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A Time Monte Carlo method for addressing uncertainty in land-use 

change models 

 

Abstract: One of the main objectives of land use change models is to explore future 

land use patterns. Therefore, the issue of addressing uncertainty in land use forecasting 

has received an increasing attention in recent years. Many current models consider 

uncertainty by including a randomness component in their structure. In this paper, we 

present a novel approach for tuning uncertainty over time, which we refer to as the 

Time Monte Carlo (TMC) method. The TMC uses a specific range of randomness to 

allocate new land uses. This range is associated with the transition probabilities from 

one land use to another. The range of randomness is increased over time so that the 

degree of uncertainty increases over time. We compare the TMC to the randomness 

components used in previous models, through a coupled logistic regression-cellular 

automata model applied for Wallonia (Belgium) as a case study. Our analysis reveals 

that the TMC produces results comparable with existing methods over the short-term 

validation period (2000-2010). Furthermore, the TMC can tune uncertainty on longer-

term time horizons, which is an essential feature of our method to account for greater 

uncertainty in the distant future. 

 

Keywords: land use allocation; uncertainty, stochastic disturbance; Monte Carlo 

simulation; cellular automata. 
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1. Introduction 

One of the primary goals of land use change models is to forecast possible future land 

states. Although uncertainty is an inherent feature of any forecast, few land use change 

models consider uncertainty as a component of the model structure. Because predicting 

future land use pattern is difficult, land use change models can be regarded as 

exploratory tools to assist in the decision making by exploring various scenarios. 

Pontius and Neeti (2010) discuss two contrasting views concerning the role of 

uncertainty in scenario-based analysis. One view considers that uncertainty is irrelevant 

to scenario-based analysis because storylines are not predictive. Some studies have 

simulated future land use change without accounting for uncertainties (e.g. Poelmans et 

al., 2010). The other view considers that uncertainty is important in scenario-based 

analysis which takes into account the link between the qualitative storyline and its 

quantitative expression. Following this second view, our study proposes a method that 

can be applied to account for uncertainties.  

In a comprehensive review of 114 land use change applications, van Vliet et al. (2016) 

found that only 17% of the reviewed applications addressed uncertainty. Uncertainties 

may arise from many sources. Pontius and Neeti (2010) identified three groups of such 

sources: the data, the model, and future land change simulation. First, errors in the 

model’s input data are likely to exist and have been investigated in some studies (e.g. 

Tayyebi et al., 2014). Second, the construction of the model may contain uncertainty 

associated with its algorithms (Pontius and Neeti, 2010). Third, future simulation 

involves two main types of uncertainty, namely the estimation of the future change 

amount (quantity uncertainty) and the spatial allocation of land use changes. Figure 1 

depicts the difference between quantity uncertainty and spatial allocation uncertainty.  
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The quantity uncertainty is captured in many land use models by simulating various 

scenarios that differ in the quantity of change (e.g., Cammerer et al., 2013; Landuyt et 

al., 2016). The spatial allocation uncertainty is associated with the potential 

nonstationary character of the spatial distribution of land use types. Generally, land use 

models extrapolate calibrated allocation results to simulate future landscape. Thus, these 

models implicitly assume that the calibrated parameter set is valid for the future and do 

not consider the nonstationary features of the land use allocation related to the political, 

economic, and/or environmental conditions that are known to be nonstationary (van 

Vliet et al., 2016). Our main focus in the present study is related to the spatial allocation 

uncertainty. The uncertainty in the allocation process has been addressed in some 

studies using fuzziness (e.g., Wang et al., 2013) or randomness by introducing a 

stochastic component (e.g., Yang et al., 2008). The randomness ensures that each run 

can produce a different land use pattern and that some patterns can be accurate by 

chance (Brown et al., 2005; van Vliet et al., 2016). Some of the current techniques for 

embedding allocation uncertainty in land use change models incorporate a stochastic 

Figure 1. Quantity and spatial allocation uncertainties in land use change models. The quantity 
of change in the first and second cases, the vertical direction, is 10 and 12 respectively. In each 
case, the quantity of change is allocated differently, the horizontal direction. 
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disturbance (SD) term or a Monte Carlo simulation (MC) method. Feng (2017) and 

Yang et al. (2008) introduced an SD term, after White and Engelen (1993), whereas Li 

and Liu (2006), Liu et al. (2008), and Wu (2002) used an MC method in their models to 

consider uncertainty.  

The primary goal of this paper is to tune the degree of allocation uncertainty over time 

so that the uncertainty degree varies between the immediate future and the distant 

future. Our approach, following Wu (2002), compares the transition probability from 

one land use state to another in each land unit with a random number. However, a major 

difference of our work lies in generating a uniform random number drawn over a 

dynamic range associated with transition probabilities from one land use state to 

another, and this range increases over time.  

We incorporate our method in a cellular automata (CA) model to simulate urban 

expansion in Wallonia (Belgium) for two time-intervals: the calibration interval 1990-

2000, and the validation interval 2000-2010. After calibrating and validating the model, 

we compare the results obtained by our method and those by the two most widely used 

methods, SD and MC. The comparison demonstrates the robustness of our method 

against SD and MC methods. 

The paper is structured as follows. In section 2, we review SD and MC methods and 

then describe our method. Section 3 presents the land use change model, study area, and 

data. In section 4, we show and discuss our results. Section 5 presents our conclusions.  

2.  Modeling spatial allocation uncertainty  

In this section, we review the SD method proposed by White and Engelen (1993) and 

the MC method proposed by Wu (2002) for incorporating uncertainty into land use 

change models. Thereafter, we introduce the proposed method, the Time Monte Carlo 
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(TMC) method. Once the transition probability has been computed for each landscape 

unit, the SD term perturbs each probability score in its vicinity by a random number that 

can be calculated as follows (White and Engelen, 1993): 

𝑆𝐷 = 1 + (− ln 𝛾)ఙ 
(1)

where γ is a uniform random number between 0 and 1, and σ is a parameter that allows 

control of the magnitude of the SD. When σ is set at 0, the model behaves 

deterministically. In contrast, when σ is set at high positive values, the model follows a 

random process. Introducing an SD term in the transition probabilities may bias the 

model outcomes because cells with very low transition probabilities would be able to 

change their state (García et al., 2011; Wu, 2002). Wu (2002) proposed an alternative 

method that employs an MC procedure for modeling spatial allocation uncertainty. In 

this approach, after computing the transition probabilities, a cell in the landscape is 

randomly selected, its probability is compared with a random number uniformly 

distributed between 0 and 1, and the state of a cell will change if its probability score is 

greater than the generated random number. One of the shortcomings of this approach is 

that it does not allow control of the degree of randomness. Therefore, Wu (2002) 

transformed the transition probability of each cell by comparing it with the largest 

available probability at each time-step, as follows: 

𝑃𝑖′௧ = 𝑃𝑖௧exp [−𝛿(1 − 𝑃𝑖௧/max (𝑃௧)] 
(2)

where Pi’t is the updated transition probability for cell i at time-step t, Pit is the original 

probability, δ is a dispersion term, and max(Pt) finds the maximum transition 

probability at time-step t. The dispersion term, δ, in Eq. 2 plays a role equivalent to σ in 

Eq. 1. When δ is set to high values, transition probabilities decrease away from the 
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maximum probability at each time-step, in particular for cells with a lower probability 

score. Thus, a distinct difference results between cells with higher probabilities and 

those with lower probabilities, and there will be less chance for land use change in cells 

with lower probabilities.  

Although the two methods explained above are widely used to model the spatial 

allocation uncertainty, neither method ensures that the degree of uncertainty can vary 

over time.  In reality, the distant future involves more uncertainty about aspects such as 

the economic value of land, available communication means, and social/household 

preferences. All these aspects play a key role in land allocation and become less 

predictable into the distant future. A few studies have attempted to demonstrate the 

increase in uncertainty as  a model simulates land use change further into the future 

(e.g., Pontius et al., 2006; Pontius and Neeti, 2010). Our study is one of the first studies 

that propose a Monte Carlo process to increase the degree of uncertainty over time in 

land use change modeling. 

The proposed TMC method uses an MC procedure as in Wu (2002). At each time-step, 

a cell is selected at random, and its computed transition probability is compared with a 

uniform random number within a dynamic range. The proposed method is distinguished 

from the method of Wu (2002) is that Wu defines this range between the minimum and 

maximum probabilities, i.e., 0 and 1. We set this range variable to allow tuning the 

degree of uncertainty over time. At each time-step, the computed transition probabilities 

are sorted in a descending order, with the most suitable cell at the top of the list. 

Typically, the top-scoring cells from the sorted list change their state until they meet the 

requested change quantity. To consider uncertainty, the model randomly selects one cell 

in a set of cells with the largest probabilities. The size of this set of the cell is initially 

determined by the quantity of change and subsequently increased to include more cells. 
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Thereafter, the model compares the transition probability of the selected cell to a 

uniform random number and the cell changes its land use state according to the 

following equation: 

𝑆𝑖௧ାଵ = ൜
𝑐ℎ𝑎𝑛𝑔𝑒,               𝑃𝑖௧ > 𝑟𝑎𝑛𝑑
𝑛𝑜𝑛 − 𝑐ℎ𝑎𝑛𝑔𝑒,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(3)

where Sit+1 is the state of the cell i at the next time-step, Pit is the computed transition 

probability at time-step t, and rand is a uniform random number between 

randmax and randmin. We set rand_max and rand_min as follows:  

𝑟𝑎𝑛𝑑௠௔௫ = max(𝑃௧) , 
𝑟𝑎𝑛𝑑௠௜௡ = 𝑡𝑟𝑎𝑛𝑠(𝑞 + (𝑡 × ɸ × 𝑞)) 

(4)

where max(Pt) returns the maximum probability at time-step t; and trans(q+(t×ɸ×q)) 

returns the transition value of a cell during time-step t from the sorted list whose 

location is determined by q, the change quantity per time-step, and ɸ is a specific 

percentage of q. In this way, the model behaves deterministically at the beginning but 

slowly behaves more stochastically as the model operates over time. 

Figure 2 illustrates an example of the method. In this example, the model sorts the cell 

values in a descending order according to their transition probabilities. Assuming that 

q=8 and ɸ=25%, the model randomly selects 8 cells out of 10 (Figure 2 from the sorted 

cells list in time-step 1), 8 cells out of 12, and 8 cells out of 14 in time-steps 1, 2, and 3, 

respectively. The cells that are converted to another land use are selected by comparing 

the transition probability with a random number according to Eq. 3. 
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3. Land use change model 

In this study, we apply a grid-based CA land use change model to simulate the gain of 

the urban category in Wallonia (Belgium), as a case study, between 1990 and 2010. 

Urban land use maps of 1990 and 2000 are used to calibrate the model parameters. The 

calibrated parameters are then used to simulate the spatial allocation of the 2000-2010 

urban gain. We validate the model by comparing the simulated urban gain during 2000-

2010 with the observed urban gain during 2000-2010. The model has two main 

modules: the demand module and the allocation module. Our emphasis is not on the 

quantity uncertainty, but rather on the allocation uncertainty, and therefore we assume 

that the annual demand for increasing urban land is the same from 1990-2000 (for 

calibration) and from 2000-2010 (for validation) divided by 10 (the number of years).   

Figure 2. Example of the TMC method. White: no-change, gray: changes done in the current 
time-step, and black: changes done in the previous time-septs. 
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The allocation module allocates new urban cells based on transition probabilities. Two 

major components shape the transition probabilities following the approaches by 

Mustafa et al. (2018a), Poelmans and Van Rompaey (2010), and Wu (2002). The first is 

based on a set of urbanization driving forces. The second component concerns the 

dynamic interaction between neighborhood land uses. The transition probability P for 

cell i at time-step t is computed as follows:  

    (.)
tt

d nPi Pi Pi con    (5)

where (Pid) is the urbanization probability based on urbanization driving forces, (Pin)t is 

the neighborhood interaction, and con(.) is restrictive conditions for land use change. 

The (Pid) is calculated as:  

(𝑃𝑖ௗ) =
exp(𝛽଴ + 𝛽ଵ𝜒ଵ + 𝛽ଶ𝜒ଶ + ⋯ + 𝛽௡𝜒௡)

1 + exp(𝛽଴ + 𝛽ଵ𝜒ଵ + 𝛽ଶ𝜒ଶ + ⋯ + 𝛽௡𝜒௡)
 (6)

where β0 is the intercept, (X1, X2, …, Xn) are the land use change driving forces and (β1, 

β2, . . ., βn) are the weights of the driving forces. A logistic regression model (logit) is 

employed to calibrate the weights βn.  

(Pin)t is calculated as follows  (Feng et al., 2011; Wu, 2002): 

  ( )

1

t

n

count s urban
Pi

n n




 
 

(7)

where count(s=urban) represents the number of urban cells amongst the Moore n×n 

neighborhood. In each time-step, representing one year, the model converts the non-

urban cells according to Eq. 3, until meeting the required change amount.  

3.1. Validation 

The validation process involves assessing the goodness of fit of the logit model and the 
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allocation accuracy of the model. The validation is done while eliminating the observed 

urban cells at the initial time-step from the spatial extent. The goodness of fit of the 

logit model is assessed using the McFadden pseudo R-square (PR²) and the relative 

operating characteristic (ROC) procedure (Pontius and Parmentier, 2014). The PR² 

mimics the R-squared statistic of linear regression models. A value of 1 shows a perfect 

fit; a PR² of 0 indicates a random fit (Mustafa et al., 2018c). The ROC compares the 

transition probability map, generated with Eq. 6, to a map with the observed changes. It 

defines a number of cut-off points and calculates the rate of the true-positives and the 

false-positives at each cut-off point and relates these rates to each other in a graph. The 

ROC measures the area under the curve (AUC). AUC=0.5 means allocation as good as 

random and AUC=1 means perfect allocation. 

We evaluate the allocation performance by showing the hits (H) indicating that the 

expansion areas in the observed map were simulated as expansion; misses (M) 

indicating that the expansion areas in the observed map were simulated as no-changes; 

false alarms (FA) indicating that the no-changes in the observed map were simulated as 

expansion; and correct rejections (CR) indicating that the no-changes in the observed 

map were simulated as no-changes, following the approaches by Liu et al. (2014) and 

National Research Council (2014). This evaluation is performed for the urban gain. 

3.2. Case study area and model implementation 

The land use model (section 3) is applied to the Wallonia region (Figure 3). The region 

occupies 55% of Belgium with an area of 16,844 km2. The urban land use maps for 

1990, 2000, and 2010 were produced using Belgian cadastral vector data (CAD) from 

the Land Registry Administration of Belgium. We rasterized the CAD data at a spatial 

resolution of 2 m. The rasterized maps were then aggregated to a resolution of 100 m. 

Each aggregated cell was assigned a density value by counting the number of 2 m cells. 
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The aggregated data were then classified into non-urban with a density < 25 and urban 

with a density ≥ 25. As the average area of a building in Belgium is about 100 m² 

(Tannier and Thomas, 2013); a density value of 25, representing an average-sized 

building of 100 m², is selected to ensure that each aggregated cell has at least one 

building. The urban configuration in this case study is the entire polycentric urban 

system, suburbs and rural areas. The data show no loss of urban.  

 

Table 1 lists the driving forces used  in the model based on a literature review (e.g. 

Cammerer et al., 2013; Dubovyk et al., 2011; Poelmans and Van Rompaey, 2010) and 

the findings of previous work on our study area (e.g. Mustafa et al., 2018a, 2018b).  

Table 1. List of the urbanization driving forces. 

Factor  Name Type Unit 

X1 Elevation (DEM) Continuous Meter  

X2 Slope Continuous Percent rise 

X3 Dist. to RC1 Continuous Meter 

X4 Dist. to RC2 Continuous Meter 

X5 Dist. to RC3 Continuous Meter 

X6 Dist. to RC4 Continuous Meter 

X7 Dist. to railway stations Continuous Meter 

X8 Dist. to large-sized cities Continuous Meter 

X9 Dist. to med-sized cities Continuous Meter 

X10 Employment rate  Continuous Percent 

X11 Richness index Continuous Percent 

X12 Zoning Categorical  Binary (0 non built-up, 1 built-up)  

Figure 3. The study area – Wallonia. 
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The slope data are generated based on a digital elevation model (DEM) made available 

by the Belgian National Geographic Institute. Accessibility factors include the 

Euclidean distance to roads in 2001, railway stations in 1999, and Belgian cities. Roads 

are categorized into four classes: RC1 (highways), RC2 (main roads), RC3 (secondary 

roads), and RC4 (local roads). Large-sized cities represent all Belgian cities with a 

population > 90,000 in 2000, whereas medium-sized cities are all cities with a 

population between 20,000 and 90,000 in 2000. The employment rate and richness 

index in 2000 are used as socioeconomic factors. The zoning map is based on the 

Wallonia zoning plan adopted between 1977 and 1987. Since 1987, changes in the 

zoning plan have been very limited in space and size. All zones where urban 

development is legally permitted are encoded as 1 and all other zones are encoded as 0. 

We standardized the driving forces as our aim is to elucidate relationships. To minimize 

the potential of spatial autocorrelation, which could bias the estimates of parameters in 

the logit analysis (Overmars et al., 2003), we used a data sampling approach following 

Poelmans et al. (2010), Cammerer et al. (2013), and Mustafa et al. (2017). A set of 

20,000 cells was randomly selected, with an equal number of no-changes and changes. 

Existing urban cells in 1990 were excluded from the sampling. After 100 runs of the 

logit model with different sets of samples, we selected the set with the best area under 

ROC curve (AUC). 

4. Results and discussion 

In this section, we highlight the result of the logit calibration and discuss the allocation 

uncertainty. The estimated coefficients of the logit model are shown in Table 2. 

The PR² of the logit model is 0.295. Although PR² and R-squared values both range  

from 0 to 1 with higher values indicating a better fit to the model, PR² values are not 

equivalent to OLS R-squared values. As the logit model is a maximum likelihood 
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estimation method, the PR² values tend to be considerably lower than the OLS R-

squared (McFadden, 1977). Domencich and McFadden (1975) state that PR² range of 

0.2-0.4 represents an OLS R-squared values between 0.7-0.9. The AUC for the 

transition probability map generated by the logit model is 0.833. 

Table 2. The logit coefficients. 
Factor  Name Coefficient β 

 Intercept -0.9030 

X1 Elevation 0.0623* 

X2 Slope -0.2183* 

X3 Dist. to RC1 -0.0744* 

X4 Dist. to RC2 -0.0819* 

X5 Dist. to RC3 -0.2734* 

X6 Dist. to RC4 -0.5558* 

X7 Dist. to railway stations -0.0042 

X8 Dist. to large-sized cities -0.1351* 

X9 Dist. to med-sized cities -0.1661* 

X10 Employment rate 0.0003 

X11 Richness index -0.0002 

X12 Zoning 3.0348* 

*Significant at a 95% confidence level 

Table 3. Number of cells of hits (H), misses (M), false alarms (FA), and correct rejections (CR) in the 
non-urban area. 

 1990-2000 2000-2010 

Non-urban 1439176 - 1422166 - 

H 3311 0.23% 1824 0.13% 

M 13699 0.95% 9383 0.66% 

FA 13699 0.95% 9383 0.66% 

CR 1408467 97.87% 1401576 98.55% 

 

Figure 4. Allocation errors (AE) for 
calibration (1990-2000) and validation 
(2000-2010). 
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Table 3 lists total numbers of H, M, FA, and CR in the calibration and validation time 

intervals. The allocation error (AE), equals M+FA, for the calibration time interval is 

1.904% and 1.320% for the validation time interval (Figure 4). We set ɸ in Eq. 4. at 1%, 

2%, 10%, 50%, 100%, and 200%. To compare the performance of the TMC with the 

SD and the MC methods, we examine the model performance with respect to each 

individual method. The SD is introduced in the model by updating Eq. 5 as follows:  

    (.)
tt

d nPi Pi Pi con SD      (9)

We use different values of σ (Eq.1) to investigate its effect on the model. For the MC 

method, Wu (2002) suggests that the range of δ is usually 1-10. Accordingly, we set δ at 

1, 2, 4, 6, 8, and 10. With higher values of δ, the model tends to produce strongly 

skewed probabilities that cause the computation time to increase exponentially. For 

example, when δ was set at 20 the cells with original probabilities of 0.9426 and 0.5854 

become 0.5121 and 0.0002 after implementing Eq. 2. The computing time with a high δ 

value is long; for instance, one run using δ=15 is ~1.8 h, and one run using δ=20 is 

~23.9 h. Table 4 presents the average computation time per run for each method. We 

implemented our model in MATLAB, running on a desktop computer clocked at 3.60 

GHz with 32.0 GB RAM. The results indicate that the TMC method is faster than the 

SD and the MC methods. 

Table 4. The average run-time per run. 
Method Run time (seconds) 
Deterministic model 5 
TMC ɸ = 0.01 (1%) 26 
TMC ɸ = 2 (200%) 6 
SD σ = 0.01 36 
SD σ = 2 30 
MC δ = 1 42 
MC δ = 10 482 

Many simulations are required to investigate the properties of the model in the dynamic 

environment of different random noises; we therefore ran the model 9,000 times (500 
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runs per configuration). The simulated allocation error (AE) for new urban cells is given 

in Table 5. Based on the experimental results, the TMC method with ɸ = 0.01, 0.02, and 

0.1 in the model slightly improves the averaged AE. This is also the case for the SD 

method with σ=0.01 and 0.05. Increases in both ɸ and σ decrease the averaged AE as 

the model involves more randomness. In contrast, the MC method projects an increase 

in the averaged AE with higher values of δ as the result that δ controls the exponential 

curve that scales the transition probability. Consequently, higher δ values cause a more 

skewed curve, and the chance of cells with higher transition probability values also 

increases.   

Table 5. Allocation error for new urban cells for 9,000 runs. 

  1990-2000 2000-2010 

  Maximum Average  Minimum Maximum Average  Minimum 

 Deterministic 
model 

1.904 - - 1.320 - - 

T
M

C
 

ɸ = 0.01 1.904 1.899 1.896 1.321 1.316 1.312 

ɸ = 0.02 1.907 1.901 1.898 1.323 1.317 1.315 

ɸ = 0.1 1.907 1.902 1.897 1.325 1.319 1.315 

ɸ = 0.5 1.909 1.905 1.901 1.326 1.322 1.317 

ɸ = 1 1.912 1.907 1.904 1.328 1.324 1.316 

ɸ = 2 1.926 1.914 1.906 1.331 1.321 1.315 

SD
 

σ = 0.01 1.906 1.903 1.900 1.321 1.319 1.317 

σ = 0.05 1.907 1.902 1.898 1.321 1.317 1.315 

σ = 0.1 1.908 1.904 1.897 1.323 1.320 1.315 

σ = 0.5 1.911 1.906 1.901 1.326 1.322 1.317 

σ = 1 1.925 1.916 1.903 1.333 1.326 1.318 

σ = 2 2.017 2.008 1.998 1.390 1.384 1.375 

M
C

 

δ = 1 2.136 2.126 2.115 1.468 1.457 1.446 

δ = 2 2.108 2.094 2.084 1.449 1.439 1.432 

δ = 4 2.049 2.036 2.026 1.411 1.402 1.393 

δ = 6 2.004 1.991 1.982 1.385 1.371 1.364 

δ = 8 1.973 1.960 1.948 1.364 1.351 1.341 

δ = 10 1.950 1.940 1.932 1.342 1.337 1.332 

Figure 5 presents H, M, and FA for the validation time interval for the deterministic 

model. 
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Figure 6 illustrates the future urban patterns for 2030 and 2100. We set a fixed 

simulated quantity per time-step, one year, equal to the observed quantity during 2000-

2010 divided evenly by 10. Figure 6 demonstrates that the MC method cannot produce 

simulations similar to the results from deterministic model. Furthermore, this 

comparison becomes more difficult with lower values of δ. In contrast, the SD method 

with a very low degree of σ produces simulations that are similar, with some marginal 

differences, to results from deterministic model, which can be expected as the model 

tends to evolve to a stable state with lower degrees of σ. By increasing the degree of σ, 

the model produces simulations that are quite different from those produced in a 

deterministic way. Figure 6 confirmed that the proposed TMC method inherits well the 

randomness in the model. The TMC model produces simulations that are similar, with 

marginal differences, to the results from deterministic model at the earlier time-steps 

(e.g., 2030) and tunes the simulations far from the deterministic-based simulations as 

the model simulates further into the future (e.g., 2100). One could ask why the SD 

method is not used to tune uncertainty over time since it produces comparable results 

with the TMC method, and we can increase the degree of randomness over time via σ. 

Figure 5. The hits, misses, false alarms during the validation time interval for Liege metropolitan. 
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A key feature of the TMC method is that the TMC keeps the original transition 

probabilities, which is not the case with the SD method. Retaining the original transition 

probabilities enables retrospection of the land use change process in which the 

landowners may resort to speculative motives for hoarding land, in anticipation of the 

potential urban development in the future. Regarding the magnitude of uncertainty, 

which is controlled by ɸ or σ, Table 6 shows that the TMC method controls the degree 

of randomness more efficiently than the SD method. 
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Table 6. Percentage of simulated urban gain allocated differently in the 500 simulations for each 
configuration. 

 2030   2100   

 Maximum Average  Minimum Maximum Average  Minimum 

TMC | ɸ = 0.01 1.37 1.21 0.99 5.76 5.38 4.96 

TMC | ɸ = 2 34.45 33.75 32.99 36.55 36.17 35.78 

SD | σ = 0.01 1.35 1.14 0.94 1.05 0.76 0.89 

SD | σ = 2 62.06 61.17 60.18 35.72 35.28 34.79 

MC | δ = 10 38.64 37.99 37.22 31.59 31.16 30.66 

MC | δ = 1 85.70 85.32 84.93 62.44 62.12 61.76 

Figure 6. 2030 and 2100 simulations for different 
configurations for Liege metropolitan.  
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Table 6 gives the number of new cells that were differently allocated between every two 

runs of the 500 simulations for each configuration. For example, in case of the TMC 

with ɸ = 0.01 the maximum allocation difference between two runs in 2030 is 1.37%; 

the model allocates 22107 cells out of 22414 new cells in the same locations in the two 

runs while allocates 307 cells differently. The table illustrates the dependence of model 

results on the degree of the randomness parameter. The results reveal that the SD 

method generates landscape patterns for 2100 that are more similar to each other than 

the patterns generated for 2030. This is also the case for the MC method. This is against 

expectations because the distant future is more uncertain than the near future. One 

explanation for this is that the logit model, based on the factors presented in Table 2, 

efficiently narrowed the potential areas to be urbanized in the future; thus, the future 

simulations tended to be similar when reaching the maximum potential values. Both the 

SD and the MC methods are set at a constant change amount per time-step, whereas the 

available number of cells that can change their land use state decreases with later time-

steps. If the number of available cells is lower, as is the case in 2100, the possibility for 

the available cells to be randomly selected during each run is higher. In contrast, the 

TMC method is set at a fixed change amount and the number of cells that can change 

their state increases with time. As a result, the TMC method is able to increase the 

degree of randomness over time.  

If the simulations are uniform, a specific number of cells will change their state in most 

of the simulations resulting in lower differences in the allocation process. In contrast, if 

the simulations are very variable, many cells will change to another state in each 

simulation, and therefore the difference between each simulation is high. Forecasting 

and interpreting the future simulations would be challenging if the model generates land 

use patterns that are very different from each other. With a lower degree of randomness, 
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the SD-based model generates similar landscape patterns in the distant future, such that 

the future simulations can be considered as an extrapolation of the past trends. The 

TMC method with ɸ = 0.01 produces patterns with small differences for the near future 

(e.g. 2030) and greater differences for the distant future. Notably, by 2100, the TMC 

method is still able to generate patterns that are not very different from each other. 

Our proposed method assumes that all projections are exposed to the same sources of 

allocation uncertainty. Therefore, further research is required to examine how to 

quantify several sources of spatial allocation uncertainty such as uncertainties related to 

the model structure, model simplification, and model parameter estimates. For example, 

our model was calibrated and validated with 1990-2010 data. Throughout this period, 

there were no major urban transition breaks and the land use dynamics were considered 

rather consistent over time. In contrast, applying our model to urban land over a distant 

past, for example, from 1950 to 2010, would allow us to analyze uncertainties related to 

major development breaks, such as the shift from a train-based to a car-based city in the 

1950s and 1960s, the succession of diverging economic cycles, or the adoption of 

legally binding land use regulation in the late 1970s. Therefore, extension of this study 

will examine the non-linear type of change and include a longer period in model 

calibration and validation. 

5. Conclusions 

We have proposed the Time Monte Carlo method (TMC) to introduce randomness in 

land use change models with the aim of modeling spatial allocation uncertainty. The 

method is based on a Monte Carlo simulation in which a cell in the landscape is 

randomly selected and its transition probability from one land use to another is 

compared with a random number uniformly distributed within a dynamic range that 

increases over time. We compared the proposed method with two widely used methods 
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to introduce randomness in land use change forecasting: stochastic disturbance, and 

Monte Carlo simulation. The three methods were introduced into a logistic regression-

cellular automata model that was developed to simulate urban expansion in Wallonia 

(Belgium) between 1990 and 2010. 

Our analysis reveals that the TMC method produces results comparable with the 

existing methods over the short-term validation period (2000-2010). Furthermore, the 

proposed method is capable of tuning uncertainty on longer-term horizons. Controlling 

the degree of randomness over time is an important feature of the TMC method as the 

distant future is characterized by more uncertainty than the near future. 
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