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Abstract

Z-pinning was originally designed to improve the delamination toughness and

the impact resistance of composite laminates. However, there is extensive ex-

perimental evidence that this improvement is accompanied by a reduction of the

in-plane properties. The main mechanisms responsible for this deterioration are

the local change in fiber content, fiber distortion, and the inclusion of resin-

rich regions near the Z-pin. The shape of these geometrical features strongly

depends on the laminate stacking sequence and on pin parameters such as pin

diameter, pin content, and initial pin inclination angle. Their shape complexity

challenges analytical modelling approaches which are currently used to generate

RVE geometries for simulations.

A computational approach is presented to generate such geometrical models.

Resin-rich regions are modelled by initially straight discretized lines which are

gradually shaped by a set of geometrical operations mimicking pin insertion, pin

rotation and fiber deflection. Fiber distortion is modelled in a post-processing

stage in cross-sections accounting for the preservation of the amount of fibers.

These models are then transformed into finite element mechanical models in

order to investigate how local fiber volume fraction changes, fiber misalignment,
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or distortions in reinforcement due to pin rotation, affect the global stiffness and

local stress concentrations.

Keywords: Z-pinning, internal geometry, mechanical properties, multiscale

modelling

1. Introduction

Z-pins are used in the through-thickness direction of laminates to increase

their delamination resistance [1–7]. Various methods have been proposed for

inserting such pins. The most widespread technique, used both in industry and

research, consists of pushing the pins from a foam bed into the laminate by

applying a pressure combined with ultrasonic vibration [8, 9]. The part of the

pins not embedded in the laminate is removed afterwards by chamfering, fol-

lowed by a further consolidation and curing process in an autoclave (see Fig.1a).

Apart from the intended increase in delamination resistance, experimental re-

sults have shown a reduction of the in-plane mechanical properties, with an

extent dependent on pin parameters such as their spacing, diameter and in-

sertion pattern [10–14]. The reduction is caused by reinforcement distortions,

which take place during pin insertion and further processing, and can be char-

acterized by resin-rich regions and fiber distortions near the pin [14–17]. The

effect of these geometrical features on the in-plane mechanical properties needs

to be understood in order to optimize the design. A computational homog-

enization approach that uses a periodic mesoscopic unit-cell model has shown

positive results in understanding and even predicting the mechanical behavior of

fiber-reinforced composites with other geometrical arrangements [18–26]. Such

an approach requires however the generation of mesoscopic geometrical models

that include the main geometrical features affecting the in-plane mechanical be-

havior.

Resin-rich regions and fiber distortions or reorientations around the pin are

gradually shaped during pin-insertion (during which the fibers are pushed aside)
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and further processing (during which the pin rotates), as illustrated in Fig. 1a.

A small pin content results in eyelet-shaped regions, Fig. 1b, while larger pin

contents result in channel-shaped resin-rich regions that form due to distortions

from neighboring pins. Upon further processing, pin rotation can take place,

whereby the fibers are pushed more to one side of the resin-rich region, which

results in distortion of its symmetrical shape (see Fig. 1c). The extent of these

asymmetrical distortions in a lamina depends on the vertical position of the

lamina relative to the pin rotation center, and on the main fiber direction in the

lamina relative to the direction of pin rotation. The fiber-reinforced distorted

zone around a pin is mostly assumed to be rectangular with a width related to

the pin-diameter. Experimental data on variations in local fiber volume frac-

tion and local fiber direction inside this region are, to the best knowledge of the

authors, are rather scarce in the literature. Coupled with these issues, an out-

of-plane component, known as fiber crimp, can also arise during pin-insertion

and pin-rotation. Furthermore, swelling of the laminate, fiber-breakage, and

fiber-weaving in irregular pin patterns (see Fig. 1d), upon pin insertion, and

interfacial cracking between the pins and composites caused by thermal shrink-

age of the pin after curing, can also be present. All these geometrical features

can alter the local stress distribution and consequently need to be included in

the RVE geometries used in simulations.

In literature, an analytical approach was developed to include these geomet-

rical features in a mesoscopic geometrical model [27–29]. In these contributions,

symmetrical eyelet-shaped resin-rich regions are represented either by a cosine

shape, an orthorhombic shape, or a diamond-shape, whereas for channel-shaped

regions a rectangular shape is used. The fiber distorted zone is mostly repre-

sented as a rectangular area around the pin. Local fiber misalignment reduces

linearly from a maximum at the resin-rich region boundary to zero outside the

fiber distorted area (see Fig. 1e). The local fiber volume fraction is mostly

assumed constant in each lamina. However, no existing model can provide the

asymmetrical shape of a resin-rich region due to pin rotation or can ensure a
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seamless transition between eyelet- and channel shaped resin-rich regions.

Therefore, in the present contribution, a computational approach capable of

generating geometries for all of these geometrical features in laminates is pre-

sented. Resin-rich regions are represented by discretized lines, which are initially

straight and are then gradually shaped using a set of geometrical operations (see

Fig. 2), with concepts similar to [30, 31]. The fiber-reinforced distorted zone is

obtained in a post- processing step from these deformed discretized lines and is

modelled in cross-sections perpendicular to the main fiber direction of the con-

sidered lamina. Preservation of the amount of fibers in a cross-section is used

to calculate the model parameters. The generated RVE geometrical model is

then transformed into a finite element model in order to investigate to what ex-

tent geometrical features affect the global stiffness and local stress distributions

within laminates given a prescribed stacking sequence.

small pin contentx
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device
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z
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e)
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Figure 1: Z-pinned laminates: (a) pin insertion and pin chamfering, (b) eyelet- and channel-

shaped resin-rich regions for small and large pin content, (c) asymmetrical-shaped resin-rich

region and fiber-reinforced distorted zone (due to pin rotation), (d) fiber weaving (due pin

pattern imperfections) and (e) local fiber-reinforced distorted zones near the pin.

2. Geometrical model generation

Unit-cell models with a single which can be inserted vertically or initially in-

clined are generated. A regular pin pattern, a mesoscopic initially homogeneous
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fiber volume fraction (before pin insertion) and fiber direction in each undis-

torted lamina, and a straight and rigid pin are hereby assumed. Fiber-breakage,

localised through-thickness crimping of the in-plane fibers, and interfacial crack-

ing between pins composite are not considered in the modelling.

1) 2) 3)

4) 5)

pin inflation pin rotation

straightening

Vf

0.60

0.90

0

26
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Figure 2: Step-wise generation process: (1) initial model, (2) pin inflation, (3) pin rotation,

(4) lamina straightening, (5) fiber volume fraction (Vf ) and fiber misalignment (θmis) distri-

butions in a post-processing step.

2.1. Initial model

The initial model accounts for potential resin-rich regions, which are caused

by pin insertion, and the presence of an initially inclined pin. Lines are used to

represent these geometrical features. They are discretized and a line radius is

assigned to enable the shaping of the fibers and the detection of interpenetra-

tions between the inserted pin and the reinforcement.

The pin is positioned at the center of the unit-cell and can be initially in-

clined. A single line is used to represent the pin. Its position is determined
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by a rotation center, an angle of inclination plane and an initial pin inclination

angle, as illustrated in Fig. 3. The line radius is taken as the pin radius and

the line representing the pin is not further discretized.

The resin-rich regions in a lamina are aligned with the main fiber direction

~flam. They originate either from the insertion of a pin within the unit-cell or

from neighboring pins for larger pin contents in lamina with fibers which are

not aligned with one of the pin pattern directions. Straight lines are used to

represent the boundaries of resin-rich regions. These lines are aligned to the

main fiber direction of the considered lamina and are positioned through-its-

thickness at both sides of potential opening locations. The position of the lines

for both a 0◦-lamina and 30◦-lamina is illustrated in Fig. 3. For the 30◦-

lamina, the presence of potential resin-rich regions caused by pins belonging to

neighboring unit-cells is accounted for. The positioning of lines (see Fig. 3b)

can easily be achieved by considering a cross-section that is perpendicular to

the main fiber direction. For inclined pins, the lines at the top and bottom of

a lamina are displaced. The lines are uniformly discretized into line segments

described by nodes (not to be confused with FE discretisation nodes) with a

length equal to one third of a standard pin diameter (280µm).

2.2. Geometrical shaping operations

The discretized lines of the initial model are next shaped by a set of geo-

metrical operations that are applied sequentially and mimic the pin and fiber

kinematics taking place during the manufacturing process (see Fig. 2). For

instance, the pin insertion is mimicked by an inflation operation applied on an

embedded pin. The chamfering process applied in order to remove the excess

length of the pins after insertion and the transverse compaction during lami-

nate consolidation as part of the cure process causes the pin rotation which is

represented geometrically by a rotation operation. The locally deformed shape

of the lines near the pin are smoothed by a straightening operation. Upon infla-

tion, the interaction between the fibers and the pin is accounted for by a contact
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Figure 3: Initial model: (a) pin, (b) lamina with fiber aligned and not aligned with a pin

pattern direction (left and right respectively).

treatment. Furthermore, the inflation and rotation operations are applied incre-

mentally to prevent lines from crossing over each other before interpenetration

detected by the contact treatment. The nodes used in the line description can

then be constrained to the lamina boundaries in order to facilitate an easier

control of the final geometrical model. The geometrical operations are governed

by the following equations.

2.2.1. Inflation operation

The pin inflation operation incrementally increases a line radius Rline from

zero to a final radius:

Rn
line = Rn−1

line +
Rline

ninfl
(1)

R0
line = 0 and n : 1→ ninfl

where ninfl is the number of inflation increments.

2.2.2. Rotation operation

The rotation operation rotates a line in a certain inclination plane, around a

rotation center, and with an inclination angle αn that is incrementally increased
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from αi to a final value αf :

αn = αn−1 + (
(αf − αi)

nrot
) (2)

α0 = αi and n : 1→ nrot

where nrot is the number of rotation increments.

2.2.3. Straightening operation

The straightening operation repositions the nodes of a line after local dis-

placements induced by inflation or a rotation of the pin. Each node i of a line

is moved to the middle of the segment connecting the neighboring nodes (see

Eq. 3 and Fig. 4a). This operation mimics the fact that a fiber under tension

moves transversally with the largest movement taking place in regions with the

highest curvature.

~xi = (1/2).(~xi−1 + ~xi+1) (3)

This operation is applied to shape the lines near the pin of the unit-cell and

is extended to account for the effect of potential resin-rich regions from neigh-

boring unit-cells on the geometry of the considered unit-cell. Before applying

the straightening operation, the lines near the unit-cell pin (master lines) are

extended, as illustrated in Fig. 4b for both channel-shaped (0◦-lamina) and

eyelet-shaped (30◦-lamina) resin-rich regions. After straightening, the extended

part can be removed (0◦-lamina) or used to shape the additional eyelet-shaped

regions (30◦-lamina). By applying this operation a number of times, a desired

length of a resin-rich region can be generated.

2.2.4. Contact treatment

The contact treatment detects interpenetrations locally between two dis-

cretized lines, based on their attributed radius and by evaluating the distance

between a node on a line and all other lines. When interpenetration is detected,

the concerned nodes are moved in the opposite direction as illustrated by Fig.

5:
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Figure 4: Straightening operation: (a) concept inspired from [30], (b) periodic line straight-

ening.

dPint = min[(dP − (R1 +R2)), 0] (4a)

~xPmov = α.dPint. ~DP (4b)

where dPint is the distance between lines at node P, and R1 and R2 are the line

radii. The control of the movement of node P, ~xPmov, is defined by Eq. 4b in an

interpenetration resolving step that uses the normal from the node on the pin,

~DP , multiplied by a fraction, α, and the local interpenetration distance or the

overlap between both lines. As the pin is not discretized and is considered to

be rigid, only the nodes belonging to the boundaries of the resin-rich region are

moved such that dissimilar lines are not interpenetrated.

2.2.5. Boundary conditions

The position of nodes can be constrained during generation by simply moving

the nodes back to their desired location after each contact treatment. This

procedure is implemented to constrain the nodes on the unit-cell border during

generation, and to have a control over the bottom and top surface of a lamina

in the final geometrical model.
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Figure 5: Contact treatment.

2.3. Fiber-reinforced distorted zone modelling

2.3.1. Discretised lines into cross-sections

The deformed lines, which represent the boundary of potential resin-rich

regions, are used to create cross-sections representing the fiber-reinforced re-

gion. Additional lines are added to represent the in-plane borders of the lamina

(or unit-cell) which are positioned on the in-plane borders and through-the-

thickness (see Fig. 6a). All the lines are then intersected by planes perpen-

dicular to the main fiber direction that are defined at regular intervals along a

diagonal of the unit-cell (see Fig. 6a). On each plane, a contour-line is gener-

ated around each set of intersection points that belong to a certain part (see

Fig. 6b). Adjacent contour-lines for which the opening between them is less

than an opening distance are then merged.

2.3.2. Fiber volume fraction and fiber direction

Fig. 7a depicts an arbitrary cross-section at position u, with the origin of the

local coordinate axis system positioned at the center of the pin and the u-axis

aligned with the main fiber direction. The area within the considered cross-

section, next to the resin-rich zone, is the area where the fibers are distorted

due to pin insertion. The cross-section is deformed only at the sides adjacent

to the resin-rich region and the shape of the cross-section can be considered to

be rectangular or trapezoidal, for a vertical or inclined pin respectively. A dis-

torted zone with a width that is constant along the lamina thickness is assumed
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Figure 6: Contouring the discretised lines of a lamina with openings into cross-sections: (a)

additional lines added on the in-plane lamina borders, (b) cross-sections generated around

individual point set, (c) a 3D representation of the generated cross-sections.

and can be characterized by two regions with differing fiber volume fraction

and fiber direction profiles, as illustrated in Fig. 7b. The first region, which is

the closest to the resin-rich region, is characterized by a constant but increased

fiber volume fraction Vf,c and a constant fiber direction ~floc that is identical

to the local tangent at the boundary of the resin-rich region ~fbound(u). The

second region, which is located between the first region and the undistorted

zone, is characterized by a fiber volume fraction and fiber direction that are lin-

early varying between the values in these two regions. The width of each region

is represented respectively by d1(u) and d2(u). The fiber-reinforced distorted

model in a cross-section at position u is then defined by the parameters d1(u),

d2(u) and Vf,c(u).

The value of these parameters is obtained by considering the preservation

of the amount of fibers in the cross-section during the model generation. An

amount of fibers equivalent to the area Adf (u) multiplied by the volume fraction,

Vf,lam, is redistributed locally in a distorted zone of the cross-section according
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to the assumed fiber volume fraction profile, which gives rise to the following

relation:

Adf(u).Vf,lam = (Ad1(u) +
Ad2(u)

2
).(Vf,c(u)− Vf,lam) (5)

where the areas Adf (u), Ad1(u) and Ad2(u) are illustrated in Fig. 7a. Since

these areas can be considered rectangular or trapezoidal, Eq. (5) can be altered

to define:

v0(u).Vf,lam = d1(u) + d2(u).(Vf,c(u)− Vf,lam) (6)

where v0(u) is the local position of the resin-rich region boundary.

For the parameters d1(u), d2(u) and Vf,c(u) additional assumptions are re-

quired to fully describe the fiber distribution in each cross-section. First, the

distorted zone parameters d1(u) and d2(u) are assumed to be constant in each

cross-section. Secondly, d2 is considered a multiplication of d1:

d2 = k.d1 (7)

where k is further called the distorted zone parameter and can be used to regu-

late the fiber-reinforced distorted zone width (see section 3.2). Thirdly, a value

of Vf,c(0) near the pin is assumed, which takes into account a maximum thresh-

old to account for the fact that a maximum fiber volume fraction cannot be

exceeded. These assumptions then allow the subsequent calculation of d1 in the

cross-section near the pin, d2 as a multiplication of d1, and finally Vf,c(u) in

each other cross-section, such as to determine the model parameters for both

the assumed fiber volume fraction and fiber direction models.

The assumed fiber volume fraction Vf (u, v) and fiber direction ~floc(u, v) in

a cross-sections are thus defined as follows for the generation of geometrical

12



features:

Vf (u, v) =


Vf,lam for d2 ≤ v

Vf,lam + ( v−d1

d2−d1
).(Vf,c(u)− Vf,lam) for d1 ≤ v ≤ d2

Vf,c(u) for v ≤ d1

(8)

~floc(u, v) =


~flam for d2 ≤ v

~flam + ( v−d1

d2−d1
).(~fbound(u)− ~flam) for d1 ≤ v ≤ d2

~fbound(u) for v ≤ d1

(9)

The fiber misalignemt θmis(u, v) with respect to ~flam is often used to represent

the local fiber direction in a lamina and is defined as the angle between ~floc(u, v)

and ~flam.
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Figure 7: Fiber-reinforced distorted zone model: (a) a cross-section indicating the model

parameters, (b) the assumed fiber volume fraction and fiber direction distribution in the

cross-section.
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3. Generated geometrical features

3.1. Shapes

In Fig. 8, the computational approach proposed here is compared with the

analytical approaches that uses orthorhombic and cosines functions [20, 29], for

a pin diameter equal to 280µm and a resin-rich region length of 2000µm con-

sidering an opening distance of 4µm. As can be observed in Fig. 8, the model

parameters used in the generation process resulted in a resin-rich region shape

that has a smaller area and a larger maximum misalignment at the boundaries

(Fig. 8b) compared to the analytical models. By increasing the number of

straightening operations, and by allowing a larger opening distance, both the

area and maximum misalignment can be satisfactorily recovered as from the

functional representations. It can be concluded that the straightening opera-

tion, applied on locally deformed lines, is able to generate realistic shapes of

resin-rich regions in comparison to the analytical modelling approach based on

experimental observations [15, 16].

cosinus shape
orthorhomib  shape

our model

a)

b)

c)

opening distance

Figure 8: Setting the tolerance opening distance and comparing the shaped of generated

resin-rich regions with functional representations, hereby having used in the generation: (a) a

tolerance opening distance of 4µm, (b) an increased number of straightening operations, (c)

and an increased tolerance opening distance.

An illustration of the possibility of the modelling approach to generate dif-
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ferent shapes of resin-rich regions and fiber-einforced distorted zones in a flexible

manner for different pin parameters and stacking sequences is presented in Fig.

9. As can be seen, the modeling approach can account for the transition from

eyelet-to-channel shapes for increasing pin content (Fig. 9a), the fiber weaving

shape for irregularly positioned pins in a 0◦-lamina (Fig. 9b), the symmetrical

shapes for initially inclined pins and asymmetrical shapes for a pin inclined due

to pin rotation in different lamina orientations (Fig. 9c), and the possibility to

control the out-of-plane position of the top boundary of a lamina that accounts

for fiber crimp due to pin rotation (Fig. 9d).

3.2. Dimensions

The resin-rich region can be characterized by its width and length. The

width is similar to the pin diameter, which is automatically obtained during

generation. The length (which controls the addition of the eyelet-shape or

channel-shape) can be regulated by the number of straightening operations.

The fiber-reinforced distorted zone can be characterized by its width, length,

maximum fiber volume fraction, and out-of- plane fiber waviness. Its width is

obtained automatically in the model by considering the amount of fibers con-

tained in a cross-section and can be further regulated by adapting the distorted

zone parameter k (see Eq. 7). As can be seen in Fig. 10, the smallest dis-

torted zone width is obtained for k = 0, while for k = 20+ larger distorted zone

widths are obtained, representing a step-wise constant and linear varying fiber

volume fraction or fiber misalignment profile respectively. Its length is equal to

the resin-rich region length, as local distortions start emerging as soon as lines

are moved locally. The maximum fiber volume fraction near the pin is a direct

input parameter in the fiber-reinforced distorted zone model and was assumed

equal to 0.900 which represents near the pin a fully compacted fiber-reinforced

zone [32]. The out-of-plane fiber waviness can be controlled by constraining or

un-constraining the positions of nodes on the bottom and top of lamina during

generation which is directly related to presence of fiber crimping.
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Figure 9: Shapes of resin-rich regions and corresponding fiber volume fraction Vf and fiber

misalignment θmis distributions: (a) eyelet- and channel-shaped resin-rich regions correspond-

ing to a small and large pin diameter, (b) fiber weaving for an irregular pin pattern, (c)

symmetrical- and asymmetrical- resin-rich regions for an inclined pin configuration upon pin

insertion or due to pin rotation respectively, (d) out-of-plane fiber misalignment θoutmis or fiber-

crimp due to pin rotation.
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Figure 10: The effect of the distorted zone parameter k on the fiber volume fraction Vf and

fiber misalignment distribution θmis in lamina.

4. Mechanical simulations

Using the computationally built geometrical models developed here, finite

element models can be generated automatically, hereby using the free 3D finite

element mesh generation procedure GMSH [33–35]. A small matrix layer was

inserted between the laminae to ease meshing (see Fig. 11). Linear elastic simu-

lations with periodic boundary conditions are here performed for the purpose of

analysing the effect of the detailed geometrical features associated with pinning.

The effect of the stacking sequence on the reduction in global stiffness and the

presence of stress concentrations that can explain early damage initiation for

different pin contents [36, 37] are investigated on a lamina-level, by considering

a single lamina with different fiber orientations and pin contents. The effect of

the local fiber volume fraction as well as local fiber direction in a lamina, and the

effect of the reinforcement distortions caused by pin rotation in a laminate are

also investigated. Such effects are finally investigated at the scale of a laminate.

4.1. Models

Pinned lamina models are now generated with fibers in lamina oriented 0◦,

30◦ and 90◦ from the tensile direction and a pin diameter of 280µm (a horizontal

17



a) b)

Figure 11: Generated mesh: (a) without matrix, (b) with matrix.

tensile direction is assumed in the sequel). For each lamina configuration, the

pin content, pin radius and fiber-reinforced region representation are varied as

presented in Table 1.

model description V max
f θmax

mis Vdistzone/Vlam pin content(%) Rpin(um)

1 equivalent 0.60 0 0 - -

2 const Vf / const ~floc 0.66 0 0.00 2 140

3 var Vf / const ~floc 0.90 0 0.48 2 140

4 const Vf / var ~floc 0.66 10 0.48 2 140

5 var Vf / var ~floc 0.90 10 0.48 2 140

6 pin content 0.50 0.76 6 0.27 0.50 70

7 pin content 4 0.90 14 0.80 4 200

Table 1: The lamina models with their geometrical characteristsics (Vdistzone/Vlam indicates

the percentage of waviness region inside the lamina).

The pin is considered to be vertical, or inclined due to pin rotation in the

x-direction, for which an inclined pin angle of 15 degrees is used. The model

parameters that describe the position of the vertical and inclined pin, are given

in Table 2.

For each configuration, equivalent lamina/laminate models are also gener-

ated. The same lamina dimensions are then considered in the equivalent config-

uration, hereby not accounting for laminate swelling that may be present upon
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αi αf αxy

vertical pin 0 0 0

inclined pin 0 15 0

Table 2: The pin parameters for the pinned laminate models.

pin insertion.

4.2. Boundary conditions and mechanical analysis methodology

The unit-cell model is constrained on its in-plane borders by periodic bound-

ary conditions with the bottom and top surfaces of the unit-cell left free. Dis-

placements are applied on the corner nodes to control the equivalent strain value

[38]. A strain of 0.5% is applied on the unit-cell, which would cause local failure

to take place inside the distorted zone but not outside the distorted zone [36, 37].

The materials used in this analyses consists of carbon fibers, an epoxy ma-

trix, and a metal pin, with properties as defined in Table 3. Material properties

for the fiber-reinforced region, as function of local fiber volume fraction, are

calculated using the analytical mechanical model of Chamis [39], using the pre-

viously defined properties; and are assigned afterwards in the local material

system that is prescribed by the local fiber direction.

The mechanical models are analyzed in terms of global stiffness and local

stresses. The global stiffness of a pinned laminate is normalized by the global

stiffness of its equivalent unpinned laminate. Local stress levels are evaluated

for the risk of local transverse and shear failure in the fiber-reinforced region,

and matrix failure in the resin-rich region. Simple stress-based criteria are used
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carbon fiber epoxy matrix metal pin carbon fiber epoxy matrix

E11(GPa) 231 3.45 200 X11,t(MPa) 3500 70

E22(GPa) 15 - - X11,c(MPa) 3000 130

E33(GPa) 15 - - X12(MPa) - 57

v12 0.20 0.35 0.30

v13 0.20 - -

v23 0.20 - -

G12(GPa) 15 1.28 143

G13(GPa) 7 - -

G23(GPa) 7 - -

Table 3: The stiffness and strength properties of carbon fiber (AS4 carbon [40]), epoxy matrix

(5260 epoxy [40]) and pin.

to evaluate the potential damage initiation in the elements in each region:

transverse failure: f22 =
σ22

X22(Vf )
≥ 1 (10a)

shear failure: f12 =
σ12

X12(Vf )
≥ 1 (10b)

matrix failure: fm =
σp
Xt
≥ 1 (10c)

were Xt is the matrix tensile strength, and X22 and X12 the local transverse

strength and local shear strength in the fiber-reinforced region respectively. σp is

the maximum principle stress, with fm and fij being defined as the local failure

indicator for the different local damaging modes, and that indicate damage

initiation when above one. The transverse and shear strength are calculated as

a function of local fiber volume fraction and were obtained by the analytical

Chamis model [39]. Stress concentrations are represented by a 97-precentile of

the local failure indicators:

f97%ij = 97perc(wk.fij) with wk =
Velem,k

ΣVelem,k
(11)

where Velem,k is the volume of a finite element. Before analysis, a mesh refine-

ment analysis was performed to analyze the effect of discretisation parameters

on the global stiffness and local stresses. For a single lamina and with different

fiber directions, a coarse and finer mesh were analyzed, with the finer mesh
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constructed by decreasing the mesh parameters belonging to the local mesh size

fields. The results of the mesh comparison study are presented in Table 4. It

can be seen that the results for the fine and coarse mesh are relatively similar

with no large deviations, and as such it was concluded that the coarse mesh

could be used in further mechanical analyses.

0◦-lamina 30◦-lamina 90◦-lamina

Enorm
x f%22 f%12 Enorm

x f%22 f%12 Enorm
x f%22 f%12

fine mesh 0.97 0.59 1.70 1.05 0.88 1.41 1.02 1.61 0.16

coarse mesh 0.97 0.59 1.60 1.05 0.90 1.43 1.02 1.62 0.16

Table 4: The normalised stiffness and the 97-percentile of the transverse and shear cracking

failure indicators of the pinned lamina which is meshed by two different meshs sizes.

4.3. Results

4.3.1. Single lamina

The global stiffness of pinned laminae with different fiber orientations and

pin contents is presented in Table 5. It can be seen that the 0◦-lamina has a

reduction in stiffness, while for the 30◦- and 90◦-laminae an increase in stiffness

is observed with the change in stiffness depending on the pin content. These

characteristics can be explained by considering the analytical mechanical model

which relates the local fiber misalignment with respect to a loading direction

to the local stiffness (e.g. Piggott [41]) and by accounting for the presence of

the pin. As illustrated in Fig. 12, a fiber misalignment in the distorted zone

in a lamina for different lamina orientations can either decrease or increase the

local stiffness, dependent on whether the fiber misalignments tends to make the

fibers become more aligned or less aligned with the loading direction. For off-

axis laminae, the presence of a pin acts as a stiffness enhancing medium. The

combined effect of fiber misalignment and pin inclusion can either decrease or

increase the global stiffness. These results can then help explaining the differ-

ences in reduction of global stiffness of pinned laminates for different stacking
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sequences and pin contents [11].

lamina orientation 0o 30o 90o

pin content 0.5% 0.99 1.02 1.01

pin content 2.0% 0.97 1.05 1.02

pin content 4.0% 0.90 1.12 1.06

Table 5: The stiffness of a pinned lamina for different pin content and orientations of the main

lamina’s fiber direction in the lamina.

0 90
0

1

0.50

loadingx

y

30

θ

θ

Ex
norm

Figure 12: A graph illustrating the effect of fiber misalignment θmis on the stiffness E whereby

the dashed lines show that the fiber misalignment θmis can either decrease or increase the

stiffness (having used hereby the analytical model presented in for example [41]).

The local stresses are analyzed in terms of their location within the lamina,

with the contributing effects of local fiber volume fraction and fiber direction on

these values being assessed. From the contour plots of local failure indicators

as presented in Fig. 13, it can be seen that the stress concentrations are taking

place in the fiber-reinforced distorted zone and, that for the applied strain, local

damage is initiated inside the distorted zone but not in the undistorted zone.

The stress components that are causing these stress concentrations are either

the shear stress for a 0◦-lamina and a 30◦-lamina, or the transverse stress for
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a 90◦-lamina. The local failure indicator concentrations can be increased by a

factor 2 or 3 with respect to the values in an equivalent unpinned lamina (see

Table 6). This is further correlated with the pin content as depicted in Fig. 15.

The effect of local fiber volume fraction and fiber direction on the local failure

indicators is illustrated in Fig. 14 by plotting the results from the different

models as described in Table 1. It can be seen that the increaese of fiber volume

fraction in the distorted region has the largest contribution to the local stress

concentrations compared to fiber misalignment. These results confirm that, for

pinned laminates, earlier damage initiation may indeed take place. The results

also demonstrate the importance of a proper evaluation of the local fiber volume

fraction for a relevant evaluation of local stress concentrations in computational

models, and their potential in partly explaining the observed scatter in global

strength [11].

0o-lamina 30o-lamina 90o-lamina

f97%22 f97%12 f97%22 f97%12 f97%22 f97%12

equivalent 0.00 0.00 0.34 0.63 0.62 0.00

var Vf / var ~floc 0.59 1.60 0.90 1.43 1.62 0.16

Table 6: The 97-percentile of the transverse and shear failure indicators in an equivalent and

pinned lamina with different orientations of their main fiber direction.

4.3.2. Laminate

The global stiffness of the [0◦/90◦/90◦/0◦] laminate for both a vertical and

inclined pin (see section 4.1) is presented in Table 7 for both x- and y-direction

loading. It can be seen that a reduction in global stiffness is present for all cases

and that the reduction is larger for the inclined pinned laminate when loaded

transversally to the inclination direction. This enlarged reduction for y-loading

(see Fig. 16a) can be explained by the larger fiber distortion region that are

present in the main load-bearing lamina (90◦-lamina), while in the case of x-

loading, the main load-bearing lamina 0◦-lamina) are only slightly distorted.

These results indicate that the geometrical distortions due to pin rotations can
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Figure 13: Transverse, shear and matrix cracking local failure indicator distributions for a

lamina with fibers aligned in different directions: (a) 0◦-lamina, (b) 30◦-lamina, (c) 90◦-

lamina.
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Figure 14: Graphs showing the role of fiber volume fraction Vf and fiber misalignment θmis

on the 97-percentile of the transverse and shear cracking local failure indicators for lamina

with fibers aligned in different directions: (a) 0◦-lamina, (b) 30◦-lamina and (c) 90◦-lamina.
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Figure 15: Graphs indicating the effect of pin content on the 97-percentile of the transverse

and shear cracking local failure indicators in a lamina with fibers algined in different directions:

(a) 0◦-lamina, (b) 30◦-lamina and (c) 90◦.

affect the global stiffness, which can partly explain the scatter in global stiff-

ness as observed in experimental results and need to be included in geometrical

models.

Local stress distributions for values of fij > 1 are illustrated by contour

plots of the local failure indicators in Fig. 16b. It can be seen that the stress

concentration are correlated with the fiber-reinforced distorted zone (see Fig.

16a) and that both transverse, shear, matrix damage initiation may be present.

Mechanisms accounting for these local degradations should therefore be included

for strength modelling of Z-pinned laminates.

Enorm
x Enorm

y

vertical pin 0.98 0.98

inclined pin 0.98 0.84

Table 7: The normalised stiffness of the pinned laminate models in both in-plane directions.

4.4. Discussion

The simulations result are now compared with experimental data presented

in [11] that show the stiffness of unidirectional [0◦], cross-ply [0◦/90◦] and quasi-

isotropic [0◦/45◦/−45◦/90◦] pinned laminates (normalised by the stiffness of
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Figure 16: Geometrical and mechanical features of the vertical and inclined pinned laminate

model: (a) fiber volume fraction Vf and fiber misalignment θmis distributions, (b) the locally

failed regions.

an equivalent unpinned laminate) for different pin contents. The normalised

stiffness of the unidirectional, cross-ply and quasi-isotropic pinned laminates for

pin contents of 2% is hereby approximately 0.87, 0.94 and 1.00, respectively,

while a linear trend is observed for increasing pin content.

4.4.1. Lamina

The experimental results indicate that distortions in the 0◦-lamina reduce

the stiffness to a larger degree compared to distortions in the 45◦- and 90◦-

lamina, and that the distortions in the 45◦-lamina reduce the stiffness the least

and may even increase the stiffness. Similar trends can be observed from the

simulation results (presented in Table 5) that show that the distortions in the

0◦-lamina, 90◦-lamina and 30◦-lamina are more negatively affecting the stiffness

in a successive order respectively. The larger stiffness reduction in the experi-

mental observations, compared to the simulation results, can be explained by

not having considered lamina swelling, pin inclination, secondary geometrical

features (broken fibers, fiber-crimp, interface cracking, etc.), which may further

reduce the stiffness in the lamina modelling.
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4.4.2. Laminate

The normalised stiffness of the cross-ply laminates with a pin content of

2% from the experimental observations (0.94) and the simulations (being 0.98

and 0.84 for an inclined pin laminate models with pin inclination due to pin

insertion and pin rotation respectively, see Table 7) can be compared. The

difference between the physical and numerical model values can be explained

by differences in geometrical features similar to as presented in section 4.4.1

including some further remarks on pin inclination angle and loading direction:

1. Physically, the pin inclination angle is characterised by a Gaussian distri-

bution with a mean for pin diameters of 280µm which gradually evolves

from 2◦ on average after pin insertion to approximately 15◦ on average

after consolidation [15]. Numerically, the pin inclination angle was con-

sidered as 15◦ and either obtained from pin insertion or from pin rotation

(see Table 2). The considered 0◦-value for the pin inclination angle upon

pin insertion can then be considered as a worst case scenario whereby

variations in pin inclination angles (which can be up to 20◦) can further

affect the results.

2. The loading direction with respect to the inclination direction can affect

the stiffness (see Table 7), but experimental observations do not make a

distinction between the in-plane direction and consequently average out

the effect of different pin inclination directions. Averaging the simulation

results (0.98 and 0.84) would then lead to a closer estimate compared the

experimentally observed value 0.94.

A parametric study including variations in pin inclination angle and direction,

and laminate swelling, should then be performed to understand in a quantitative

manner the differences between the experimental data and simulations results.

5. Conclusion

A computational approach was presented for a fully automated generation of

mesoscopic geometrical unit-cell models of pinned laminates. The resin-rich re-
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gions are modelled by initial straight discretized lines that are gradually shaped

using geometrical operations mimicking pin-insertion, pin rotation, and fiber

deflections. The fiber-reinforced distorted zone is modelled in a post-processing

stage in cross-sections perpendicular to the main fiber direction and on which a

certain fiber volume fraction is assumed based on the preservation of the amount

of fibers in the cross-section during generation. The shapes of the geometrical

features are obtained computationally and in an automated way without the

need to be set a priori as for analytical modelling approaches. The ability of

the defined approach to obtain shapes computationally and to generate shapes

of the main geometrical features belonging to a range of pin parameters and

stacking sequences was also presented.

The geometrical models can be automatically transformed into FE mechan-

ical models, based on which the effect of distortions on global stiffness and local

stress distribution can be investigated. The following was observed:

1. The global stiffness of a pinned lamina can both be decreased and in-

creased, depending on the main fiber direction with respect to the tensile

direction.

2. The geometrical distortions caused by pin rotation can have a large ef-

fect on the global stiffness when loaded transversally to the inclination

direction.

3. The fiber-reinforced distorted zone is acting as a stress concentration re-

gions and both transverse, shear, and matrix damage initiation can be

present at early strain values.

4. The fiber volume fraction is the main geometrical feature affecting the

stress concentration. The results can help explaining the effect of the

stacking sequence and the experimentally observed scatter on global stiff-

ness and strength of Z-pinned laminates.

These results emphasize the importance of properly incorporating geometri-

cal features of reinforcement distortions caused by pin rotations and variations
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in fiber volume fraction in mesoscopic models for Z-pinned laminates. These fea-

tures have been only partly accounted for by past geometrical models [27–29]

and have clearly been shown to affect the material properties of the laminates

modelled here.

In future work, the presented computational approach for geometrical model

generation will be adopted and extended to generate geometrical unit-cell mod-

els for stitched composites, in which geometrical features of local distortions of

the reinforcement caused by the stitching yarn need to be accounted for.
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