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A Time Monte Carlo method for addressing uncertainty in land-use

change models

Abstract: One of the main objectives of land use change models is to explore future
land use patterns. Therefore, the issue of addressing uncertainty in land use forecasting
has received an increasing attention in recent years. Many current models consider
uncertainty by including a randomness component in their structure. In this paper, we
present a novel approach for tuning uncertainty over time, which we refer to as the
Time Monte Carlo (TMC) method. The TMC uses a specific range of randomness to
allocate new land uses. This range is associated with the transition probabilities from
one land use to another. The range of randomness is increased over time so that the
degree of uncertainty increases over time. We compare the TMC to the randomness
components used in previous models, through a coupled logistic regression-cellular
automata model applied for Wallonia (Belgium) as a case study. Our analysis reveals
that the TMC produces results comparable with existing methods over the short-term
validation period (2000-2010). Furthermore, the TMC can tune uncertainty on longer-
term time horizons, which is an essential feature of our method to account for greater

uncertainty in the distant future.

Keywords: land use allocation; uncertainty, stochastic disturbance; Monte Carlo

simulation; cellular automata.



1. Introduction
One of the primary goals of land use change models is to forecast possible future land
states. Although uncertainty is an inherent feature of any forecast, few land use change
models consider uncertainty as a component of the model structure. Because predicting
future land use pattern is difficult, land use change models can be regarded as
exploratory tools to assist in the decision making by exploring various scenarios.
Pontius and Neeti (2010) discuss two contrasting views concerning the role of
uncertainty in scenario-based analysis. One view considers that uncertainty is irrelevant
to scenario-based analysis because storylines are not predictive. Some studies have
simulated future land use change without accounting for uncertainties (e.g. Poelmans et
al., 2010). The other view considers that uncertainty is important in scenario-based
analysis which takes into account the link between the qualitative storyline and its
quantitative expression. Following this second view, our study proposes a method that

can be applied to account for uncertainties.

In a comprehensive review of 114 land use change applications, van Vliet et al. (2016)
found that only 17% of the reviewed applications addressed uncertainty. Uncertainties
may arise from many sources. Pontius and Neeti (2010) identified three groups of such
sources: the data, the model, and future land change simulation. First, errors in the
model’s input data are likely to exist and have been investigated in some studies (e.g.
Tayyebi et al., 2014). Second, the construction of the model may contain uncertainty
associated with its algorithms (Pontius and Neeti, 2010). Third, future simulation
involves two main types of uncertainty, namely the estimation of the future change
amount (quantity uncertainty) and the spatial allocation of land use changes. Figure 1

depicts the difference between quantity uncertainty and spatial allocation uncertainty.
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Figure 1. Quantity and spatial allocation uncertainties in land use change models. The quantity
of change in the first and second cases, the vertical direction, is 10 and 12 respectively. In each
case, the quantity of change is allocated differently, the horizontal direction.

The quantity uncertainty is captured in many land use models by simulating various
scenarios that differ in the quantity of change (e.g., Cammerer et al., 2013; Landuyt et
al., 2016). The spatial allocation uncertainty is associated with the potential
nonstationary character of the spatial distribution of land use types. Generally, land use
models extrapolate calibrated allocation results to simulate future landscape. Thus, these
models implicitly assume that the calibrated parameter set is valid for the future and do
not consider the nonstationary features of the land use allocation related to the political,
economic, and/or environmental conditions that are known to be nonstationary (van
Vliet et al., 2016). Our main focus in the present study is related to the spatial allocation
uncertainty. The uncertainty in the allocation process has been addressed in some
studies using fuzziness (e.g., Wang et al., 2013) or randomness by introducing a
stochastic component (e.g., Yang et al., 2008). The randomness ensures that each run
can produce a different land use pattern and that some patterns can be accurate by
chance (Brown et al., 2005; van Vliet et al., 2016). Some of the current techniques for

embedding allocation uncertainty in land use change models incorporate a stochastic



disturbance (SD) term or a Monte Carlo simulation (MC) method. Feng (2017) and
Yang et al. (2008) introduced an SD term, after White and Engelen (1993), whereas Li
and Liu (2006), Liu et al. (2008), and Wu (2002) used an MC method in their models to

consider uncertainty.

The primary goal of this paper is to tune the degree of allocation uncertainty over time
so that the uncertainty degree varies between the immediate future and the distant
future. Our approach, following Wu (2002), compares the transition probability from
one land use state to another in each land unit with a random number. However, a major
difference of our work lies in generating a uniform random number drawn over a
dynamic range associated with transition probabilities from one land use state to

another, and this range increases over time.

We incorporate our method in a cellular automata (CA) model to simulate urban
expansion in Wallonia (Belgium) for two time-intervals: the calibration interval 1990-
2000, and the validation interval 2000-2010. After calibrating and validating the model,
we compare the results obtained by our method and those by the two most widely used
methods, SD and MC. The comparison demonstrates the robustness of our method

against SD and MC methods.

The paper is structured as follows. In section 2, we review SD and MC methods and
then describe our method. Section 3 presents the land use change model, study area, and

data. In section 4, we show and discuss our results. Section 5 presents our conclusions.

2. Modeling spatial allocation uncertainty
In this section, we review the SD method proposed by White and Engelen (1993) and
the MC method proposed by Wu (2002) for incorporating uncertainty into land use

change models. Thereafter, we introduce the proposed method, the Time Monte Carlo



(TMC) method. Once the transition probability has been computed for each landscape
unit, the SD term perturbs each probability score in its vicinity by a random number that

can be calculated as follows (White and Engelen, 1993):

SD =1+ (-Iny)° (1)

where y is a uniform random number between 0 and 1, and o is a parameter that allows
control of the magnitude of the SD. When ¢ is set at 0, the model behaves
deterministically. In contrast, when o is set at high positive values, the model follows a
random process. Introducing an SD term in the transition probabilities may bias the
model outcomes because cells with very low transition probabilities would be able to
change their state (Garcia et al., 2011; Wu, 2002). Wu (2002) proposed an alternative
method that employs an MC procedure for modeling spatial allocation uncertainty. In
this approach, after computing the transition probabilities, a cell in the landscape is
randomly selected, its probability is compared with a random number uniformly
distributed between 0 and 1, and the state of a cell will change if its probability score is
greater than the generated random number. One of the shortcomings of this approach is
that it does not allow control of the degree of randomness. Therefore, Wu (2002)
transformed the transition probability of each cell by comparing it with the largest

available probability at each time-step, as follows:

Pi't = Pitexp[—4(1 — Pit/max(P")] ~

where Pi” is the updated transition probability for cell i at time-step ¢, Pi’ is the original
probability, J is a dispersion term, and max(P) finds the maximum transition
probability at time-step ¢. The dispersion term, J, in Eq. 2 plays a role equivalent to ¢ in

Eq. 1. When 0 is set to high values, transition probabilities decrease away from the



maximum probability at each time-step, in particular for cells with a lower probability
score. Thus, a distinct difference results between cells with higher probabilities and
those with lower probabilities, and there will be less chance for land use change in cells

with lower probabilities.

Although the two methods explained above are widely used to model the spatial
allocation uncertainty, neither method ensures that the degree of uncertainty can vary
over time. In reality, the distant future involves more uncertainty about aspects such as
the economic value of land, available communication means, and social/household
preferences. All these aspects play a key role in land allocation and become less
predictable into the distant future. A few studies have attempted to demonstrate the
increase in uncertainty as a model simulates land use change further into the future
(e.g., Pontius et al., 2006; Pontius and Neeti, 2010). Our study is one of the first studies
that propose a Monte Carlo process to increase the degree of uncertainty over time in

land use change modeling.

The proposed TMC method uses an MC procedure as in Wu (2002). At each time-step,
a cell is selected at random, and its computed transition probability is compared with a
uniform random number within a dynamic range. The proposed method is distinguished
from the method of Wu (2002) is that Wu defines this range between the minimum and
maximum probabilities, i.e., 0 and 1. We set this range variable to allow tuning the
degree of uncertainty over time. At each time-step, the computed transition probabilities
are sorted in a descending order, with the most suitable cell at the top of the list.
Typically, the top-scoring cells from the sorted list change their state until they meet the
requested change quantity. To consider uncertainty, the model randomly selects one cell
in a set of cells with the largest probabilities. The size of this set of the cell is initially

determined by the quantity of change and subsequently increased to include more cells.



Thereafter, the model compares the transition probability of the selected cell to a
uniform random number and the cell changes its land use state according to the
following equation:

Git+1 — {change, Pit > rand (3)
~ |non — change, otherwise

where Si'*!

is the state of the cell i at the next time-step, Pi’ is the computed transition
probability at time-step ¢, and rand is a uniform random number between
randmax and randmin. We set rand _max and rand_min as follows:

rand,, ., = max(P?), “4)
randy,i, = trans(q + (t X ¢ X q))

where max(P') returns the maximum probability at time-step ¢, and trans(g+(¢xp*q))
returns the transition value of a cell during time-step ¢ from the sorted list whose
location is determined by ¢, the change quantity per time-step, and ¢ is a specific
percentage of ¢. In this way, the model behaves deterministically at the beginning but
slowly behaves more stochastically as the model operates over time.

Figure 2 illustrates an example of the method. In this example, the model sorts the cell
values in a descending order according to their transition probabilities. Assuming that
g=8 and $=25%, the model randomly selects 8 cells out of 10 (Figure 2 from the sorted
cells list in time-step 1), 8 cells out of 12, and 8 cells out of 14 in time-steps 1, 2, and 3,
respectively. The cells that are converted to another land use are selected by comparing

the transition probability with a random number according to Eq. 3.
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Figure 2. Example of the TMC method. White: no-change, gray: changes done in the current
time-step, and black: changes done in the previous time-septs.

3. Land use change model
In this study, we apply a grid-based CA land use change model to simulate the gain of
the urban category in Wallonia (Belgium), as a case study, between 1990 and 2010.
Urban land use maps of 1990 and 2000 are used to calibrate the model parameters. The
calibrated parameters are then used to simulate the spatial allocation of the 2000-2010
urban gain. We validate the model by comparing the simulated urban gain during 2000-
2010 with the observed urban gain during 2000-2010. The model has two main
modules: the demand module and the allocation module. Our emphasis is not on the
quantity uncertainty, but rather on the allocation uncertainty, and therefore we assume
that the annual demand for increasing urban land is the same from 1990-2000 (for

calibration) and from 2000-2010 (for validation) divided by 10 (the number of years).



The allocation module allocates new urban cells based on transition probabilities. Two
major components shape the transition probabilities following the approaches by
Mustafa et al. (2018a), Poelmans and Van Rompaey (2010), and Wu (2002). The first is
based on a set of urbanization driving forces. The second component concerns the
dynamic interaction between neighborhood land uses. The transition probability P for

cell 7 at time-step ¢ is computed as follows:

Pi' =(Pi,) x(Pi,) xcon(.) (5)

where (Pig) is the urbanization probability based on urbanization driving forces, (Pi,) is
the neighborhood interaction, and con(.) is restrictive conditions for land use change.

The (Piq) is calculated as:

exp(Bo + Bix1 + Paxz + -+ Bnxn)
1+ exp(Bo + fix1 + Paxz + -+ Pnxn)

where £y is the intercept, (Xi, X, ..., X») are the land use change driving forces and (51,
[, . . ., Pn) are the weights of the driving forces. A logistic regression model (logit) is

employed to calibrate the weights Sn.
(Piy)' is calculated as follows (Feng et al., 2011; Wu, 2002):

.\t count(s =urban)
Pi Y =
(Pi,) nxn-—1 (7)

where count(s=urban) represents the number of urban cells amongst the Moore nxn
neighborhood. In each time-step, representing one year, the model converts the non-

urban cells according to Eq. 3, until meeting the required change amount.

3.1. Validation

The validation process involves assessing the goodness of fit of the logit model and the



allocation accuracy of the model. The validation is done while eliminating the observed
urban cells at the initial time-step from the spatial extent. The goodness of fit of the
logit model is assessed using the McFadden pseudo R-square (PR?) and the relative
operating characteristic (ROC) procedure (Pontius and Parmentier, 2014). The PR?
mimics the R-squared statistic of linear regression models. A value of 1 shows a perfect
fit; a PR? of 0 indicates a random fit (Mustafa et al., 2018c). The ROC compares the
transition probability map, generated with Eq. 6, to a map with the observed changes. It
defines a number of cut-off points and calculates the rate of the true-positives and the
false-positives at each cut-off point and relates these rates to each other in a graph. The
ROC measures the area under the curve (AUC). AUC=0.5 means allocation as good as

random and AUC=I1 means perfect allocation.

We evaluate the allocation performance by showing the hits (H) indicating that the
expansion areas in the observed map were simulated as expansion; misses (M)
indicating that the expansion areas in the observed map were simulated as no-changes;
false alarms (FA) indicating that the no-changes in the observed map were simulated as
expansion; and correct rejections (CR) indicating that the no-changes in the observed
map were simulated as no-changes, following the approaches by Liu et al. (2014) and

National Research Council (2014). This evaluation is performed for the urban gain.

3.2. Case study area and model implementation

The land use model (section 3) is applied to the Wallonia region (Figure 3). The region
occupies 55% of Belgium with an area of 16,844 km?. The urban land use maps for
1990, 2000, and 2010 were produced using Belgian cadastral vector data (CAD) from
the Land Registry Administration of Belgium. We rasterized the CAD data at a spatial
resolution of 2 m. The rasterized maps were then aggregated to a resolution of 100 m.

Each aggregated cell was assigned a density value by counting the number of 2 m cells.
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The aggregated data were then classified into non-urban with a density <25 and urban

with a density > 25. As the average area of a building in Belgium is about 100 m?

(Tannier and Thomas, 2013); a density value of 25, representing an average-sized

building of 100 m?, is selected to ensure that each aggregated cell has at least one

building. The urban configuration in this case study is the entire polycentric urban

system, suburbs and rural areas. The data show no loss of urban.
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Figure 3. The study area — Wallonia.

Table 1 lists the driving forces used in the model based on a literature review (e.g.

Cammerer et al., 2013; Dubovyk et al., 2011; Poelmans and Van Rompaey, 2010) and

the findings of previous work on our study area (e.g. Mustafa et al., 2018a, 2018b).

Table 1. List of the urbanization driving forces.

Factor =~ Name Type Unit

Xi Elevation (DEM) Continuous Meter

Xz Slope Continuous Percent rise
Xz Dist. to RC1 Continuous Meter

Xy Dist. to RC2 Continuous Meter

X Dist. to RC3 Continuous Meter

Xs Dist. to RC4 Continuous Meter

X7 Dist. to railway stations Continuous Meter

Xs Dist. to large-sized cities Continuous Meter

Xo Dist. to med-sized cities Continuous Meter

Xio Employment rate Continuous Percent

Xi1 Richness index Continuous Percent

X2 Zoning Categorical Binary (0 non built-up, 1 built-up)




The slope data are generated based on a digital elevation model (DEM) made available
by the Belgian National Geographic Institute. Accessibility factors include the
Euclidean distance to roads in 2001, railway stations in 1999, and Belgian cities. Roads
are categorized into four classes: RC1 (highways), RC2 (main roads), RC3 (secondary
roads), and RC4 (local roads). Large-sized cities represent all Belgian cities with a
population > 90,000 in 2000, whereas medium-sized cities are all cities with a
population between 20,000 and 90,000 in 2000. The employment rate and richness
index in 2000 are used as socioeconomic factors. The zoning map is based on the
Wallonia zoning plan adopted between 1977 and 1987. Since 1987, changes in the
zoning plan have been very limited in space and size. All zones where urban
development is legally permitted are encoded as 1 and all other zones are encoded as 0.
We standardized the driving forces as our aim is to elucidate relationships. To minimize
the potential of spatial autocorrelation, which could bias the estimates of parameters in
the logit analysis (Overmars et al., 2003), we used a data sampling approach following
Poelmans et al. (2010), Cammerer ef al. (2013), and Mustafa et al. (2017). A set of
20,000 cells was randomly selected, with an equal number of no-changes and changes.
Existing urban cells in 1990 were excluded from the sampling. After 100 runs of the
logit model with different sets of samples, we selected the set with the best area under

ROC curve (AUC).

4. Results and discussion

In this section, we highlight the result of the logit calibration and discuss the allocation
uncertainty. The estimated coefficients of the logit model are shown in Table 2.

The PR? of the logit model is 0.295. Although PR? and R-squared values both range
from 0 to 1 with higher values indicating a better fit to the model, PR? values are not

equivalent to OLS R-squared values. As the logit model is a maximum likelihood
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estimation method, the PR? values tend to be considerably lower than the OLS R-
squared (McFadden, 1977). Domencich and McFadden (1975) state that PR? range of
0.2-0.4 represents an OLS R-squared values between 0.7-0.9. The AUC for the

transition probability map generated by the logit model is 0.833.

Table 2. The logit coefficients.

Factor =~ Name Coefficient f
Intercept -0.9030
Xi Elevation 0.0623*
Xo Slope -0.2183*
X Dist. to RC1 -0.0744*
Xy Dist. to RC2 -0.0819*
Xs Dist. to RC3 -0.2734*
Xs Dist. to RC4 -0.5558*
X7 Dist. to railway stations -0.0042
Xs Dist. to large-sized cities -0.1351*
Xo Dist. to med-sized cities -0.1661*
Xio Employment rate 0.0003
X Richness index -0.0002
X2 Zoning 3.0348*

*Significant at a 95% confidence level

Table 3. Number of cells of hits (H), misses (M), false alarms (FA), and correct rejections (CR) in the
non-urban area.

1990-2000 2000-2010
Non-urban 1439176 - 1422166 -
H 3311 0.23% 1824 0.13%
M 13699 0.95% 9383 0.66%
FA 13699 0.95% 9383 0.66%
CR 1408467  97.87% 1401576  98.55%
XS
§ 2
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- 0 Figure 4. Allocation errors (AE) for

R0 2000-2010 calibration (1990-2000) and validation
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Table 3 lists total numbers of H, M, FA, and CR in the calibration and validation time
intervals. The allocation error (AE), equals M+FA, for the calibration time interval is
1.904% and 1.320% for the validation time interval (Figure 4). We set ¢ in Eq. 4. at 1%,
2%, 10%, 50%, 100%, and 200%. To compare the performance of the TMC with the
SD and the MC methods, we examine the model performance with respect to each

individual method. The SD is introduced in the model by updating Eq. 5 as follows:

Pi' =(Pi,) x(Pi,) xcon(.)x SD (9)
We use different values of ¢ (Eq.1) to investigate its effect on the model. For the MC
method, Wu (2002) suggests that the range of ¢ is usually 1-10. Accordingly, we set ¢ at
1,2,4,6,8, and 10. With higher values of 9, the model tends to produce strongly
skewed probabilities that cause the computation time to increase exponentially. For
example, when J was set at 20 the cells with original probabilities of 0.9426 and 0.5854
become 0.5121 and 0.0002 after implementing Eq. 2. The computing time with a high ¢
value is long; for instance, one run using 6=15 is ~1.8 h, and one run using 0=20 is
~23.9 h. Table 4 presents the average computation time per run for each method. We
implemented our model in MATLAB, running on a desktop computer clocked at 3.60

GHz with 32.0 GB RAM. The results indicate that the TMC method is faster than the

SD and the MC methods.
Table 4. The average run-time per run.
Method Run time (seconds)
Deterministic model 5
TMC ¢ =0.01 (1%) 26
TMC ¢ =2 (200%) 6
SD ¢=0.01 36
SDo=2 30
MCo=1 42
MCo=10 482

Many simulations are required to investigate the properties of the model in the dynamic

environment of different random noises; we therefore ran the model 9,000 times (500
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runs per configuration). The simulated allocation error (AE) for new urban cells is given
in Table 5. Based on the experimental results, the TMC method with ¢ =0.01, 0.02, and
0.1 in the model slightly improves the averaged AE. This is also the case for the SD
method with 6=0.01 and 0.05. Increases in both ¢ and ¢ decrease the averaged AE as
the model involves more randomness. In contrast, the MC method projects an increase
in the averaged AE with higher values of d as the result that 0 controls the exponential
curve that scales the transition probability. Consequently, higher J values cause a more
skewed curve, and the chance of cells with higher transition probability values also

increases.

Table 5. Allocation error for new urban cells for 9,000 runs.

1990-2000 2000-2010
Maximum Average Minimum | Maximum Average Minimum
Determimistic 1904 - . 1.320 . :
$=0.01 1.904 1.899 1.896 1.321 1.316 1.312
$=0.02 1.907 1.901 1.898 1.323 1.317 1.315
O ¢$=0.1 1.907 1.902 1.897 1.325 1.319 1.315
E $=0.5 1.909 1.905 1.901 1.326 1.322 1.317
¢=1 1.912 1.907 1.904 1.328 1.324 1.316
=2 1.926 1.914 1.906 1.331 1.321 1.315
0=10.01 1.906 1.903 1.900 1.321 1.319 1.317
0=10.05 1.907 1.902 1.898 1.321 1.317 1.315
n =01 1.908 1.904 1.897 1.323 1.320 1.315
' 5=05 1.911 1.906 1.901 1.326 1.322 1.317
o= 1.925 1.916 1.903 1.333 1.326 1.318
=2 2.017 2.008 1.998 1.390 1.384 1.375
o=1 2.136 2.126 2.115 1.468 1.457 1.446
0=2 2.108 2.094 2.084 1.449 1.439 1.432
v 0=4 2.049 2.036 2.026 1.411 1.402 1.393
= 5=6 2.004 1.991 1.982 1.385 1.371 1.364
0=8 1.973 1.960 1.948 1.364 1.351 1.341
0=10 1.950 1.940 1.932 1.342 1.337 1.332

Figure 5 presents H, M, and FA for the validation time interval for the deterministic

model.
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Figure 5. The hits, misses, false alarms during the validation time interval for Liege metropolitan.

Figure 6 illustrates the future urban patterns for 2030 and 2100. We set a fixed
simulated quantity per time-step, one year, equal to the observed quantity during 2000-
2010 divided evenly by 10. Figure 6 demonstrates that the MC method cannot produce
simulations similar to the results from deterministic model. Furthermore, this
comparison becomes more difficult with lower values of d. In contrast, the SD method
with a very low degree of ¢ produces simulations that are similar, with some marginal
differences, to results from deterministic model, which can be expected as the model
tends to evolve to a stable state with lower degrees of . By increasing the degree of g,
the model produces simulations that are quite different from those produced in a
deterministic way. Figure 6 confirmed that the proposed TMC method inherits well the
randomness in the model. The TMC model produces simulations that are similar, with
marginal differences, to the results from deterministic model at the earlier time-steps
(e.g., 2030) and tunes the simulations far from the deterministic-based simulations as
the model simulates further into the future (e.g., 2100). One could ask why the SD
method is not used to tune uncertainty over time since it produces comparable results

with the TMC method, and we can increase the degree of randomness over time via o.
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A key feature of the TMC method is that the TMC keeps the original transition
probabilities, which is not the case with the SD method. Retaining the original transition
probabilities enables retrospection of the land use change process in which the
landowners may resort to speculative motives for hoarding land, in anticipation of the
potential urban development in the future. Regarding the magnitude of uncertainty,
which is controlled by ¢ or o, Table 6 shows that the TMC method controls the degree

of randomness more efficiently than the SD method.

2030

Original model

TMC | = 0.01

0.01

SD | o
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Table 6. Percentage of simulated urban gain allocated differently in the 500 simulations for each
configuration.

2030 2100

Maximum Average Minimum | Maximum Average Minimum
TMC | $=0.01 1.37 1.21 0.99 5.76 5.38 4.96
T™MC | $=2 34.45 33.75 32.99 36.55 36.17 35.78
SD | 6=0.01 1.35 1.14 0.94 1.05 0.76 0.89
SD|c=2 62.06 61.17 60.18 35.72 35.28 34.79
MC|38=10 38.64 37.99 37.22 31.59 31.16 30.66
MC|é6=1 85.70 85.32 84.93 62.44 62.12 61.76
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Table 6 gives the number of new cells that were differently allocated between every two
runs of the 500 simulations for each configuration. For example, in case of the TMC
with ¢ =0.01 the maximum allocation difference between two runs in 2030 is 1.37%;
the model allocates 22107 cells out of 22414 new cells in the same locations in the two
runs while allocates 307 cells differently. The table illustrates the dependence of model
results on the degree of the randomness parameter. The results reveal that the SD
method generates landscape patterns for 2100 that are more similar to each other than
the patterns generated for 2030. This is also the case for the MC method. This is against
expectations because the distant future is more uncertain than the near future. One
explanation for this is that the logit model, based on the factors presented in Table 2,
efficiently narrowed the potential areas to be urbanized in the future; thus, the future
simulations tended to be similar when reaching the maximum potential values. Both the
SD and the MC methods are set at a constant change amount per time-step, whereas the
available number of cells that can change their land use state decreases with later time-
steps. If the number of available cells is lower, as is the case in 2100, the possibility for
the available cells to be randomly selected during each run is higher. In contrast, the
TMC method is set at a fixed change amount and the number of cells that can change
their state increases with time. As a result, the TMC method is able to increase the
degree of randomness over time.

If the simulations are uniform, a specific number of cells will change their state in most
of the simulations resulting in lower differences in the allocation process. In contrast, if
the simulations are very variable, many cells will change to another state in each
simulation, and therefore the difference between each simulation is high. Forecasting
and interpreting the future simulations would be challenging if the model generates land

use patterns that are very different from each other. With a lower degree of randomness,
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the SD-based model generates similar landscape patterns in the distant future, such that
the future simulations can be considered as an extrapolation of the past trends. The
TMC method with ¢ = 0.01 produces patterns with small differences for the near future
(e.g. 2030) and greater differences for the distant future. Notably, by 2100, the TMC
method is still able to generate patterns that are not very different from each other.

Our proposed method assumes that all projections are exposed to the same sources of
allocation uncertainty. Therefore, further research is required to examine how to
quantify several sources of spatial allocation uncertainty such as uncertainties related to
the model structure, model simplification, and model parameter estimates. For example,
our model was calibrated and validated with 1990-2010 data. Throughout this period,
there were no major urban transition breaks and the land use dynamics were considered
rather consistent over time. In contrast, applying our model to urban land over a distant
past, for example, from 1950 to 2010, would allow us to analyze uncertainties related to
major development breaks, such as the shift from a train-based to a car-based city in the
1950s and 1960s, the succession of diverging economic cycles, or the adoption of
legally binding land use regulation in the late 1970s. Therefore, extension of this study
will examine the non-linear type of change and include a longer period in model

calibration and validation.

5. Conclusions

We have proposed the Time Monte Carlo method (TMC) to introduce randomness in
land use change models with the aim of modeling spatial allocation uncertainty. The
method is based on a Monte Carlo simulation in which a cell in the landscape is
randomly selected and its transition probability from one land use to another is
compared with a random number uniformly distributed within a dynamic range that

increases over time. We compared the proposed method with two widely used methods
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to introduce randomness in land use change forecasting: stochastic disturbance, and
Monte Carlo simulation. The three methods were introduced into a logistic regression-
cellular automata model that was developed to simulate urban expansion in Wallonia
(Belgium) between 1990 and 2010.

Our analysis reveals that the TMC method produces results comparable with the
existing methods over the short-term validation period (2000-2010). Furthermore, the
proposed method is capable of tuning uncertainty on longer-term horizons. Controlling
the degree of randomness over time is an important feature of the TMC method as the

distant future is characterized by more uncertainty than the near future.
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