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Abstract
We acquired quasi-continuous measurements of community gross primary production (GPP) by mass balance

of O2 measured on a mooring, from August 2006 to October 2016 over a Posidonia oceanica meadow (10 m
depth) in the Bay of Revellata (Corsica). Over the 2006–2016 period, annual GPP averaged 88 molO2 m−2 yr−1

and ranged from 61 to 108 molO2 m−2 yr−1. The 2 yr with the lowest annual GPP (2007 and 2015) were charac-
terized by a low occurrence of fall–winter storms, probably leading to the accumulation of leaf litter in fall and
early winter; we hypothesize this might have led to occultation of benthic macro-algae. Among the other years,
the inter-annual variability of GPP was related to changes during the February–August period, as GPP was
repeatable among years during the September–January period. For the February–August period, inter-annual var-
iations of GPP were correlated to chlorophyll a (Chl a), solar radiation (SR) and water temperature. Computed
phytoplankton GPP corresponded to a small fraction of community GPP, so the relation between GPP and Chl
a probably reflected inter-annual variations of a common driver that we hypothesize to be nutrient inputs. The
correlation of GPP with SR shows that light availability contributed to inter-annual variations of the develop-
ment of P. oceanica. The positive relation between GPP and temperature was consistent with the fact that the
observed temperatures in the Bay of Revellata were during the study period within the comfort range for the
growth of P. oceanica, despite an increase of water temperature of 0.7�C.

Posidonia oceanica is a marine phanerogam (magnoliophyta)
endemic of the Mediterranean Sea that forms vast and lush
meadows, and ranks among the most productive ecosystems
on Earth (Duarte and Chiscano 1999; Duarte et al. 2010).
There is a large uncertainty in the estimation of the total sur-
face area occupied by P. oceanica meadows (Bonacorsi
et al. 2013), that range between 25,000 km2 and 50,000 km2

corresponding to 1–2% of the total surface area of the Mediter-
ranean Sea (Bethoux et al. 1986; Pasqualini et al. 1998). The
surface area of meadows that has been effectively mapped is
12,247 km2, although substantial portions of the coastlines in
the Mediterranean Sea have not been actually mapped
(Telesca et al. 2015). The P. oceanica meadows border nearly of
all the coastlines of the Mediterranean Sea, and are present
from depths between ~ 1 m and ~ 40 m. P. oceanica can sur-
vive within a wide range of salinity (21.5–48.0) and water tem-
perature (10–30�C) (Meinesz et al. 2009; Tomasello
et al. 2009), but require clear water with a low turbidity, so are
absent close to the delta of large rivers (Nile, Rhône, …)
(Gobert et al. 2006). The extent of the meadows of P. oceanica

is decreasing (Boudouresque et al. 2009; Marbà et al. 2014;
Telesca et al. 2015), as most other seagrasses worldwide
(Waycott et al. 2009).

P. oceanica meadows have an important ecological but
also economic value (Costanza et al. 1997) estimated to
172 € m−2 yr−1 by Vassallo et al. (2013), as they provide
numerous ecosystem goods and services (Boudouresque
et al. 2006; Campagne et al. 2015). P. oceanica meadows are
ecosystem engineers that transform and stabilize the
coastal environment (Boudouresque et al. 2006). The leaves
of P. oceanica slowdown water currents, trapping suspended
particles (Dauby et al. 1995; Gacia and Duarte 2001), and
the resulting lower turbidity allows a better light penetration
(Carr et al. 2010). The sediment accumulation combined to
the root and rhizome growth leads to the formation of the
“matte” (Boudouresque and Meinesz 1982). The detached
leaves in autumn will in part accumulate in the shore form-
ing “banquettes” that can be more than 1 m high, several
meters large, and several hundred meters long (Mateo
et al. 2003). These structures protect beaches from erosion by
the winter-time storms (Guala et al. 2006). The matte and
banquettes stabilize the shoreline and in certain cases the
P. oceanica meadows make structures equivalent to coral reef
barriers (Boudouresque et al. 2006). P. oceanica meadows are
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habitat, breeding and spawning ground, and nursery for
numerous species, and host a large biodiversity; ~ 400 species
of flora, several thousand species of fauna, totaling ~ 20% of the
species inventoried in the Mediterranean Sea (Boudouresque
et al. 2006). Furthermore, P. oceanica meadows also contribute
to sustain production and biodiversity of adjacent ecosystems,
with economic consequences, in particular with regards to
fisheries (Boudouresque et al. 2006).

P. oceanica meadows are also carbon sinks (Romero
et al. 1994; Mateo et al. 1997; Pergent et al. 1997). The matte
is mainly composed of dead roots, rhizomes and leaves, and
to a lesser extent of sedimented particles from the water col-
umn, overall corresponding to organic carbon that is relatively
refractory to biological degradation, that, in addition, is com-
pacted by a cement of calcium carbonate (Boudouresque and
Meinesz 1982). Despite microbial degradation mainly in the
first millimeters of the matte where O2 is present (Holmer
et al. 2003), a large fraction of the organic carbon in the matte
will be sequestered for millennia, acting as a sink for carbon,
nitrogen, and phosphorus (Romero et al. 1994; Mateo
et al. 1997, 2006; Pergent et al. 1997). About 30% of organic
carbon from net primary production of P. oceanica meadows is
stored on the long-term in the matte (Mateo et al. 1997, 2006;
Pergent et al. 1997; Duarte et al. 2005). This storage only lasts
as long as the P. oceanica meadow is healthy; in case of loss of
the seagrass shoots, currents and waves will desegregate the
matte and the released organic matter might be remineralized
by bacteria (Kennedy et al. 2010; Fourqurean et al. 2012).

Seagrass meadows are threatened by several human stressors,
and these ecosystems are decreasing globally (Duarte 2002;
Duarte et al. 2005; Waycott et al. 2009), including P. oceanica
(Marbà et al. 2014), with a decrease in surface coverage esti-
mated to 34% during the last 50 yr (Telesca et al. 2015).
P. oceanica meadows are threatened by eutrophication (waste
water and aquaculture), physical destruction from shoreline
construction, anchoring and trawling, and climate change (sea-
level rise and warming). During the last decades, the human
population as well as tourism have increased in the regions bor-
dering the Mediterranean Sea, with an increase of urbanization
on shorelines. This has led to a direct destruction of P. oceanica
meadows, as well as an increase of nutrient inputs to the coastal
zone from wastewater (Boudouresque et al. 2009). Eutrophication
will have a double negative impact on P. oceanica: development
of phytoplankton leading to a decrease of water transparency;
proliferation of epiphytes growing on P. oceanica leaves
(Boudouresque et al. 2006). The epiphytes have a much faster
growth than the P. oceanica leaves and will compete with
P. oceanica for light and nutrients (Boudouresque et al. 2006).
Organic matter and nutrients released from aquaculture and
wastewater will also strongly affect P. oceanica meadows leading a
decrease of the density of shoots, and changes of the sediment
biogeochemistry, as well as in benthic fauna assemblages and
bacterial communities (Holmer and Kristensen 1992; La Rosa
et al. 2001; Holmer and Frederiksen 2007; Papageorgiou

et al. 2009; Mirto et al. 2014). Anchoring and trawling also
cause damage of P. oceanica meadows by the physical
removal of shoots, and it takes up to 100 yr depending on
extent of damage for the meadow to recover from such dam-
age (Gonzales-Correa et al. 2005; Abadie et al. 2015). The
slow recovery is due to the slow growth of P. oceanica but
also to the changes in the sediment physico-chemistry
related to the destruction of roots and rhizomes that will be
unfavorable to the recolonization (Abadie et al. 2016). Some
invasive plant species such as Caulerpa sp. and Lophocladia
lallemandii can compete with P. oceanica (Boudouresque
et al. 2009), although they thrive in already degraded
meadows with a low shoot density (Williams 2007). Finally,
global and climate changes might affect the survival of
P. oceanica. The lower depth limit of the meadows corre-
sponds to the light compensation depth (Olesen
et al. 2002), that will shift with sea-level rise. P. oceanica is
also sensitive to high water temperature, and shoot mortal-
ity increases during extreme warm events (> 28.0�C) during
heat waves at the end of summer (Diaz-Almela et al. 2007;
Marbà and Duarte 2010), that might increase with global
warming (Jordà et al. 2012).

Primary production of P. oceanica is notoriously variable
with depth and also across temporal scales: sub-daily, seasonal
(Bay 1984; Pergent-Martini et al. 1994; Alcoverro et al. 1995;
Gobert et al. 2006), and year-to-year (Champenois and Borges
2012). The variability of gross primary production (GPP) in
P. oceanica can be due to natural causes such as variations of
incident solar radiation (SR), that varies day-to-day due to
cloudiness (Gazeau et al. 2005) and seasonally (Alcoverro
et al. 1995; Champenois and Borges 2012), or as a result from
human stressors such as eutrophication (Apostolaki
et al. 2010). Consequently, we hypothesize that high fre-
quency monitoring of GPP could be used to diagnose the
health status of P. oceanica meadows, and its long-term evolu-
tion. Further, inter-annual variations of GPP in response to
extreme weather events (heat wave, cold spell, extreme storm,
abnormal mild weather, …) can provide natural tests to check
how ecosystems could respond in future to global and climate
change (Jentsch et al. 2007).

The aim of the present paper is to investigate if long-
term changes (decline or increase) of GPP occurred in a
P. oceanica meadow (at 10 m depth) based on a large data-
set spanning a decade (2006–2016), as contribution to
long-term observations of the meadow in the Bay of Revel-
lata (Corsica) under the STARE-CAPMED initiative. We
also quantify the inter-annual variability of GPP which has
been seldom investigated in marine ecosystems, and to our
best knowledge never before in seagrass meadows. We
investigate the possible causes of these inter-annual varia-
tions of GPP with the analysis of additional environmental
data such as water temperature, wind speed, precipitation,
SR, and phytoplankton biomass. Such analysis can provide
insights into the response of GPP in P. oceanica meadows

Champenois and Borges Primary production of P. oceanica

33



to future human induced changes in environmental condi-
tions, and we particularly discuss the response to
warming.

Material and methods
A mooring was deployed from August 2006 until October

2016 at 10 m depth over a P. oceanica meadow (8.725�E
42.580�N) in front of the Stareso research station (Corsica,
France). The mooring was equipped with three Aanderaa
optodes (3835) mounted on Alec Instrument data-loggers,
located at 4.5 m, 7.0 m, and 9.5 m depth, that recorded O2

saturation and water temperature on an hourly basis. Data
retrieval, maintenance, and stability check of optodes was
done every 3 months. The computation of GPP, community
respiration (CR), and net community production (NCP) is
based on the Odum (1956) method that relies on the changes
of vertically integrated O2 content (QO2 in mmol m−2) derived
from the vertical integration of volumetric concentration mea-
surements at the 3 depths (4.5 m, 7.0 m, and 9.5 m).

Daily integrated CR (mmol O2 m−2 d−1) is computed
according to:

CR=
X

QO2nð Þt +1− QO2nð Þt
� �

+
X

FO2n

� �
=Hn ×24 ð1Þ

where (QO2n)t + 1 − (QO2n)t is the change in QO2 during night-
time (QO2n) between two hourly intervals (t), FO2n is the air-
sea O2 exchange at each t during night-time computed using
the Ho et al. (2006) gas transfer parameterization as function
of wind speed, and Hn is the night-time duration in hours.

Daily integrated GPP (mmol O2 m−2 d−1) is computed
according to:

GPP=
X

QO2dð Þt +1− QO2dð Þt
� �

+
X

FO2d− CR ð2Þ

where (QO2d)t + 1 − (QO2d)t is the change in QO2 during day-
time (QO2d) between two t, FO2d is the air-sea O2 exchange at
each t during day-time.

Daily integrated NCP is computed as the sum of daily inte-
grated GPP and daily integrated CR.

The computed GPP value integrates all the components of
the meadow, planktonic and benthic, although Champenois
and Borges (2012) showed it is largely dominated by the ben-
thic compartment (P. oceanica, epiphytic and benthic micro-
and macro-algae). We obtained 2821 GPP measurements from
08 August 2006 to 27 October 2016 (Supporting Information
Fig. S1). Ancillary data for the analysis of inter-annual GPP
variations were: sea surface temperature (SST), chlorophyll
a (Chl a), wind speed, SR, and precipitation. SST was derived
from temperature measurements over the top of the canopy
(optode located at 9.5 m depth). Water temperature was mea-
sured at the three depths, and the water column was always
isothermal, so we chose to use the data acquired just above

the P. oceanica canopy. Monthly Chl a values were derived
from moderate-resolution imaging spectroradiometer
(MODIS) and processed level-3 data were retrieved from the
Giovanni data portal (https://giovanni.gsfc.nasa.gov/
giovanni/) for a quadrant delimited by 42.579;42.591�N and
8.723;8.728�E; for a quality assessment and calibration of the
Chl a MODIS products refer to Kwiatkowska et al. (2008) and
Meister et al. (2012). Wind speed was measured with a Thies
Clima anemometer on top of one of Stareso buildings and
data were converted from the measurements height
(11.8 m) to a reference height (10 m) based on Johnson
(1999). SR (duration in h with SR > 120 W m−2) and pre-
cipitation data were measured at the Calvi airport (8.793�E
42.524�N) and retrieved from the Météo France data portal
(http://www.meteofrance.com/climat/france/calvi/20050001/
releves). Analysis of inter-annual variations was based on
monthly averages for GPP, SST, Chl a, wind speed, and
monthly cumulated values for SR and precipitation. The
annual cycle was determined from the seasonal cycle of
P. oceanica biomass and defined from 1st November to 31st

October, since leaf biomass is typically lowest in November
after the autumn leaf shedding. Shoot density was measured
by counts and leaf biomass on 10 shoots collected by SCUBA
divers as described by Champenois and Borges (2012).

Statistical analysis was done with Graphpad Prism 6 soft-
ware, using either Student t-test or ANOVA at the 0.05 level. A
principal component analysis (PCA) was performed using the
prcomp function in R software (https://www.r-project.org/);
data were scaled to zero mean and unit variance, prior to
analysis.

The hourly dissolved oxygen and water temperature time-
series are available as Supporting Information material.

Results and discussion
Seasonal and inter-annual variations of GPP in the
P. oceanica meadow in the Bay of Revellata

Individual GPP values (n = 2821) varied over four orders of
magnitude, ranging between 0.4 mmol O2 m−2 d−1 and
1818 mmol O2 m−2 d−1 (Supporting Information Fig. S1). CR
and NCP were strongly correlated to GPP (Supporting Infor-
mation Fig. S2), in agreement with previous investigations of
marine community metabolism (Duarte and Agustí 1998). CR
and NCP represented for the whole data-set 27% and 73% of
GPP, and NCP averaged 23 � 23 molO2 m−2 yr−1, showing
that the P. oceanica meadow was net autotrophic at annual
scale, in agreement with previous investigations of commu-
nity metabolism in P. oceanica meadows (e.g., Frankignoulle
and Bouquegeau 1987; Barrón et al. 2006; Duarte et al. 2010).
Net autotrophy was also confirmed by an overall O2 oversa-
turation that averaged 104% (range 66–287%) during the
study period (Supporting Information Fig. S1). As previously
described by Champenois and Borges (2012), whatever the
season, a daily variation of O2 concentration was observed,
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following the pattern expected from day-night cycle which
was more marked during summer than during winter, and at
9.5 m than at the other two depths (Supporting Information
Fig. S1). Since NCP and CR were tightly correlated to GPP
(Supporting Information Fig. S2) and that GPP is the driver of
NCP and CR in this type of marine environments (Duarte and
Agustí 1998), hereafter, we will only investigate inter-annual
variations of GPP.

Figure 1 shows the monthly means of GPP over a 10 yr period
from 2007 to 2016. There are marked seasonal variations of GPP
with a maximum in June–July (~ 400 mmol O2 m−2 d−1) and a
minimum in November–December (~ 100 mmol O2 m−2 d−1).
These GPP patterns coincided with an oversaturation of O2

(107.0% averaged for the whole data-set) in June–July and
close to O2 saturation (100.8% averaged for the whole data-
set) in November–December (Supporting Information
Fig. S1). The seasonal patterns and range of GPP values are
consistent with those we derived at the same site and with
the same method based on a shorter time-series (2006–2009)
(Champenois and Borges 2012), as well as the data over a
P. oceanica meadow in Magalluf Bay (Mallorca Island, Spain)
based on O2 changes in benthic chambers (Barrón et al. 2006).
Strong inter-annual variations were also observed with annual
integrated GPP ranging from a minimum of 61.3 molO2

m−2 yr−1 in 2007 to a maximum of 107.6 molO2 m−2 yr−1 in
2012 (Table 1). Such inter-annual variations of GPP are consis-
tent with the strong inter-annual variations of biometric vari-
ables over P. oceanica meadows, such as number of leaves, leaf
biomass, leaf length reported at our and other studies sites in
the Mediterranean Sea (Bay 1984; Pergent-Martini et al. 1994;
Soullard et al. 1994; Gobert 2002; Guillén et al. 2013). The over-
all average of GPP over the 10 yr period was 87.7 � 18.4 molO2

m−2 yr−1 (coefficient of variation [CV] of 21%), close to average
of measurements (n = 29) compiled by Duarte et al. (2010)
over P. oceanica meadows (mainly in Spain and Greece) of

67.1 � 11.1 molO2 m−2 yr−1 (based on an average of
0.25 � 0.04 mmol O2 g dry weight (dw)

−1 d−1 and an average
biomass of 735 gdw m−2). The values compiled by Duarte
et al. (2010) were derived from several different sites and
from different depths, and based on incubations with ben-
thic chambers that can under-estimate GPP measurements
due to photorespiration (Champenois and Borges 2012).

Differences from year-to-year were also apparent when
comparing specific periods of the seasonal cycle of monthly
GPP with the 10 yr climatology average (Fig. 1). The GPP aver-
ages for the period from September to January were repeatable
from year-to-year, with the exception of 2007 and 2015. Shed-
ding of older (and longer) P. oceanica leaves occurs in late sum-
mer and early fall that will be exported by fall–winter storms
(Gobert et al. 2006). The leaves will start growing again in late
winter (February). This has two consequences: first, GPP from
P. oceanica collapses due to loss of biomass; second, light avail-
ability increases at the sediment surface and base of the

Fig. 1. Monthly community gross primary production (GPP in mmol O2 m−2 d−1) from August 2006 to October 2016 at 10 m depth over a P. oceanica
meadow in the Bay of Revellata (Corsica). The gray line represents the climatological annual cycle of GPP for the 2006–2016 period, that was constructed
from the average for each month computed from the values for that month from all of the years.

Table 1. Annual gross primary production (GPP in molO2 m
−2 yr−1)

from 2007 to 2016 at 10 m depth over a P. oceanica meadow in the
Bay of Revellata (Corsica), excluding year 2014 for which no measure-
ments were available in July precluding annual integration.

Year GPP (molO2 m−2 yr−1)

2007 61.3�0.6

2008 88.8�0.9

2009 96.0�1.0

2010 92.6�0.9

2011 89.9�0.9

2012 107.6�1.1

2013 61.9�0.6

2015 97.3�1.0

2016 80.0�0.8

Average 87.7�2.6
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shoots, allowing the growth of benthic and rhizome-epiphytic
sciaphile flora, mainly red macro-algae such as Laurencia sp.,
Peyssonnnelia sp., Acrothamnion preissii, and Womersleyella
setacea (Balata et al. 2007; Nesti et al. 2009). Champenois
and Borges (2012) showed that the lack of fall storms during
the exceptionally mild winter of 2006–2007 (Luterbacher
et al. 2007) did not allow the export of dead P. oceanica leaves,
blocking the development of benthic macro-algae, leading to
a low GPP during this period. Similarly, in 2015, the first
storms and export of dead leaves only occurred in early
December, based on de visu observations during SCUBA dives.
If we exclude years 2007 and 2015, then for the period of
2007–2016, the integrated GPP from September to January is
25.9 � 3.8 molO2 m−2 (CV = 7.4%), corresponding to 29.7%
of the annual GPP. This significant portion of annual GPP
occurs when P. oceanica leaf biomass has been reported to be at
its lowest (Gobert et al. 1995), and we hypothesize GPP is mainly
sustained by sciaphile benthic red macro-algae, although this
needs to be checked in future by direct measurements.

Inter-annual variations of annual GPP (Table 1) were due to
variability during the other periods of the year, since the GPP
values for the period from September to January were repeat-
able from year-to-year. In order to understand the source of
variability we tested correlations of GPP with five other vari-
ables: SST, Chl a, SR, precipitation, and wind speed. These var-
iables were chosen because high temperature (> 28�C) can
lead to mortality of P. oceanica (Diaz-Almela et al. 2007; Marbà
and Duarte 2012), but is also an important factor controlling
metabolism (López-Urrutia et al. 2006); Chl a and SR control
light availability for photosynthesis of P. oceanica; Chl a might
also indicate a contribution of the planktonic compartment to
community GPP; precipitation can lead to inorganic nutrient
inputs in near-shore marine areas that could be significant in
the Mediterranean Sea (Koçak et al. 2010), and wind speed can
provide information on vertical mixing and nutrient inputs as
well as export of litter from the P. oceanica meadows. None of
these variables correlated significantly with GPP for the period
from September to January.

Maximum monthly SST were observed systematically in
August, on average 24.2 � 0.8�C for the whole period, ranging
between 23.2�C in 2007 and 25.5�C in 2012 (Fig. 2A). Mini-
mum monthly SST were observed in February, on average
13.4 � 0.6�C for the whole period, ranging between 12.8�C in
2013 and 14.3�C in 2007. The yearly maximum and mini-
mum of monthly GPP were decoupled in time (May/June and
November, respectively) from the maximum and minimum of
SST (August and February, respectively). The warmest year
with an annual average of 18.6�C in 2007 was also the year
with the lowest GPP (61.3 molO2 m−2 yr−1), followed by 2012
(18.5�C) that was the year with the highest GPP (107.6 molO2

m−2 yr−1). The coolest year with an annual average of 17.7�C
in 2013 had a low GPP (61.9 molO2 m−2 yr−1), followed by
2010 (17.8�C) with a GPP (92.6 molO2 m−2 yr−1) close to the
overall average (87.7 molO2 m−2 yr−1). We conclude that year-

to-year variability of annual SST was not the major factor con-
trolling inter-annual variations of annual GPP.

In general, autumn and winter were the seasons with the
highest precipitations (Fig. 2B). The cumulated annual precipi-
tation was 649 � 138 L m−2 (CV = 23.8%) on average over
the 2006–2016 period. The cumulated precipitation from
September to March was 532 � 177 L m−2 on average over the
2006–2016 period, corresponding to 82.0% of the annual total.
The driest period was from June to August, with a cumulated
precipitation of 41 � 22 L m−2 on average over the 2006–2016
period, corresponding to 6.3% of the annual total. The rainiest
year was 2010 (annual cumulated precipitation of 914 L m−2)
with an annual GPP (92.6 molO2 m−2 yr−1) below the overall
average. The driest year was 2007 (annual cumulated precipita-
tion of 444 L m−2) with the lowest annual GPP (61.3 molO2

m−2 yr−1). During 2013, the cumulated annual precipitation was
very close to the average over the 2006–2016 period (685 L m−2),
although the annual GPP was among the lowest of the whole
period (61.9 molO2 m−2 yr−1). No significant correlation was
found between cumulated precipitation and the intensity of the
spring phytoplankton bloom indicated by Chl a concentration.
The Mediterranean Sea is very oligotrophic, so that nutrient
inputs from wet atmospheric deposition can be significant
(Koçak et al. 2010), and phytoplankton growth can respond at
very short time-scales (~ days) to nutrient pulses due to precipita-
tion or wind (Thyssen et al. 2014). Nevertheless, over longer time
scales (seasonal to inter-annual) precipitation did not seem to be
a driver of GPP variability over P. oceanica meadows. This was
also the case for wind speed that showed low seasonal and inter-
annual variability. Average wind speed over the 2006–2016
period was 1.8 � 0.2 m s−1 (CV = 13.7%) (Fig. 2C). Wind speed
was higher from September to March (1.9 � 0.2 m−1) than dur-
ing the rest of the year (1.6 � 0.1 m s−1).

Cumulated annual SR averaged 2777 � 90 h (CV = 3.2%),
over the 2006–2016 period. 2012 was the year with the high-
est SR (2881 h) and 2010 was the year with the lowest SR
(2606 h). The period from May to September had a low varia-
tion in SR (CV = 3.0%), while the period from January to April
had a higher variation in SR (CV = 16.9%). Year 2010 had the
highest GPP (107.6 molO2 m−2 yr−1) but a low SR (2606 h),
while year 2012 had a GPP close to the overall average (92.6
molO2 m−2 yr−1) although with the highest SR (2881 h). The
yearly maximum of SR (July) did not coincide with the one
of GPP (May–June), except for year 2010. The yearly mini-
mum of SR (mostly in December) did not coincide with the
one of GPP (mostly in November). Nevertheless, a significant
positive linear relationship was found for the whole
2006–2016 period between monthly GPP and cumulated
monthly SR (r2 = 0.38; p < 0.0001; n = 119) (Supporting
Information Fig. S3), in agreement with previous findings on
the role of light in regulating growth of P. oceanica meadows
across time-scales from day-to-day (Gazeau et al. 2005) to seasonal
(Alcoverro et al. 1995). Taken for each yearly cycle individually,
the r2 value of the linear correlation between GPP and SR ranged
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from 0.23 to 0.74 (Supporting Information Fig. S4), showing that
additional processes also controlled seasonal and inter-annual vari-
ations of GPP, as discussed hereafter.

Chl a values were low, in general below 1 μg L−1 (Fig. 2E).
The timing and amplitude of the seasonal variations of the
remoted sensed Chl a data were in agreement with in situ
measurements in the same area (Garrido et al. 2014). The
average Chl a concentration was 0.3 � 0.2 μg L−1

(CV = 72.0%) for the period 2006–2016. The seasonal maxi-
mum Chl a concentration was observed in February–March
corresponding to the spring diatom bloom (Garrido
et al. 2014). During the spring bloom, the maximum
monthly value was in March 2015 (1.4 μg L−1) and the mini-
mum in March 2016 (0.4 μg L−1). In some years, an autumn
Chl a peak was also observed but lower than the correspond-
ing spring peak. The lowest Chl a concentrations were observed
during the period from May to September, with an average of
0.14 � 0.01 μg L−1 (CV = 8.9%), typical in the study area due
to nutrient depletion (Garrido et al. 2014). The yearly

maximum of community GPP did not coincide with the spring
phytoplankton blooms.

A PCA of the above mentioned variables allowed to summa-
rize the variance across the whole data-set (Fig. 3). The first two
principal components of variance (PC1 and PC2) described
69.6% of total variance. As GPP, SST, and SR all peaked in sum-
mer (Fig. 2A,D,E) they were positively related. Since Chl
a peaked in early spring during periods of low GPP and was
very low during summer (period of high GPP) both variables
were negatively related. Finally, GPP showed no relation to
wind speed and a poor relation to precipitation.

In order to further explore inter-annual variations of GPP,
SST, SR, Chl a, precipitation and wind speed, we computed
the monthly anomalies (noted by’) as the difference between
each monthly value and the average value for that given
month for the whole period (2006–2016), normalized by the
average and expressed in % (Fig. 4). The correlation analysis of
the anomalies of variables did not show any significant rela-
tions across the entire data-set. In order to further examine

Fig. 2. Monthly community gross primary production (GPP in mmol O2 m−2 d−1, open dots), sea surface temperature (SST in �C, stars, A), cumulated
precipitation (L−1 m−2 month, stars, B), wind speed (m s−1, stars, C), cumulated solar radiation (SR in h month−1, stars, D), and chlorophyll a concentra-
tion (Chl a in μg L−1, stars, E) from August 2006 to October 2016 at 10 m depth over a P. oceanica meadow in the Bay of Revellata (Corsica).

Champenois and Borges Primary production of P. oceanica

37



inter-annual variations, three different periods of the yearly
cycle from February to August were investigated (the period
from September to January was not examined since, as men-
tioned above, it was nearly repeatable from year to year). The
first period corresponded to February and March, the second
period was the month of April, and the third period was from
May to August. These periods were chosen by separating the
period from May to August, when Chl a is systematically low,
making this a coherent period. The month of April stands out
as the month of the transition of winter-mixed conditions to
spring/summer-thermally stratified conditions, when season-
ally SST start to increase (Bay 1984). For any of these periods,
there was no significant correlation between monthly anoma-
lies of GPP (GPP’) and those of cumulated precipitation and
wind speed (not shown), so we will only examine hereafter
the correlations with anomalies of SR (SR’), SST (SST’), and
Chl a (Chl a’).

For the first period (February and March), GPP was on aver-
age 13.9 � 4.1 molO2 m−2 for the whole 2006–2016 period,
corresponding to 16.1% of the annual total. We calculated a
multiple linear regression (MLR) between the sum of GPP’ for
March and February as a function of the sum of cumulated SR
(SR’) and average Chl a’ (data from year 2007 was excluded
from the MLR as the lack of export of dead leaves led to abnor-
mal GPP values):

GPP’ = −6+0:0553× SR’ +3:08×Chla’

r =0:87> rcrit 0:95,n =9ð Þ =0:44
� � ð3Þ

For the second period (month of April), GPP was on aver-
age 9.6 � 3.4 molO2 m

−2 for the whole 2006–2016 period, cor-
responding to 11.1% of the annual total. This period is
characterized by a very strong inter-annual variability in SR

(CV = 17.6%), SST (CV = 4.1%), and Chl a (CV = 74.4%)
(Fig. 4A–C). Since this is the period of the year when SST
starts to increase, we included SST’ in addition to SR’, Chl a’
to compute the MLR for GPP’ (excluding year 2013 for which
remote sensed Chl a were unavailable):

GPP’ =29−0:061× SR’ +4:33×Chla’−0:31× SST’

r =0:90> rcrit 0:95,n =9ð Þ =0:44
� � ð4Þ

As for the first period (Eq. 3) a positive relation with Chl a’
was observed although the relationship was negative with SR’
unlike the first period.

For the third period (May–August), GPP was on average
38.7 � 8.2 molO2 m−2 for the whole 2006–2016 period, corre-
sponding to 41.1% of the annual total. This period was char-
acterized by low Chl a concentrations (Fig. 2E) and no clear
relation was apparent between GPP’ and Chl a’ (Fig. 4C).
However, there was a general positive variation of GPP’ and
SST’ and SR’ (Fig. 4A,B), so that a MLR was built with those
variables (excluding year 2014 because GPP values were una-
vailable in July of that year due to malfunctioning of an oxy-
meter on the mooring):

GPP’ = −287+0:052× SR’ +11:93× SST’

r =0:93> rcrit ð0:95,n=9
� �

=0:44Þ ð5Þ

During the first (February and March) and second (month
of April) periods, GPP’ was positively related to Chl a’. We pre-
viously showed that at seasonal time scales phytoplankton
growth decreased community GPP by shading effect and
reduced light availability for P. oceanica meadow rather than
actually accounting for the planktonic contribution to com-
munity GPP (Champenois and Borges 2012). Indeed, we com-
puted based on the GPP-Chl a relation developed in the
P. oceanica meadow of the Bay of Palma (Gazeau et al. 2005),
that phytoplankton GPP was on average in February–April of
2.7 molO2 m−2 corresponding to 11% of the measured com-
munity GPP of 25.1 molO2 m−2 during the same period. From
year-to-year, computed phytoplankton GPP in February–April
ranged between 1.6 molO2 m−2 in 2007 and 6.2 molO2 m−2 in
2015 (CV = 46%) and cannot account for the inter-annual
variability of measured community GPP during the same
period that ranged between 13.9 molO2 m−2 in 2007 and 30.6
molO2 m

−2 in 2009 (CV = 21%). Alternatively, a common pro-
cess could enhance both benthic and planktonic GPP leading
to an indirect positive relation between GPP’ and Chl a’. In
the Bay of Revellata, inter-annual variations of phytoplank-
ton growth are driven by inter-annual changes in dissolved
inorganic nutrients, mainly due to weather conditions driv-
ing vertical mixing (Goffart et al. 2015). Enhanced dissolved
inorganic nutrients inputs should lead to an increase of both
planktonic and benthic GPP, and we hypothesize it could
explain the GPP’ and Chl a’ relation. We also hypothesize

Fig. 3. Principal component analysis of monthly community gross pri-
mary production (GPP), sea surface temperature (SST), cumulated precipi-
tation (rain), wind speed (wind), cumulated solar radiation (SR), and
chlorophyll a concentration (Chl a) from August 2006 to October 2016 at
10 m depth over a P. oceanica meadow in the Bay of Revellata (Corsica).
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that an indirect relation to nutrient inputs might also explain
the negative relation between GPP’ and SST’ and GPP’ and SR’
in April (second period, Eq. 4), as warm and sunny conditions
during this month might indicate early stratification and less
stormy weather leading to less nutrient inputs by mixing
(Goffart et al. 2015). This might also explain why the month of
April stood out in the analysis as a specific period, as this corre-
sponds to transition period from a well-mixed winter regime to
a more stratified spring regime (Bay 1984).

The positive relation between GPP’ and SST’ during the
third period (May–August) might reflect the enhancement of
metabolic activity (Arrhenius temperature dependence rela-
tion, for example López-Urrutia et al. 2006). Alternatively it
could indirectly reflect sunnier weather. Indeed, a positive
relationship was found between GPP’ and SR’ during the first
(February and March, Eq. 1) and third (May–August, Eq. 5)
periods, in agreement with previous studies that have shown
that light availability is the major process controlling growth and

Fig. 4. Anomalies of monthly gross primary production (GPP’ in mmol O2 m−2 d−1, open dots), cumulated solar radiation (SR’ in h month−1, stars, A),
chlorophyll a concentration (Chl a’ in μg L−1, stars, B), and sea surface temperature (SST’ in �C, stars, C) from August 2006 to October 2016 at 10 m
depth over a P. oceanica meadow in the Bay of Revellata (Corsica).
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GPP of P. oceanica both in time (seasonally) (Alcoverro et al. 1995)
and in space (with depth) (Pergent-Martini et al. 1994).

We modeled GPP combining Eqs. 3–5 for their respective
periods and using a constant GPP for the period from
September to January (25.9 molO2 m−2, corresponding to
cumulated value averaged for the whole 2006–2016 period),
excluding the 2 yr when fall storms did not export litter
leading to abnormal GPP values (2007 and 2015) and exclud-
ing years 2013 (no Chl a data in April) and 2014
(no GPP data in July). The modeled and observed annual
GPP (Fig. 5) were significantly linearly correlated
(r = 0.86 > rcrit(0.95,n = 6) = 0.71), with a slope (0.797) not sig-
nificantly different from 1 (t = 0.870 < tcrit(0.95,n = 6) = 2.78,
p = 0.43), and a y-intercept (18.95) not significantly different
from 0 (t = 0.860 < tcrit (0.95,n = 6) = 2.78, p = 0.44). The statis-
tical model allowed to explain 74% of the inter-annual vari-
ability of GPP of P.oceanica meadow in our study site.

Possible future evolution of GPP in P. oceanica meadows in
response to warming and changes in occurrence of winter
storms

GPP from September to January was 17.5 molO2 m−2 and
15.2 molO2 m−2 in 2007 and 2015, respectively, due to the
absence autumn storms and export of fallen leaf litter
(observed de visu during the scuba dives) that we hypothesize
did not allow development of benthic sciaphile flora by occul-
tation of light. GPP during the other years averaged 25.9
molO2 m−2 for the same period. By difference, the putative
GPP of benthic sciaphile flora can be estimated to 9–10 molO2

m−2 (or ~ 67 mmol O2 m−2 d−1), corresponding to 10% of the
annual GPP of the meadow. The GPP of benthic sciaphile flora

was estimated indirectly and is probably over-estimated as
accumulation of litter might have also decreased by occulta-
tion GPP of P. oceanica, and requires to be confirmed in future
by direct measurements. Climatic models predict a decrease of
autumn-winter storms in the Mediterranean Sea region, possi-
bly related to an increase of the North Atlantic Oscillation
(NAO) index (for example Giorgi and Lionello 2008). This is
related to a stronger dominance of anti-cyclonic conditions
over the Mediterranean Sea region in future, so that depres-
sions coming from the Atlantic Ocean would be deviated fur-
ther north. This might lead in future to changes of GPP
seasonality and of annual NCP, due to a more systematic accu-
mulation of leaf litter within the meadow during winter
instead of export as presently observed (Champenois and
Borges 2012).

A warming of surface waters is predicted for the North-
West Mediterranean Sea of ~ 2�C in winter and ~ 3�C in
summer for 2071/2110 compared to 1961/1990 (Giorgi and
Lionello 2008; Mariotti et al. 2010; Adloff et al. 2015). This
prediction is in line with the observed increase of annual
SST at a rate of 0.033 � 0.003�C yr−1 from 1985 to 2007
reported by Garcia and Belmonte (2011). P. oceanica survives
within a temperature range between 9�C and 29�C, but the

Fig. 5. Annual modeled and observed gross primary production (GPP in
molO2 m

−2 yr−1) from 2007 to 2016 at 10 m depth over a P. oceanicameadow
in the Bay of Revellata (Corsica), excluding years 2007, 2013, and 2015. Solid
line corresponds to the linear regression, dotted line corresponds to 1:1 line.

Fig. 6. Annual average of sea surface temperature (SST in �C) and the
North Atlantic Oscillation (NAO) index averaged for January–March (from
National Oceanic and Atmospheric Administration Climate Prediction
Center). Solid line corresponds to the linear regression excluding the 2 yrs
with a negative NAO index (2010 and 2013) indicated by brackets.
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optimum conditions are within 17�C and 20�C
(Boudouresque and Meinesz 1982). For the period
2006–2016, May and June were the 2 months with average
temperatures closest to optimum conditions, respectively
17.1 � 0.9 and 20.1 � 1.4�C. These 2 months have a high SR
with a value cumulated over the 2 months of 634 h. Due to
the combination of favorable light and temperature condi-
tions, these 2 months have a high GPP value, respectively,
the third (9.9 molO2 m−2 month−1) and second (10.5 molO2

m−2 month−1) most productive of the year. The month of
July is the most productive one (10.7 molO2 m−2 month−1),
with an average SST of 22.9�C, above the optimum tempera-
ture but well below to maximum survival temperature
(28�C), and within the temperature comfort range, between
13�C and 24�C (Boudouresque and Meinesz 1982). With a
projected increase of 3�C for the end of the century in the
Mediterranean, the months of optimum temperature for
P. oceanica would shift by 1 month from May–June to April–
May that had a cumulated SR of 539 h during the period
2006–2016. This would then mean that with future projected

warming there would be a loss of 15% of incoming SR for the
months of the year within the optimum temperature growth
conditions for P. oceanica. The loss of incoming SR could to
some extent be compensated by a decrease of projected
cloudiness (Navarra and Tubiana 2013), although modeling
of cloudiness is notoriously difficult and uncertain.

During the decade of measurements of daily SST
(n = 3317), we recorded 272 events with daily average temper-
atures above 24�C (8.2% of the time), with an overall maxi-
mum value of 27.9�C. Over that period, annual GPP did not
show any significant temporal trend (increase or decrease),
although a very marked warming trend of 0.066�C yr−1 was
recorded at our study site during that time period (Fig. 6). This
value is almost five times higher than the global average
warming over the last 50 yr of 0.013�C yr−1 (IPCC 2013). Such
abnormally strong warming is probably transient and coin-
cided with a period of sustained positive winter-time NAO
index (Fig. 6). Note that the 2 yr with negative winter-time
NAO index values were the coolest of the whole period and
deviated from the general trend (Fig. 6). Despite this warming,
the fact that the shoot density and leaf biomass in this
meadow remain stable (Fig. 7) is consistent with the fact that
we did not record events of daily temperature above the
threshold temperature (28�C) at which P. oceanica shoot mor-
tality starts occurring (Diaz-Almela et al. 2007), and that the
meadow is less than 10% of the time above the limit of the
temperature comfort zone for P. oceanica. With a projected
increase of 3�C in the Mediterranean Sea at the end of the cen-
tury, the average temperatures for July–September would be
26–27�C, meaning that the meadow would experience
3 months per year with temperatures above the P. oceanica
comfort range, and the occurrence of events with SST > 28�C
would also be expected to increase. Furthermore, very warm
events in the Mediterranean are favorable for the development
of filamentous algae (Ceramium sp., Antithamnion sp.), as
observed in 2003 and 2007 in the Parc National de Port-Cros
(France) (Perez 2008). A relatively large fraction of GPP in July
and August are due to epiphytic filamentous macroalgae
(Champenois and Borges 2012) dominated by the Ceramiales
group (Jacquemart and Demoulin 2008) that compete with
the host plant (P. oceanica) for nutrients and light. The pro-
jected warming would possibly lead to an earlier development
of filamentous epiphytic algae during the year, and increase
competition with P. oceanica for resources. Altogether, these
effects are expected to lead to a future decrease of GPP in
P. oceanica meadows even in those that are near-pristine as the
one we studied.

Here, we describe for the first-time the inter-annual varia-
tions of GPP in a seagrass ecosystem based on a continuous
record spanning 10 yr. We found that annual GPP in a P. ocea-
nica meadow in Corsica was surprisingly variable from year to
year, with extreme maximum (107.6 molO2 m−2 yr−1) and
minimum (61.3 molO2 m−2 yr−1) values differing by a factor
of 1.76. We explored the drivers of this strong inter-annual

Fig. 7. Shoot density (shoots m−2) and leaf biomass (g dry weight
[dw] m−2) of P. oceanica at 10 m depth in the Bay of Revellata. Data from
1975 to 1976 are from Bay (1984) and data from 1991 to 1992 are from
Gobert et al. (1995). Shoot density was not statistically different between
years at 0.05 level (one-way ANOVA: f = 0.294, p = 0.938). Leaf biomass
was statistically different between years (one-way ANOVA: f = 8.191,
p < 0.001, respectively), but no there was no clear trend in time (decrease
or increase).
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variability in P. oceanica GPP. It is well established from previ-
ous studies that seasonal and spatial variations of productivity
of P. oceanica depend on light, and this could indeed explain
part of the observed inter-annual variations. No significant
long-term change (decline or increase) of GPP could be
observed in our data-set, despite the fact that a sustained
warming was observed in the study area at a rate that was five
times higher than the global average warming over the last
50 yr, probably related to a period of prolonged positive NAO
anomaly. Long-term changes in shoot density and leaf bio-
mass of P. oceanica were not detected in comparison to 1970s
and 1990s. Overall, this indicates that the studied meadow is
still within the temperature comfort zone of P. oceanica,
although this is based on the study of Boudouresque and Mei-
nesz (1982) that should be updated by new investigations of
temperature tolerance, as it might have changed over the last
decades by adaptation to warming conditions, and is variable
among different ecotypes (Marín-Guirao et al. 2016). Conse-
quently, the studied meadow is expected to respond in future
to further warming, that should warrant continued monitor-
ing of GPP that can be achieved relatively easily with moored
oxygen sensors, as shown here. While P. oceanica productivity
does not seem to respond significantly to expected changes in
pH conditions (ocean acidification) (Cox et al. 2016), strong
future changes are expected from changes in light availability
notably as a consequence of eutrophication. Indeed, even in a
pristine site such as the Bay of Revellata, GPP strongly
responded to inter-annual variations of light availability, so
that sustained periods of decreasing light conditions as
expected in more eutrophied sites are expected to strongly
impact P. oceanica productivity.
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