance of Adelie Land

Christoph Kittel, C. Amory, C. Agosta, V. Favier and X. Fettweis
Introduction

- Adelie Land
 - Convergence zone and permanent snow surface
 - High frequency of drifting snow
 - Observations
 - Surface Mass Balance (SAMBA)
 - Drifting snow

- Natural laboratory to study drifting snow in Antarctic
Methods

- **Model**
 - **The regional climate model MARv3.9**
 - Developed for polar regions
 - Drifting snow routine
 - Interactive snowpack model
 - Horizontal resolution
 - 10km (first atmospheric level: 1m)
 - Forcing by ERA-Interim
 - 2002-2016
 - **Microphysics scheme**
 - Sublimation
 - Advection
 - Erosion
 - Snowfall
 - **SURFACE scheme**
Evaluation of drifting snow results

[Graphs showing monthly comparisons of drifting snow results for two different periods, D47 (2010-2011) and D17 (2013-2016), with data points for OBS and MAR.]
Snow mass transport

Annual mean snow mass transport between 0-2m (2004-2016)
Evaluation of SMB results

![Graph showing SMB results](image)

Distance from coast [km]

SMB [mm w.e.]
Comparison of SMB with DS and NDS

Mean annual SMB MAR/ds

SMB MAR/nds – SMB MAR/ds
Drifting snow and SMB components

![Graph showing the relationship between distance from the coast and snow accumulation and sublimation. The graph includes lines representing net accumulation, net sublimation, and surface sublimation.](image_url)
Conclusion

- Influence of drifting snow on the SMB
 - Increase in the SMB variability
 - Erosion-Deposition processes have a significant impact on the SMB
 - Decrease in the surface sublimation

- Next steps
 - Quantify the export of drifting snow to the ocean and the drifting snow sublimation in the atmosphere
 - Assess the SMB at the continental scale with MAR and the drifting snow routine