UEE Urban & Environmental Engineering

Réseau International — ADAPTCLIM Réseau international sur l'évaluation des risques et l'adaptation climatique d'ouvrages en génie civil et bâtiments

Modélisation hydromécanique de quelques problèmes de géotechnique dans le cadre des changements climatiques

F. Collin¹ – P. Kotronis² – S. Ahayan^{1,2} – G. Jouan^{1,2} – B. Cerfontaine¹ – J. Hubert¹

¹ Université de Liège – Dept. ArGEnCo - UEE
 ² Ecole Centrale de Nantes – Laboraoire GeM

Collaboration Université de Liège – Ecole Centrale de Nantes

- Gwendal Jouan (post-doc) Elément 2nd gradient couplé / Interface cohésive
- Sanae Ahayan (Co-tutelle) Fondation éolienne off-shore
- Projet ITN Sustain (Soil strUcture interaction reSearch TrAIning Network: innovative integrated design approaches for infrastructures and sustainable urban development)
- Julien Hubert (doctorant) Modélisation de la fissuration au séchage

Hydromechanical modelling of interfaces

WHY AN INTERFACE ELEMENT

• Suction caisson

(DONG Energy)

WHAT AN INTERFACE ELEMENT

GOVERNING EQUATIONS

GOVERNING EQUATIONS

• $\partial \mathcal{B}_c^i$: boundary where contact is likely to happen

GOVERNING EQUATIONS

- $\partial \mathcal{B}_c^i$: boundary where contact is likely to happen
- ► Governing equations:
 - 1. Definition of a gap function
 - 2. Normal contact constraint
 - 3. Tangential contact constraint

8

RI-ADAPTCLIM

• Local system of coordinate along the mortar side

- Local system of coordinate along the mortar side
- Gap function:

$$g_N = (\boldsymbol{x}^2 - \overline{\boldsymbol{x}}^1) \cdot \overline{\boldsymbol{e}}_1$$

With
$$\overline{x}^1$$
 = closest point projection of x^2

- Relative tangential displacement: no meaning in the field of large displacements!
 - → Use of velocities

$$\dot{g}_T = \frac{d}{dt} \left[\bar{e}_2 \cdot (\mathbf{x}^2 - \overline{\mathbf{x}}^1) \right]$$

- Relative tangential displacement: no meaning in the field of large displacements!
 - → Use of velocities

$$\dot{g}_T = \frac{d}{dt} [\bar{e}_2 \cdot (\mathbf{x}^2 - \overline{\mathbf{x}}^1)]$$

 Vector of variation of normal and tangential displacements:

$$\dot{g} = \dot{g}_N \boldsymbol{e}_1 + \dot{g}_T \boldsymbol{e}_2$$

GOVERNING EQUATIONS: NORMAL CONTACT CONSTRAINT

• Normal contact constraint: two solids in contact cannot overlap

- Contact stress vector: $\boldsymbol{\sigma_c} = -p_N \boldsymbol{e}_1 + \tau \boldsymbol{e}_2 = [-p_N \quad \tau]^T$
- Hertz-Signorini-Moreau condition:

$g_N \ge 0$	and	$p_N \ge 0$	and	$p_N \cdot g_N = 0$
-------------	-----	-------------	-----	---------------------

- When solids are in contact:
 - <u>Stick</u>: no relative tangential displacement ($\dot{g}_T = 0$)
 - <u>Slip</u>: relative tangential displacement ($\dot{g}_T \neq 0$)

- When solids are in contact:
 - <u>Stick</u>: no relative tangential displacement ($\dot{g}_T = 0$)
 - <u>Slip</u>: relative tangential displacement ($\dot{g}_T \neq 0$)
- Tangential contact constraint:

$\dot{g}_T^{sl} \ge 0$	and	$f_c(\boldsymbol{\sigma_c}, \boldsymbol{q}) \leq 0$	and	$\dot{g}_T^{sl} \cdot f_c(\boldsymbol{\sigma_c}, \boldsymbol{q}) = 0$

with $\dot{g}_T = \operatorname{sign}(\dot{\tau}) \dot{g}_T^{sl}$

- When solids are in contact:
 - <u>Stick</u>: no relative tangential displacement ($\dot{g}_T = 0$)
 - <u>Slip</u>: relative tangential displacement $(\dot{g}_T \neq 0)$
- Tangential contact constraint:

- When solids are in contact:
 - <u>Stick</u>: no relative tangential displacement ($\dot{g}_T = 0$)
 - <u>Slip</u>: relative tangential displacement $(\dot{g}_T \neq 0)$
- Tangential contact constraint:

FINITE ELEMENT FORMULATION

• Discretisation of the contact area between solids

 \rightarrow How to compute the gap function ?

1. Node-to-node approach:

Simplest
Small relative displacements only

FINITE ELEMENT FORMULATION

- Discretisation of the contact area between solids
 - \rightarrow How to compute the gap function ?
 - 1. Node-to-node approach:

Gap

- © Simplest
- Small relative displacements only
 - 2. Node-to-segment approach

Large displacements
 Sensitive to sudden changes in projection direction

19

FINITE ELEMENT FORMULATION

- Discretisation of the contact area between solids
 - \rightarrow How to compute the gap function ?
 - 1. Node-to-node approach:

- Simplest
 Small relative displacements only
 - 2. Node-to-segment approach
- 3. Segment-to-segment approach

Carge displacements
 Sensitive to sudden changes in projection direction

Finite element formulation : HM modelling $% \mathcal{F}(\mathcal{F})$

- Interface = new volume $\mathcal{B}^3 \rightarrow$ equivalent porous medium
- Flow of water transversally and longitudinally

Finite element formulation : HM modelling $% \mathcal{F}(\mathcal{F})$

• Longitudinal fluxes: generalized Darcy's law

$$f_{wL} = -\frac{k_{wL}}{\mu_w} \left(\nabla_{e_2} u_w - \rho_w g \nabla_{e_2} x_2 \right) \rho_w$$

• k_{wL} : longitudinal permeability (cubic law)

$$k_{wL} = \begin{cases} \frac{D_0^2}{12}, & g_N \le 0\\ \frac{(D_0 + g_N)^2}{12}, & \text{oherwise} \end{cases}$$

• ∇_{e_2} : gradient in the direction e_2

Finite element formulation : HM modelling $% \mathcal{F}(\mathcal{F})$

- Transversal fluxes
 - Analogy with generalized Darcy's law
 - Zero-thickness \rightarrow Flux proportional to a pressure drop

$$f_{wT1} = T_{wT1}(u_{w1} - u_{w3})\rho_w$$

$$f_{wT2} = T_{wT1}(u_{w3} - u_{w2})\rho_w$$

APPLICATION

- Foundation for offshore structures
- Hollow cylinder open towards the bottom

- Installation by selfpenetration + suction
- Importance of interfaces

24

SUCTION CAISSONS: INITIALISATION

- ► Diameter 7.8m
- ► Length 4m
- ► Sand-steel friction 0.58 ► $K_0 = 1$
- Soil permeability
 10⁻¹¹m²

► Sand & steel elastic

- ► Tw = 10⁻⁸m/Pa/s
- ► $D_0 = 10^{-5} \text{ m}$

SUCTION CAISSONS: DRAINED UPLIFT (MECHANICAL PROBLEM)

SUCTION CAISSONS: DRAINED UPLIFT (MECHANICAL PROBLEM)

SUCTION CAISSONS: DRAINED UPLIFT (MECHANICAL PROBLEM)

SUCTION CAISSONS: PARTIALLY DRAINED UPLIFT (COUPLED PROBLEM)

SUCTION CAISSONS: PARTIALLY DRAINED UPLIFT (COUPLED PROBLEM)

- Inverse consolidation process
- Stabilisation of p_w
- Purely transient

SUCTION CAISSONS: PARTIALLY DRAINED UPLIFT (COUPLED PROBLEM)

► Increase drainage

Convective drying modelling

EXPERIMENTAL CAMPAIGN

Samples preparation

Initial core

Extracted samples

Saturation

Optimization

Finished samples

EXPERIMENTAL CAMPAIGN

Convective drying tests

Drying conditions			
Temperature	25°C		
Humidity	3,5 %		
Air flow	0,8 m/s		

EXPERIMENTAL CAMPAIGN

Data acquisition

Identification of the bedding direction

Dimensions at saturated state

Dimensions until dry state

Hole filling and binarization

Skyscan 1172

SUMMARY OF THE PRESENTATION

- Material and method
- Experimental results
- Model
- Numerical results
- Conclusion

Theory of porous media convective drying

RI-ADAPTCLIM

EXPERIMENTAL RESULTS

37

Theory of porous media convective drying

RI-ADAPTCLIM

EXPERIMENTAL RESULTS

Theory of porous media convective drying

RI-ADAPTCLIM

EXPERIMENTAL RESULTS

Theory of porous media convective drying

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

Drying kinetics

EXPERIMENTAL RESULTS

Shrinkage

SUMMARY OF THE PRESENTATION

- Material and method
- Experimental results
- Model
- Numerical results
- Conclusion

Porous medium

RI-ADAPTCLIM

Internal Water transfer

Boundary layer model

Thermal model

- Mechanical model
 - Expressed in effective stress

$$\sigma_{ij}' = \sigma_{ij} - p_g \delta_{ij} + S_{r,w} (p_g - p_w) \delta_{ij}$$

• 3D orthotropic elastic model

• Non linear elasticity :

$$E = E_0 + E_{ref} \left(\frac{p'}{p_{ref}}\right)^b$$

$$\epsilon_{ij} = \mathsf{D}^{\mathsf{e}}_{\mathsf{i}\mathsf{j}\mathsf{k}\mathsf{l}}\sigma'_{ij}$$

$$\mathsf{D}^{\mathsf{e}}_{\mathsf{l}\mathsf{l}} = \begin{pmatrix} \frac{1}{E_{\parallel}} & -\frac{\nu_{\perp,\parallel}}{E_{\perp}} & -\frac{\nu_{z,\parallel}}{E_{\perp}} & 0 & 0 & 0\\ -\frac{\nu_{\parallel,\perp}}{E_{\parallel}} & \frac{1}{E_{\perp}} & -\frac{\nu_{z,\perp}}{E_{z}} & 0 & 0 & 0\\ -\frac{\nu_{\parallel,z}}{E_{\parallel}} & -\frac{\nu_{\perp,z}}{E_{\perp}} & \frac{1}{E_{z}} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{2G_{\parallel,\perp}} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1}{2G_{\parallel,z}} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2G_{\parallel,z}} \end{pmatrix}$$

NUMERICAL MODELING

Meshing and parameters

PARAMETERS	VALUES	Units			
	Hydraulic Parameters				
$k_{sat,\perp}$	6.10 ⁻¹²	[m/s]			
$k_{sat, \parallel}$	3.10^{-12}	[m/s]			
n	0.39	[-]			
	Mechanical Parameters				
$E_{\parallel,ref}$	350	[MPa]			
$E_{\perp,ref}$	175	[MPa]			
$E_{z,ref}$	300	[MPa]			
$ u_{\parallel\perp}$	0.125	[-]			
$ u_{\parallel z}$	0.0625	[-]			
$ u_{\perp z}$	0.0625	[-]			
$G_{\parallel\perp}$	140	[MPa]			
$G_{\perp z}$	140	[MPa]			
ρ_s	2670	$[kg/m^3]$			
THERMAL PARAMETERS					
$c_{\mathrm{p},s}$	2080	[J/kg/K]			
$ ho_s$	2670	$[kg/m^3]$			
C _{p,W}	4185	[J/kg/K]			
$ ho_w$	1000	$[kg/m^3]$			
C _{p,a}	1004	[J/kg/K]			
$ ho_a$	1.2	$[kg/m^3]$			
$c_{p,v}$	1864	[J/kg/K]			
$ ho_{v}$	0.59	$[kg/m^3]$			

RI-ADAPTCLIM

WATER RETENTION CURVE

- Samples put into chamber with controlled suction (saline solution)
- Water content measured ⇒ saturation degree deduced

Van Genuchten formulation :

$$S_{r,w} = S_{res} + (S_{sat} - S_{res}) \left[\left(1 + \frac{p_c}{\alpha} \right)^{n_{vG}} \right]^{-m_{vG}}$$

VAN GENUCHTEN FORMULATION			
S _{res}	0	[-]	
S _{sat}	1	[-]	
α_{vg}	15	[MPa]	
m_{vg}	0.449	[-]	
n_{vg}	1.70	[-]	

NUMERICAL MODELING

Boundary layer model in FEM code:

- Water pressure at the environmental node n_4 : $p_c = -\frac{\rho RT}{M} ln(HR)$
- Temperature at the environmental node $n_4 : T = 25^{\circ}C$
- Transfer coeffcients:

$\alpha [m/s]$	$\beta \left[W/m^2/K \right]$
0.048	53

SUMMARY OF THE PRESENTATION

- Material and method
- Experimental results
- Model
- Numerical results
- Conclusion

$Sensitivity \ study$

NUMERICAL RESULTS

Drying kinetics

Shrinkage (linear elasticity)

Shrinkage (non linear elasticity)

NUMERICAL RESULTS

CONCLUSION

Dessication cracking

References

Andra (2005a). Dossier 2005 Argile. Synthesis: Evaluation of the feasibility of a geological repository in an argillaceous formation, Meuse/Haute Marne site. Technical report, Paris, France.

Bastiens W., Demarche M., 2003. The extension of the URF HADES: realization and observation. Proceedings of the WN'03 Conference, Tucson, USA.

Craeye B., De Schutter G., Van Humbeeck H., Van Cotthem, 2009. *Early age behaviour of concrete supercontainers for radioactive waste disposal.* Nuclear Engineering and Design, 239, 23-35.

Gerard P., Charlier, R, Chambon, R, & Collin, F. 2008. Influence of evaporation and seepage on the convergence of a ventilated cavity. Water resources research, 44(5), W00C02.

Léonard A., Étude du séchage convectif de boues de station d'épuration. Suivi de la texture par microtomographie à rayons X. Thèse de doctorat, Université de Liège, Faculté des Sciences appliquées, 2003.

SCK-CEN. R and D for the geological disposal of medium and high level waste in the Boom clay, 2009. URLence.sckcen.be/en/Projects/Project/RD_waste_disposal/Geological_disposal

Lehmann, P., Assouline, S., & Or, D. (2008). Characteristic lengths affecting evaporative drying of porous media. *Physical Review E*, *77*(5), 056309.

BOOM CLAY COMPOSITION

Composition	Al-Mukhtar et	Wouters et	Decleer et al., 1983	Horseman et al.,
minéralogique en [%]	al., 1996	Vandenberghe, 1994		1986
Quartz	20-25	20	23.8-58.3	30
Interstratifié illite- smectite	33	40-50		
Illite	16	25-35	3-23	19
Smectite			19-42	22
Kaolinite	13	15-25	1-9	29
Feldspaths:		5-10		
Microcline	4-5		6.5-11.3	
Plagioclase	4-5		3.2-6.2	
Chlorite		5-10		
Pyrite	4-5	1-5	0.7-2.5	
Carbonates	traces	1-5	0.0-4.3	
Matières organiques		1-5		

Tableau 3 : Revue bibliographique de la composition minéralogique de l'Argile de Boom

MATERIALS AND METHODS

- X-Ray tomography characteristics
 - Cross section acquisition using a X-Ray microtomography

Skyscan 1172

Source Voltage = 100 kV	Filter = Al 0.5 mm	4x4 binning = 900x666 pixel radiograms
Pixel size = 27.27 μm	Exposure time = 510 ms	Rotation Step (deg)= 0.65
180° rotation	2 vertically-connected scans	Scan duration = 8 minutes

EXPERIMENTAL RESULTS

Numerical filter

QUESTIONS