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NEGATIVE PARITY NON-STRANGE BARYONS
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Our previous study is extended to negative parity baryon resonances up to J = %-.
The framework is a semi-relativistic constituent quark model. The quark-quark interaction
contains a Coulomb plus linear confinement terms and a short distance spin-spin and
tensor terms. It is emphasized that a linear confinement potential gives too large a mass to

the D35 (1930) resonance.
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The purpose of the present work is to extend our previous analysis [1,2] of the
non-strange baryon masses of the N = 0, 1 and 2 bands to the N = 3 band. These are
negative parity resonances of masses around 2000 MeV or more. The interest in the N =3
band has been raised about a decade ago by a search of assignment of the D35(1930)
resonance. (For a review, see Ref. [3]). There are essentially two different kinds of
approaches which have been considered until now in the treatment of the N = 3 band. One
is based on a non-relativistic harmonic-oscillator quark model with anharmonicity
corrections. These have been first treated by a spectrum generating algebra Sp (12,R)
[4,5]. The result was a mass formula with four parameters. Three of these parameters
also appear in studies of the N = 0, 1 and 2 bands [6-8]. The authors have claimed
success in describing the D35(1930) resonance. But the harmonic potential is only a
convenient first approximation to a realistic potential and its parameters need to be
adjusted for each band in order to optimize the approximation. A similar parametrization
has recently been obtained by Richard and Taxil [9] with a simpler method which relates
the splitting pattern of the three-body problem to the properties of the two-body binding
energies. Although the number of parameters is the same their meaning is different. The
other kind of approach consists in solving for a three-body Hamiltonian incorporating a
linear confinement potential inspired by QCD lattice calculations. This approach has been
followed by Cutkoski and Hendrick [10] soon after a TN partial wave analysis [11] had
shown evidence for the existence of a D35 resonance. An extended study has been
recently performed by Capstick and Isgur [12] in a large harmonic oscillator basis up to N
= 8. Both studies predict a D35 mass of about 200 MeV above the experimental value.

Our work follows this second approach. Our starting point is the semi relativistic
flux tube model of Carlson, Kogut and Pandharipande [13] and their varational wave
function for the ground state. Although their Hamiltonian has strong similarities to those
of Refs. [10] and [12] their ground state wave function has the appropriate asymptotic

behaviour for a linear potential. Let us recall that the Hamiltonian of Ref. [13] is :
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has two-body and three-body terms. In the three-body term 14 is the distance between the
quark i and a point of equilibrium energy, r4 . The values of the strong coupling constant

and the string tension
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are consistent with parameters used to fit the spectrum of charmonium [13]. The constant
Eg is adjusted to the nucleon mass my; = 939 MeV.

To Hg we have added [1] a short range spin dependent interaction under the form of

a hyperfine interaction H e _ Z H hyp having a spin-spin term v>® and a tensor term
i<j
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E being one of the internal (Jacobi) coordinates
— 1 > = — 1 > = - .
p = _2-[1'1- 2) , l = —v_-6—(1'1+1'2~21'1 3 (7)

The hyperfine interaction contains two parameters : the quark mass m and the finite
size of the quark A, used to regularize the hyperfine interaction at the origin.

The N = 3 band introduces eight new SU(6) multiplets. The corresponding states
WIL,LO’ where L = S, A, p, A stands for the S3 symmetry, are introduced in Table 1
together with those with N = 0, 1 for completeness. F is the variational function of

Ref. [13].
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with the variational parameters :
¥, = 03965 fm !, y, = 0.637fm’ > , y,5 = L40fm ",
0.12fm , a = 0.12fm , B = 025GeV ' .
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The first factor in (8) is the effect of the three-body part of the interaction (2) taken into
account perturbatively. The two body correlation function f has an Airy function

asymptotic behaviour

) — cxp( s ) (10)
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appropriate for a linear confinement.

The polynomial structure of Y}, has been derived by the method of Moshinsky
[14]. For S3 mixed symmetry representations only the state with |L = p is given. The
associated [ = ) state can be obtained from the pL = p state by interchanging the p and A
coordinates. The coefficients c, o), o, and o, are such that the 70, 70" and 70" states are
orthogonal to each other. The expression of the (70',17) states containing one unit of
radial excitation has been built in analogy with the radial form we have recently proposed
[2] for the description of the Roper resonance. The value k = 4 corresponds to the
conventional harmonic excitation which gives too large a mass to the Roper resonance.
We have shown in [2] that taking k = 1 the position of the Roper resonance is lowered by
~ 100 MeV and brought to around 1500 MeV. Here we found that the eigenstate having
(70", 1) as a main component is rather insensitive to the value of k. Below we reproduce
results corresponding to k = 4. The compact form of states of Table 1 have an advantage
over harmonic oscillator expansions (see e.g. Ref. [12]). They avoid problem of
convergence and are practical in further calculations as e.g. decay widths. The third
column of Table 1 gives the expectation value of H, for each multiplet. The level ordering
has close similarities to that obtained in Ref.[9] for a linear potential. The first two levels
are (70', 17) and (56, 17) and (70, 2°) is the last. For the other levels the ordering is
different. This means that it depends on the detailed form of the hamiltonian. However if
the pairs (56, L") and (20, L") with L = 1 and 3 are replaced by their centre of gravity one
obtains the same level ordering as that of Fig. 4 of Ref. [9] or Fig. 2 of Ref. [10]. This is

in contrast to the mass formula results of Refs. [4,5] where the level ordering is entirely
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different and (56, 17) has the lowest value.
In Table 2 we display the lowest eigenvalues of H = H, + 2 H:}yp likely to be
i<j
compared to the available experimental data. This is a typical exampjle corresponding to
A =0.13 fm. The mass spectrum dependence on m has the same type of behaviour for
any A, the masses decrease as m increases (the statement beling valid for positive parity
states as well). It is the combined effect of the kinetic energy and 2 Hgyp For a fixed
i<j
value of m, masses decrease as A increases as a result of egs. (4)-(16). The net result is
that there are several sets of (A,m) which give very close eigenvalues, for example the
sets (0.11 fm, 333 MeV), (0.13 fm, 313 MeV) and (0.15 fm, 293 MeV). The hyperfine
interaction plays a role through the spin-spin term and the diagonal contributions of the
tensor term. Non-diagonal tensor matrix elements can safely be neglected between N = 1
and N = 3 and inside the N = 3 band. They are typical of the order of ~ 10 MeV or less
and the unperturbed expectation values are highly separated as seen from Table 1. The
spin-spin term doesn't bring them close enough to allow the tensor term to mix them.

In Table 2 the best fit appears for m = 313 MeV. The discussion which follows
refers to this value. The experimental intervals for four- and three-star resonances are
those from the summary table of Particle Data Group [15]. For two- and one-star
resonances we quote the results of Cutkoski et al. [16]. Our assignments are quite close to
those made by Cutkoski and Forsyth [17] in their simultaneous fit of masses and TN
decays. However they introduce a special parameter to adjust the position of the (56, 17)
multiplet.

Most masses fall within or near the experimental interval with few exceptions. The

lowest masses in the N «21_ and N g- sectors are about 50 MeV lower than the experimental

values. A similar situation appeared in Refs. [12, 18]. However a discrepancy of a few
tens of MeV should not be regarded as a failure at the present level of development, the
coupling of baryons to baryon-meson channels being ignored. This coupling should be
included as there are indications that it could produce important mass shifts [19-21].

The D35 (1930) resonance is predicted about 200 MeV above the experimental
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value, like in Refs. [10] and [12]. It is a consequence of the too high position of its main
component, the multiplet (56,17). This seems to be a typical property of a linear
confinement potential. The spin-spin contribution to the (56,17) multiplet is of the order of
75 MeV in the quark mass range considered here and the tensor contribution doesn't
affect its position at all. In view of the conflict between practical calculations with
reasonably realistic potentials and the simply derived parametric formulae of [9] on the
one hand and the mass formula of [4] on the other hand, it would be useful to reconsider
a derivation of a mass formulae for the N = 3 band through spectrum-generating algebra
methods.

We are grateful to J.-M. Richard for an interesting discussion.
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Table Captions

Table 1

SU(6) multiplets for the N = 0, 1 and 3 bands (column 1) ; their wave functions qfilo
(column 2) in terms of the Jacobi coordinates p and A (p L =P, i Pys A + = }.x +i ?Ly)
and the variational function F of Ref. [13] ; the expectation value (column 3) of Hy of

egs. (1)-(3) for each multiplet.

Table 2

Negative parity mass spectrum (MeV) for A = 0.13 fm at various quark masses.
Column 1 : sectors. Column 2 : dimension of the matrix to be diagonalized in each
sector. Column 3 : main component. Columns 4-8 : masses. Column 9 : resonance status.

Column 10 : experimental range [15,16].



TABLE 1

Multiplet V1o <Hp> (GeV)
(56,0+) Ny F 1.135
(70,1°) N®, po F 1.575
N k/4
(70',1°) N [1-cp? +27) } oy F 2.088
(70",1°) NP [Pk A +(a v p 4 f) ]F 2.221
’ 10[PAMAg T Ot P +O05 A [Pg :
S [[(+2 2 i .2 -
(56,3) N30{ 5% -3 po) +3(p%-2 )] Ag+6 pk py } F 2.253
20,3- NA{-S 2 312) 3(p2 12)] 6 pA A }F 2.284
(20,3) 3011 p()' 0l p - p0+ p 0 .
[ (2 .2 2 .2 =
(70,3 Ngol _5 Py + ?LO) -3p -A ] Po-2pPAN, }F 2.214
) p
(70,2°) NS (P, A.-P.A,) A F 2.487
56,1 NS [ (o2-2Ya,-2p% ]F 2.128
(56,1°) 10l ~\P - 0~ <P4*Pg .
All 2 .2 =
(20,1°) Nio (p -A ) Po-2PAk ] F 2.192




TABLE 2

Quark mass (MeV)

Resonance n  Main component 280 300 313 330 350  Status Experiment
N 1 4N(70,37) 2309 2262 2236 2206 2175 @ *kx 2130-2270
A%' 1 4A(56,3) 2331 2287 2261 2233 2204 % 2200-2400
NI 5 2N(70,3) 2133 2110 2097 2083 2067  **+%  2120-2230
A%- 2 2A(70,37) 2305 2259 2232 2203 2173 * 2120-2280
N3 9 4N(70,19) 1695 1647 1621 1592 1563  ***k  1660-1690

2N(70,3") 2132 2110 2097 2082 2067 ok 2100-2260
A%’ 4 4A(56,1°) 2269 2216 2187 2154 2120 @ #*x 1890-1960
2A(70,37) 2303 2257 2231 2202 2172
4A(56,37) 2354 2306 2279 2249 2218 * 2275-2525
2A(70,2°) 2496 2459 2437 2413 2388
N-;L' 11 2N(70,1°) 1484 1467 1457 1445 1434  #**x  1510-1530
4N(70,10) 1753 1699 1669 1635 1601  *** 1670-1730
2N(70',17) 2036 2009 1994 1977 1959 ok 1780-1980
2N(56,17) 2126 2101 2087 2072 2057 % 1980-2140
Ag—' 6 2A(70,1) 1648 1606 1583 1557 1532  ***x  1630-1740
2A(70',17) 2106 2071 2051 2029 2006 * 1840-2040
N%_ 9 2N(70,1°) 1467 1452 1443 1433 1423  #***x  1520-1560
4N(70,10) 1663 1620 1596 1570 1543  *%**  1620-1680
2N(70',17) 2033 2007 1992 1975 1958
* 2000-2260
2N(56,17) 2068 2040 2025 2007 1990
A%- 4 2A(70,1°) 1647 1603 1580 1555 1530  **x*  1600-1650
2A(70',17) 2106 2071 2052 2029 2006 @ *** 1850-2000
2A(70",17) 2271 2218 2189 2155 2120 * 2050-2250




