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Abstract

The manufacturing process of continuous glass fibers used for the reinforce-
ment of composite materials consists in drawing and quickly cooling free jets
of molten glass into fibers using a winder. Despite a long practical experience
in producing glass fibers, the process is still not fully optimized. The main
challenge stems from the high sensitivity of the process to numerous distur-
bances that can cause the fibers to break during their drawing. These frequent
breaks lead to a significant loss of raw material, higher energy consumption
and reduced production throughput. Nonetheless, devising new strategies for
improving the overall process efficiency requires a detailed knowledge of the
phenomena involved. The underlying physics is complex, including fluid and
solid mechanics, heat transfer, rheology, chemistry, material science, fracture

mechanics, explaining why it is still poorly understood.

The overall goal of this thesis is thus to better understand the underlying
physics, which can be then leveraged for improving the fiber drawing process.
In particular, the main objectives are i) to extend the current understanding
of the physics involved in the glass fiber drawing process and the fiber break,
it) to provide a physical model for the drawing of a single fiber that includes all
relevant physics, 7ii) to leverage numerical solutions of this model to suggest
strategies for improving the process, and 7v) to derive a probabilistic model of
the break rate that uses inputs from the physical model. As the problem is
extremely complex, the scope of this thesis is restricted to a single fiber and

to the “liquid” region between the bushing plate and glass transition.

The methodology relies on a combined theoretical, computational and exper-
imental approach. On the experimental side, a test facility has been built
to investigate the drawing of a single fiber. Although the process conditions
slightly differ from those in production, measurements of several macroscopic
quantities provide useful data for the validation of the numerical models. Ad-
ditionally, statistics of several fiber break tests are gathered to calibrate the
break rate model. From the theoretical and numerical point of view, a two-
dimensional axisymmetric model for the liquid region of a single fiber has
been developed, which accounts for all relevant physics. Additionally, a sim-
plified one-dimensional model has been derived. As this model leads to a
semi-analytical solution, it is computationally less expensive and provides a
very useful tool to better understand the link between several global parame-

ters. The influence of the different physical contributions, key parameters and



material properties are extensively analyzed through sensitivity analysis. A
particular emphasis is placed on heat transfer, including internal radiation and
cooling by the surrounding air flow. Then, these physical models are used to
characterize the process operating window by focusing on a key performance
indicator, the axial stress. The impact of the production parameters, glass
composition, design of the bushing,... are thus investigated. Furthermore, the
unsteady behavior of the process is analyzed in order to determine the critical
parameter values that lead to instability. Although the approach does not rely
on a formal linear stability analysis, it provides a first estimation of the stabil-
ity limit of the process and highlights the key trends. Finally, a first attempt
at modeling the break rate is presented. This break rate model is based on
a weakest-link assumption. It relates the stress computed from the physical
models to a probabilistic description of the strength, that is assumed to follow
a Weibull distribution. As this model needs to be calibrated, an experimental

measurement strategy is developed and discussed.

This work confirms several results from the literature and provides new insight.
It is shown that heat transfer is the most important factor that determines the
final axial stress in the fiber. In particular, a faster cooling in the initial region
close to the tip, where heat transfer is dominated by radiation, increases the
stress. Moreover, it is found that the main effect of internal radiation is to
increase the heat flux through the fiber surface, increasing thus the cooling
rate. As internal radiation is extremely complex to model and implement, a
simpler approach is to consider the fiber as an opaque medium and to repre-
sent the increased cooling by internal radiation through an effective emissivity.
Regarding the convective cooling, it is demonstrated that the empirical cor-
relation for the convective heat transfer coefficient that is widely used in the
literature is not accurate. A new correlation specific to the glass fiber drawing
process or a detailed representation of the surrounding air flow is required to
predict more accurately heat transfer by convection. In terms of process opti-
mization, the physical models indicate that, for a given target fiber radius, the
final axial stress can be reduced by increasing the tip temperature. This can
be achieved either by increasing the drawing velocity, which leads to a higher
flow rate, or by reducing the tip radius to maintain the flow rate constant.
Nonetheless, this strategy is limited by the drawing instability that occurs at
high tip temperature. On the other hand, the stress can be reduce by playing
on the glass composition. In particular, a lower surface tension decreases the

stress and limits the occurrence of this instability. For multi-filament bush-



ing, another strategy is to ensure a bushing temperature as homogeneous as
possible, as temperature inhomogeneity can lead to large variations in stress
across fibers. Finally, experimental results of break tests confirm that the
fiber strength, at constant process conditions, follows a Weibull distribution.
However, they also demonstrate that the strength depends on the process con-
ditions. In particular, the strength seems to increase when the stress increases.
This suggests that minimizing the stress might not be the best strategy for

reducing the break rate.

These results represent important new insight into the continuous fiber draw-
ing process and its related physics. They also provide a useful basis for devis-
ing new process optimization strategies. Nevertheless, many questions remain

open and much work is still required.
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Chapter 1
Introduction

This thesis investigates both numerically and experimentally the manufacturing process
of continuous glass fibers that are used for reinforcement of composite materials. The
overall objective is to better understand the underlying physics of the glass fiber drawing
process, and to identify and quantify the key global parameters that control the final
characteristics of the fibers. This knowledge is then used to better understand the root
causes of fiber breaking that is repeatedly observed in production and strongly limits the
efficiency of the manufacturing process. The long-term goal is to devise new optimization
strategies to increase production while reducing the break rates. Note that this research
has been conducted in close collaboration with 3B-the fiberglass company, which has
provided financial, scientific and logistic support.

The present chapter first describes the context and general scope of this study. In
particular, the overall manufacturing process of glass fibers and the problem of fiber
breaks are described. The second section provides a brief review of the literature and
highlights the current limitations of the state-of-the-art. It is followed by the description
of the objectives of the thesis and general methodology used to achieve them. Finally, the

overall structure of the thesis is presented, including its main contributions.

1.1 Context and scope

Glass fibers can be divided into three main categories according to their end application.
Their respective characteristics, and, thus, their corresponding manufacturing process

significantly differ:

e (Glass wool is used for insulation. It corresponds to an agglomeration of non-
continuous fibers whose diameter is about 5 um. The fibers are produced with a

rotating spinneret, from which the glass melt is continuously ejected through small
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orifices by centrifugal force. The melt is then transformed into non-continuous fibers

with an air jet.

e Optical fibers are used for signal transmission in telecommunication. Their diame-
ter is much larger (~ 300 pm). Additionally, their core is made out of glass whose
composition differs from that used for their envelope in order to obtain the required
optical properties. The manufacturing process consists in continuously and simulta-

neously drawing the two melts with a winder in a thermally controlled environment.

e Glass fibers for material reinforcement are used in composite materials, similarly
to carbon fibers. Although fiberglass has slightly lower mechanical properties than
carbon fibers, it is less expensive to produce, explaining its widespread use. In
this case, glass fibers have a diameter typically varying between 10 and 30 pm.
The manufacturing process consists in continuously drawing the melt into thousand

parallel fibers that are quickly cooled down.

This thesis focuses solely on the third category, i.e., glass fibers for material reinforcement,
and the corresponding fiber drawing process. The following sections provide an overview
on the typical glass composition, the final form of the fibers and the manufacturing pro-

Cess.

1.1.1 Continuous glass fibers for reinforced materials

Since the late 1940s composites have seen a rapid and continuous growth driven by the
demand for materials with improved mechanical properties. Some of the key properties
of fiberglass include high strength-to-weight ratio, resistance to corrosion, resistance to
fatigue, resistance at high temperature, and many others. In 2017, the largest groups
on the worldwide global glass fiber market are Owens Corning and Jushi with 18% of
total production, NEG with 12%, CTG and CPIC with 8%, while 3B the fibreglass
company represents 3% of the total market!. Fiberglass is found in a very large range of
applications and in many sectors, such as automotive, transportation, civil engineering,

electrical engineering, wind energy, aerospace, etc.

1.1.2 Typical glass composition

The choice of glass composition is not only driven by the required properties of glass
fibers, but also by economical, environmental, regulatory and manufacturability con-

straints. Several families of glass composition are typically used in fiberglass. They

!These figures are estimated from the marketing management team at 3B-the fiberglass company [1].
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are denoted by a letter, such as for instance E; A, S. Each family is related to a specific
property or application (e.g., corrosion, high modulus, dielectric properties). E-glass,
originally developed for electrical applications, is the most widespread commercial glass
composition. Its major constituents are SiOy (52-56%), Al,O3 (12-16%), BoO3 (5-10%),
CaO (16-25%), MgO (0-5%), Fe;O5 (0-0.8%), B2O2 (0-10%), and additional small quan-
tities of other oxides [2]. E-CR glass is a specific composition in which B0 is absent
(often for cost or environmental reasons). Other families, such as S-Glass (high strength),
A-Glass (high alkaline content) or D-Glass (improved dielectric properties) have better
properties, but are more difficult to produce and are thus more expensive. They are
typically used in the high-added-value market (for military or aeronautic applications for
example) [2]. This thesis mostly focuses on a commercial E-CR glass called Advantex(c)
that has been developed by Owens Corning and is currently commercialized by Owens

Corning and 3B-the fiberglass company.

1.1.3 Types of E-CR glass products

The glass fibers can have different forms (see Fig. 1.1) and sizes (i.e., fiber diameter)

depending on the application and customer requirements:

e Direct roving (DR): the fibers are continuously wound around a spool. Their diam-
eter generally ranges between 17 and 24 pm, but can be as low as 10 pm. A typical

application is that of wind turbine blades.

e Chopped strands (CS): the fibers are chopped just after the winder into strands with
a length of a few millimeters. Their diameter usually varies between 10 and 13 pm.

Applications are mainly found in the automotive industry.

e Continuous filament mat (CFM): the fibers are deposited spirally to form a mat.

Their diameter is around 17 — 24 pym. The main application is that of boat hulls.

The manufacturing process is slightly different depending on the final form of the glass
fibers. Consequently, the corresponding challenges and main manufacturing limitations
also differ. For instance, the manufacturing of DR and CFM is more sensitive to the
winding issues, while the production of CS is more impacted by drawing limitations.
This thesis focuses mostly on the manufacturing process of fibers for chopped strand
products, but many results also apply to those for direct roving and continuous filament

mat products.
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Direct Roving (DR) Chopped Strands (CS)  Continuous i

=

laent Mat (CFM)

Figure 1.1: Typical glass fiber products that are used for material reinforcement [1].

1.1.4 Description of the manufacturing process

The overall manufacturing process of continuous glass fibers is depicted in Fig.1.2. It
consists in the continuous mixing of the raw materials that are then melted in a furnace.
The molten glass then flows through channels to the forehearth and the different bushing

positions, where it is continuously drawn and rapidly cooled into several thousands fibers.

Silo

Furnace

Forehearth

Bushing

b__,.——-Winder

Figure 1.2: Schematic of the continuous manufacturing process of glass fibers.
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Mixing and melting process

The first step corresponds to mixing in the right proportion the different raw constituents
that are stored in large silos in a powder form. The resulting batch is then continuously
injected at its rear of a furnace, in which it is melted into liquid glass. A schematic of the
cross-section of a furnace is shown in Fig. 1.3. At the rear the injected raw material forms
a layer floating above the molten glass, which is called the batch blanket. The high glass
temperature, up to 1400°C, is achieved through burners installed in the furnace crown
above the melt and through electrical heaters within the glass bath itself. The raw material
must be melted for a sufficiently long time to ensure homogenization: it takes on average
a full day for the raw material to go through and leave the furnace. Homogenization is
further promoted by creating convection flows in the bath. This is typically accomplished
with bubblers that inject large air bubbles in the melt. The homogenized melt then
passes the throat and flows through channels to the forehearths (or frontend). The melt
temperature in the channels is maintained by small burners above the liquid free surface.
At the different forehearths the molten glass is then delivered to the bushing positions

just below.

Glass heating
with burners

Batch blanket
Glass line <

Throat

Bubblers

Figure 1.3: Schematic view of a longitudinal cross-section of a furnace.

Fiberization process

At the bushing position the molten glass is divided into thousands of free jets that are
quickly cooled and continuously drawn into fibers by a winder (Fig. 1.4). The individual
fibers form when the melt flows through the bushing, i.e., a metal container with thousand
orifices on its lower surface. These holes are tube-shaped with an internal diameter of
about 1-2 mm, and are thereafter referred to as tip. A bushing before its installation
in the production line is shown in Fig. 1.5. The number of tips, and thus of fibers, can
reach up to 6000-8000 per position. The bushing is made out of a platinum-rhodium

alloy to withstand the high temperatures and avoid the erosion caused by the glass flow.
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Additionally, this material can be electrically heated to precisely regulate the global glass
temperature. Electrical power is provided through clamps at the bushing ears (i.e., the
small curved plates at the end of the busing in Fig. 1.5). The target bushing temperature,
about 1350°C for the glass considered here, is controlled through a thermocouple on the
side at mid-height of the bushing.

Glass melt

Bushing
Finshields

Water spray

iy

Applicator

Winder

Figure 1.4: Overall schematic view of a bushing position (left) and detailed view of four
tips and the corresponding forming fibers (right).

After exiting the tip the molten glass is quickly cooled to reach the glass transition and
drawn at high velocity by the winder. The rapid acceleration of the melt induces strong
radius attenuation, as illustrated by the cone shape of the glass just below the tip (see right
part of Fig. 1.4). The cooling of the glass is initially mostly achieved by radiation, before
convection takes over further away from the tip. As discussed later, the cooling history
plays a key role in the process. Moreover, the tip temperature must be maintained in a
very precise range to achieve the adequate glass viscosity. In order to partially control
the radiative heat transfer, water-cooled copper blades, called finshields and shown in
Fig. 1.6, are inserted horizontally between rows of fibers a few millimeters below the
bushing plate (see Fig. 1.5). The position of the finshield blades is clearly indicated by
the space between two rows of tips in Fig. 1.7. During production the finshields can be
moved vertically to modify the radiative cooling of the fibers and the heat pattern of the

bushing plate, although the exact mechanism is still not well understood. Finshields are


chap_1/figs/BushingSchema.eps
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Figure 1.5: Bushing with several thousand tips. The curved trapezoidal-shaped plates at
the end of the bushing plate are the ears, at which clamps can be attached to provide
electrical power for global temperature regulation. Reproduced with permission of

Heraeus Deutschland GmbH & Co [3].

the only on-line mechanism available for adjusting locally the temperature distribution of
the bushing plate. Additional cooling is provided by water sprays further away from the
bushing.

Finally, sizing is applied through an applicator to protect the fibers and improve their
adhesion in the composite. Fibers are then brought together into a strand that is either
wound or chopped. The final diameter of the resulting fibers depends on both the winder
velocity and the glass flow rate at the bushing. It typically varies between 7 and 34 pm,
depending on the product.

1.1.5 Fiber break as major challenge

Because of the low added-value of fiberglass and the high manufacturing costs (infrastruc-
ture, energy consumption, raw material,...), profit margins in glass fiber manufacturing
are small. There is thus a strong need for reducing costs and improving the process
efficiency.

One of the major limitations in process efficiency and production rate increase stems
from the frequent break of fibers during the drawing process. A break occurring in a

given fiber generally leads to the failure of the entire bushing position, which then needs


chap_1/figs/ColdBushing.eps
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Figure 1.6: Picture of one set of finshields (2, 4 or 8 sets are typically used per bushing
depending on the number of tip rows).

Figure 1.7: Half of a bushing in operation viewed from below. The finshields between
each two rows of fibers are clearly visible.
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to be manually stabilized by an operator. The restart of the bushing position takes
several minutes, during which the glass flow cannot be stopped. A large quantity of glass,
which can amount up to 15% of the total production, is thus lost. Recycling this glass
waste would require an expensive treatment, which is currently not profitable. Besides
costs generated by the material loss, this has also a negative impact on the environment.
Furthermore, fiber breaks induce other indirect costs linked to energy losses, additional
equipment wear and constraints in the bushing design and process. Figure 1.8 shows a
typical daily break rate over an entire year. The break rate is expressed in number of
breaks per bushing operating hours (B/BOH) and has been averaged over ~ 40 bushing
positions of one furnace. In this example, the break rate averaged over the entire year is
0.71 B/BOH, which means that the bushing positions were stopped for five minutes per
hour on average. This corresponds to an active production of 94% and about 600 kg per
hour of wasted glass for one furnace. Note that the large break rate peaks observed in

Fig. 1.8 were caused by melting issues in the backend.

<
1 1 1 1 1
@ 5 X S X S
3\§\ 3§\ @3@ {9@ 60@ ({\o@ &\oe
N & & 2 2
& O ¢ &
o <~ 9

Figure 1.8: Time evolution of the fiber break rate averaged daily over ~ 40 bushing
positions, expressed in number of breaks per bushing operating hours (B/BOH) for the
year 2015.

The origins of the breaks are multiple: impurities, such as stone from refractories or
dust convected by the HVAC cooling flow, gas bubbles in the melt, partial melting of the
raw materials, thermal effects at the bushing plate,etc. Three main categories of break
can be defined based on the vertical position below the tip where they occur. In the first
region close to the tip, the glass is still at high temperature and liquid. In this case the
broken jet forms a viscous drop since the pulling force has ceased, as depicted in Fig. 1.9.
The analysis of the shape and content of the bead, i.e., the cooled drop, can provide

information on the cause of the break. In addition, the break can also occur due to an
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instability of the fiber surface called draw resonance. This instability typically occurs
when the temperature of the tip and of the initial conical region of the fiber becomes too
high and, thus, imposes an upper limit to the operating window of a bushing. On the
other hand, if a break occurs further below, but before the applicator, the broken fiber
becomes free to move and typically comes into contact with other fibers, leading to the
rapid failure of the entire bushing position. In this case it is impossible to identify the
reason for the break. Finally, if the fiber rupture takes place below the applicator, it is

generally due to bad contact points or bad wetting.

Before the break At the break Drop formation

Figure 1.9: Formation of a bead after a break of the fiber close to the tip.

From these considerations it seems evident that reducing the break rate would signif-
icantly increase the production efficiency and thereby reduce costs. As many factors can
impact the break, such as processes in the backend and frontend, glass composition, op-
erating conditions, this thesis focuses on the drawing process itself. The aim is to obtain
a detailed understanding of the underlying physics of the process, so as to understand
the impact of operating conditions, geometric parameters or glass properties on the stress
level within the fibers, and in turn on the brake rate. This fundamental knowledge could

then provide leads towards new process optimization strategies.

1.2 State-of-the-art

Over the last fifty years, several authors have developed physical models to understand
and predict the behavior of the fiber during the drawing process. Most of the research
was funded by industrial companies or directly carried out by company scientists. As a
consequence, very few results are openly available in the literature.

Some related research has been conducted in the context of fiber processing based

on polymer materials. However, the corresponding physics significantly differs from the
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high-temperature phenomena and rheology specific to glass fiber manufacturing, so that
the results can only be partially exploited in the present context. On the other hand,
some research is available regarding the drawing of optical glass fibers. Although glass is
the material used in this case, the scales, the process design and the conditions are also
very different. Consequently, this section solely focuses on results dedicated to the glass

fiber drawing process for reinforced composites.

The first work on glass fiber drawing stems from Glicksman [4-6] in the 1960’s. He
derived the equations modeling the drawing of a single fiber. However, the limited com-
putational resources and the lack of efficient numerical methods at that time prevented
him from obtaining predictions for the entire fiber. He thus focused on the region where
the slope of the free surface is small enough that a uniform radial profile of pressure
and temperature can be assumed. Based on a one-dimensional Newtonian fluid model in
steady state, he investigated the forced convection coefficient in laminar and turbulent
air flow around the fiber. The result of the study was compared with experimental data
and good agreement was found, providing credit to the one-dimensional assumption for

the central region.

In the beginning of the 70’s, Manfre [7] studied the process both experimentally and
theoretically. He found that the forming of the fiber could be separated into two main
regions. On the one hand, the upper region is independent of the drawing velocity and
is responsible for radial instabilities. According to his results, the forming instability
occurs for a certain range of flow rate. Consequently, this part should be considered as
an unsteady process in the model. On the other hand, he states that the lower part,
situated around the transition point, is the region where the fiber breaks. Additionally,
he demonstrated that the air drag and the variations of surface tension with temperature

could be neglected.

Stehle and Briickner [8] investigated this process theoretically and experimentally in
1980. They established two different limits of the fiber drawing process: contraction and
oscillation. The contraction is related to the wetting angle between the platinum, the
glass and the ambient air. On the other hand, oscillations come from the instability of
the free surface. According to their experiments, viscosity is a key factor that limits the

process, in addition to the tip radius and cooling parameters.

A few years later, Huynh and Tanner [9] solved numerically the two-dimensional prob-
lem using a finite element method. The calculation domain included the tip and the first
region of the forming fiber up to a distance of six times the length of the tip. Glass
was considered as a Newtonian incompressible fluid and surface tension, body forces and
air drag were neglected. The model was validated based on the experimental data from

Glicksman [4]. The authors found that emissivity should be much lower than the value
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usually used for glass in the solid state. Because the glass is at very high temperature in
the region close to the tip exit and because of its semi-transparent nature, they argued
that radiation coming from the bulk must have an important contribution. In order to
account for the radiation from the bulk, they proposed to treat the radiative heat flux as
a surface flux, similarly to an opaque medium, but with a modified effective emissivity.
Moreover, this effective emissivity was made dependent on the fiber radius to capture
the effect of the radius attenuation along the fiber. Their results largely focused on a
sensitivity study based on heat transfer properties. They concluded that radiation is
the dominant mode of cooling and that the value of the conductivity has an impact on
the shape of the forming fiber. Finally, they emphasized that the lack of knowledge on

material properties represent a major barrier to improving the accuracy of the model.

Perng et al. [10] took advantage of new developments in numerical methods and per-
formed simulations of both a single and multiple fibers. The commercial software Polyflow
was used to simulate the single fiber. The corresponding results were validated with the
experimental data from Glicksman [4]. On the other hand, the simulations of several fibers
were performed with the CFD software Fluent using a module developed specifically for
this. Simulations focused on the flow of the ambient air. They included the effects of the
fibers on the air flow, but did not consider the glass flow itself. The coupling was achieved

through an iterative scheme.

Purnode and Rubin [11] also used a two-dimensional finite-element model with the
software Polyflow in order to simulate the fiber behavior. Similarly to other works, the
model was validated using data from Glicksman [4]. The model included surface ten-
sion and air drag. Their results confirmed that surface radiation is the main heat transfer
mechanism near the tip exit, while convection becomes dominant further away. They have
also shown that the forces involved are gravity, momentum from fiber acceleration and
air drag. Unfortunately, the results are not explained in details since only a conference
presentation is available. They suggested as future work studying the glass transition,
the wetting of the tip and the transient aspects of the drawing process. Later, Purn-
ode investigated this latter topic by analyzing the changes in the final fiber diameter
following disturbances introduced in the tip temperature [12]. He demonstrated thus the

destabilizing effect of surface tension and stabilizing effect of convection.

McKeone [13] performed experimental measurements of the air temperature and veloc-
ity around the fiber. The bushing plate was composed of nine tips. Using a thermocouple,
the air temperature was measured at different locations along the vertical and horizontal
coordinates. The results showed a high decrease of the air temperature along the vertical
axis while horizontal variations were much lower. Additionally, it was found that the

air temperature was also strongly affected by the bushing temperature and the winder
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velocity. Similar trends were observed for the air velocity. However, he suggested that
radiation from the bushing plate might induce errors in the measured air temperature,
despite a correction model used on the data recorded. Sweetland [14] derived a model
to describe the effect of water sprays on the cooling of the fiber. He found that water
sprays impact the thermal boundary layer around the fiber leading to an increase of the
convective cooling. According to his results, a higher amount of smaller droplets can lead

to a better cooling efficiency of the water sprays.

More recently, Von Der Ohe [15] revisited the physics of the fiber glass drawing pro-
cess. She developed a numerical model based on a Newtonian viscous flow to perform a
parametric study of different glass compositions, process conditions and glass properties.
She pointed out that the drawing speed and cooling conditions of the surrounding air
are important, in particular for the final product properties. Moreover, part of her work
focused on the impact of several process parameters on the viscous stress along the fiber.
In particular, her results demonstrated that, at the same flow rate, higher winder velocity
and higher cooling lead to a higher stress. Moreover, she concluded that the Deborah
number, stress and cooling rate are linearly dependent on the winder velocity. Finally,
her research pointed out the link between the tensile strength of the fiber and the vis-
cous stress within the fiber during the forming. Nonetheless, the results were not directly

oriented towards improving the industrial production.

Lenoble dedicated a part of her thesis to numerical simulations of the fiber forming
process [16]. A one-dimensional model that takes into account radiation, convection,
surface tension and drag was used to study both steady and unsteady effects, and in
particular the process stability, such as oscillations of the fiber diameter. Results were
also compared to experimental measurements for a single fiber. She identified a temper-
ature range where stability is maximal; this range was also found to depend on the glass
composition [17].

Rekhson was the first to investigate the fiber break mechanisms [18-21]. He postulated
that the axial stress in the fiber was a good indicator for the break. He thus predicted
breaking rates by combining stress values obtained from a one-dimensional model and
a probabilistic approach. The latter relied on Weibbull statistical distributions. His
predictions were then confronted to break statistics obtained on a bushing units with
hundred filaments. Unfortunately, the major part of his available work does not provide

scientific demonstrations of his results.

Finally, Liu [22] investigated numerically the variations of the final fiber diameter due
to variabilities in the process and identified the temperature of the ambient air and of the
furnace as their main cause. These findings led to the development of a control system

to reduce the variations of the fiber diameter by adjusting the winder velocity.
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In summary, most studies have focused on the development of a physical model for the
upper region of the forming fiber, i.e., in the viscous region. The currently most advanced
models assume a two-dimensional axisymmetric viscous flow. While the Newtonian con-
stitutive equation within this region seems to be justified, the characterization of the heat
transfer are not yet modeled accurately. All previous authors modeled the radiation flux
as an opaque medium although glass must be considered as a participating medium for
a certain range of radiation wavelengths. Internal radiation represents another contribu-
tion to heat transfer within the medium (in addition to conduction) and has never been
included into any physical model for the fiber glass drawing process, although it has been
suggested by several authors [9,15,16]. However, the mathematical modeling and the
corresponding simulation of a semi-transparent fiber add major complexity, explaining
the assumption of an opaque fiber used in previous works. On the other hand, convec-
tive cooling is always described through a correlation for the convective coefficient that
it based on strong assumptions, i.e. a constant surrounding temperature and a constant
fiber diameter. Because these two assumptions are clearly not valid in the case of glass
fiber drawing, the application of this correlation is questionable. Another limitation of
the current state-of-the-art is related to the rheology. As mentioned previously, the as-
sumption of a Newtonian viscous fluid seems to be sufficiently accurate to describe the
high temperature region, but it is likely to be invalid when the melt transitions into a solid
glass. Although viscoelastic effects may strongly alter the prediction of the axial stress,
they have not yet been taken into account. On the other hand, unsteady phenomena have
been considered by some authors who highlighted their critical effects. But a rigorous sta-
bility map that includes all relevant physics has never been established. Few works have
been dedicated to the experimental investigation of the process but were limited by the
complexity of the measurements. Furthermore, although most results discuss the physics
governing the process, they are not directed towards providing strategies for the process
improvement. Finally, many questions regarding the fiber break remain unanswered: why
does a fiber break? where does the break typically occur? how do the process conditions
influence the break? which parameters are the most critical? how can the break rate be

modeled? The main aim of this thesis is thus to address some of these limitations.

1.3 Objectives and methodology

The multi-physics and multi-scale nature of the problem makes it extremely complex
and challenging from both a modeling and experiment point of view. It includes the
fluid mechanics of both the glass melt and ambient air, heat transfer through conduction,

convection and radiation, non-Newtonian rheology across the glass transition, unsteady
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effects and instabilities,... The accuracy of any model also strongly depends on the ma-
terial properties, which are very difficult to determine exactly due to the large range of
temperatures involved. Moreover, a wide range of scales are involved. In particular, the
axial characteristic length is of the order of 1 m while radial variations take place over
very short distances, between 1 mm and 10 ym. Experimental measurements are also
very difficult to perform due to the high temperatures and small scales, and involve a
complex and expensive infrastructure. Finally, the industrial process typically involves
several thousand of fibers at the same bushing, whose interaction compounds the problem

complexity:.

1.3.1 Objectives

The long-term goal of this research is to provide new strategies for improving the drawing
process efficiency. As previously mentioned, a major lever is the reduction of the break
rate. Because of the complexity of the problem, this can only be achieved through a
better understanding of the physical processes involved and a model that includes all this
physics. Moreover, some simplifications are required. In particular, the scope of this thesis
is limited to the initial phase of the drawing process, i.e., it only considers the fiber from
the tip until the transition point. The analysis considers neither the melt in the bushing,
nor the backend processes, nor the fiber in its solid state. Additionally, it focuses only on
a single fiber, and thus neglects the interaction between fibers.

In summary, the main objectives of this thesis are:

e to extend the current understanding of the physics involved in the glass fiber drawing

process;

e to provide a physical model for the drawing of a single fiber that includes all relevant

physics;

e to leverage numerical solutions of this model to suggest strategies for the process

improvement;

e and to derive a probabilistic model of the break rate that uses inputs from the

physical model.
More specifically, it aims at answering following key questions:

e What are the relevant physical phenomena?
e What is the influence of these physical phenomena?

e What are the key parameters of the process?
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e What are the key indicators of the process robustness?
e How is the stress in the fiber related to the process conditions and glass properties?
e How do the key parameters influence the break rate?

The answer to these questions, and the physical and numerical models developed in this
thesis are expected to provide the necessary basis for the improvement of the process. This
could be achieved through several levers, such as the optimization of the operating window,
the tuning of the glass composition to achieve specific material properties, and/or the
improved design of the bushings, finshields, water sprays, or HVAC system. The potential
impact is thus important and goes beyond increasing the production rate, but also includes
reducing costs through a lower energy consumption, reduced need for expensive alloys,

smaller waste amount,etc.

1.3.2 Methodology

In order to achieve the aforementioned objectives, a holistic approach is followed that
includes theoretical, numerical and experimental work. The theoretical approach consists
in developing mathematical models that include the relevant physics. These models are
based on the well-known fundamental laws of fluid mechanics, heat transfer, thermody-
namics, but also includes aspects related to material properties, glass transition, internal
radiation, rheology,... It also exploits existing models available in the literature.

As these mathematical models are generally too complex to be solved analytically,
numerical solutions are sought. Most of the simulations are performed with commercial
software, in particular with Ansys Polyflow and Ansys Fluent, but a small in-house code
has also been developed in Matlab to solve the simplest models. Numerical simulations
are extensively used to assess the impact of the different parameters, level of fidelity of
the physical models and material properties through systematic sensitivity analysis.

The models require several input parameters. Material properties represent one of the
major inputs and sources of uncertainties. Some of their values have been obtained from
the literature, but most of them from experimental measurements either sub-contracted
to external laboratories or from internal measurements within 3B-the fiberglass company.
Process conditions have also been provided by 3B-the fiberglass company. Additionally,
numerical simulations require validation. To complement validation cases from the liter-
ature, experimental measurements on a dedicated fiberization unit have been conducted
at 3B-the fiberglass company as part of this work. Because measurements are extremely

challenging due to the high temperature and the limits of the measurement devices, only
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a limited amount of data could be obtained. Nonetheless, it represents useful additional

data for validation.

1.4 Summary by chapter

The present manuscript provides details on the work performed and summarizes the
main findings. It is structured in eight chapters that each covers a specific part of the
research. Chapter 2 describes the physical models and discusses their limitations. Then,
the experimental measurements are presented in Chapter 3, followed by numerical aspects,
and the simulation results in Chapter 4. The numerical models are subsequently used
in Chapter 5 to analyze the physics of the drawing process. Chapter 6 leverages the
numerical tools and the results of previous chapters to characterize the process in terms
of the operating window and instabilities. Chapter 7 is a preliminary attempt to predict
the break. Finally, the main conclusions are summarized and future work is suggested in
Chapter 8.

Chapter 2

This chapter is entirely dedicated to the physics of the fiber drawing process and the
development of a mathematical model. It begins with a brief introduction to the glass
material and a description of how its rheology depends on its thermodynamic state. A
two-dimensional viscous flow model for the upper region of the fiber is then derived,
including the corresponding boundary conditions. Several aspects related to convective
and radiative heat transfer are discussed. Subsequently, a simplified one-dimensional
model is derived. As this model leads to a semi-analytical solution, it provides a very
useful tool to better understand the physics and the role of the key process parameters. Its
low computational cost makes it also very advantageous for sensitivity studies. A review
of the molten glass properties is also found in this chapter since they are important input
parameters to the model. Then, the next section presents a model to describe the flow
of ambient air around the fiber, which is used to analyze the convective cooling. Finally,
the last section introduces an semi-transparent radiation model to incorporate internal

radiation.

Chapter 3

Chapter 3 focuses on the experimental measurements. It first describes the dedicated
bushing unit that has been developed to study the drawing of a single fiber, as well as

the different measurement techniques used. Then, the measurements of the fiber radius,
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flow rate and external ambient temperature are presented and their limitations discussed.
The development of the experimental unit, essential tool for investigating the break, and

new validation data represent the main contributions of this chapter.

Chapter 4

The goal of this chapter is to present and discuss the numerical tools and methodology
used to solve the different models presented in Chapter 2. The chapter discusses first the
one- and two-dimensional models (i.e., finite difference and finite element methods), the
radiation problem (i.e., discrete ordinate method), and the ambient air flow (i.e., finite
volume method). Then, the procedure to couple simulations of the surrounding air flow
and simulations of the fiber is presented. This coupling is one of the main contributions
of this chapter, and leads to revisit the convective coefficient in Chapter 5 by considering

the air environment around the fiber.

Chapter 5

Chapter 5 is entirely dedicated to understanding the physical mechanisms taking part in
the drawing of the fiber. This analysis is based on the solution of the models developed in
Chapter 2 using the numerical methods described in Chapter 4. First, the axisymmetric
fiber model is investigated with respect to i) its sensitivity to the glass properties, i) the
contribution of each force and type of heat flux, and i) several others parameters. The
semi-transparent model is then studied including a sensitivity analysis to the radiative
parameters and the impact of the model assumptions (such as grey body, opaque medium,
...). The results are also compared to those obtained with an effective-emissivity approach.
Finally, a new correlation for the convective heat transfer coefficient is investigated and
compared to the one classically used in the literature. The results of this chapter lead to
a better knowledge of the process by characterizing which physical effects are important
and must be considered, and which can be neglected. In particular, the contribution of
each forces, the need for a semi-transparent model and the impact of the glass properties
on the accuracy of the process are investigated in depth. A final contribution of this
chapter is to highlight the limitation of the empirical correlation commonly used for the

convective coefficient.

Chapter 6

In this chapter, the physical models are used to characterize the process operating window.

A key performance indicator is defined to assess the impact of the production parame-
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ters, glass composition, design of the bushing... Furthermore, the unsteady behavior of
the process is analyzed in order to determine the critical parameter values that lead to
instability. Although the approach does not rely on a formal linear stability analysis, it
provides a first estimate of the stability limit of the process and highlights the key trends.
The main achievement is to further improve the current understanding of the physical
mechanism governing the fiber drawing and to suggest avenues for increasing the process

robustness.

Chapter 7

This chapter summarizes a first attempt at modeling the break rate. It first presents the
main characteristics of the break through a brief review of the literature. A probabilistic
model of the fiber rupture is then derived based on several assumptions. As this model
needs to be calibrated, an experimental measurement strategy is developed and discussed.
Finally, preliminary results and the impact of the model assumptions are discussed in
depth.






Chapter 2

Physical modeling of the fiber

drawing process

In order to investigate the process and gain a more quantitative understanding of the
detailed physics involved, the first step is to develop mathematical models describing this
process. Optimally, these models should include both the cooling of the fiber, as the
viscosity is a strong function of the temperature, and its rheological behavior, since the
glass transitions from a liquid melt to a solid. Moreover, the cooling of the fiber involves
the three modes of heat transfer, i.e., conduction, convection and radiation. The objective
of this chapter is thus twofold: i) to identify the relevant physical processes, and i) to
describe the mathematical models used to represent them as accurately as possible.

Only a single fiber is considered here. Because most of the physical variations take
place at high temperature, the modeling effort focuses on the liquid region. In particular,
a two-dimensional axisymmetric model is derived, which attempts to include all relevant
physics. Nonetheless, viscoelastic effects appearing during transition are not considered
here. Moreover, glass is a semi-transparent medium so that radiation is not only a surface
phenomenon. Internal radiation is initially neglected in the two-dimensional model but
is treated in a separate section to assess its importance.

As the computational cost for solving the axisymmetric two-dimensional model is not
negligible, a semi-analytical one-dimensional model based on Glicksman’s model [5] is
also derived. Although its solution is essentially analytical, a numerical treatment is still
required to obtain the full solution. Nevertheless, it has the advantage of being much
faster than the full two-dimensional model and of explicitly highlighting the influence of
some physical parameters. Finally, these models rely on several material properties. As
the experimental characterization of these properties of their temperature dependence is
particularly challenging, they represent a major source of uncertainty, which is discussed

in detail.
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This chapter is organized as follows. In the first section, an overview of the charac-
teristics of a glass material is presented including its corresponding rheological behavior.
The next four sections, Section 2.2 to Section 2.6, focus on the liquid region of the form-
ing fiber. The model of the glass flow in two dimensions is first derived in Section 2.2
including a discussion on the boundary conditions. In the next section, different approxi-
mations are applied to the model to obtain a simpler one-dimensional model. A complete
review of the different glass properties is then presented in Section 2.4. This is followed
by a brief description of a model for the air flow around the fiber in Section 2.5. Finally,
internal radiation in semi-transparent media, not considered in the model of Section 2.2,

is treated in detail in Section 2.6.

2.1 Introduction

This first section introduces the fundamental aspects of glass physics. Since the manufac-
turing process involves a large range of temperature from the liquid to the glassy state,
the behavior of the glass for each different thermodynamic state and its corresponding

rheology are described.

2.1.1 Volume-Temperature diagram of glass

Glass is a material demonstrating the same external appearance, and mechanical and
thermal properties as a solid, while having the same structure as a frozen liquid, i.e. a
long-range disorder [23]. One particularity of this material is the absence of a defined
melting point. From the liquid to the glassy state, glass is transformed continuously
without crystallization. Figure 2.1 shows the typical volume-temperature diagram for
a glass material. At high temperature far above the transition, the glass is a melt in
equilibrium from a thermodynamic point of view, represented by the region ab in the
diagram. As the temperature decreases, the material follows the liquid line until point b.
At this point (which is more a range than a well-defined temperature), the liquid may be
transformed into a crystal if two conditions are met: i) a sufficient amount of nuclei are
present, and 7i) the cooling rate is low enough to allow the propagation of crystallization.
However, if the cooling is sufficiently fast, the melt avoids crystallization and goes through
a super-cooled state, as represented by line bc. Since the temperature decreases, molecules
become less mobile leading to a dramatic increase of the viscosity.

With further cooling, the dynamic of the molecular structure becomes too slow to
allow a return back to equilibrium. Consequently, the structural state tends to diverge

from equilibrium and it cannot follow the initial linear volumetric decrease, as depicted by
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Figure 2.1: Typical volume-temperature diagram of a glass material.

the inflection of the curve at point c¢. At lower temperature, the volume decrease is again
linear, but with a lower slope (point d and e). Between the super-cooled and the solid
line, the curvature region is called glass transition and the corresponding glass transition
temperature T, is defined as the intersection of the super-cooled liquid and glassy state
lines (T or Ty in the diagram). As shown in the diagram, the transition and the glassy
state are strongly dependent on the cooling rate. The higher the cooling rate, the more
rapidly the glass transition occurs. As a consequence, at a given temperature the (out-
of-equilibrium) glass structure will depend on the cooling history (see points d and e).
This dependence is quantified by a structural parameter called "fictive temperature”. More
precisely, the fictive temperature corresponds to the temperature at which the equilibrium
melt structure would be identical to that currently existing in the glass. This implies
that in the liquid region the fictive temperature is the actual glass temperature. In
the solid region, the fictive temperature more or less corresponds to the glass transition
temperature. This dependence of the transition and glass state on the cooling history is

a characteristic of glass materials and represents a major challenge in modeling.

2.1.2 Rheology

During the drawing process, the fiber is rapidly cooled from a liquid state in equilibrium at
high temperature to a solid state at room temperature, so that all thermodynamic states
are involved. Correspondingly, the rheological characteristics change along the fiber. The

forming fiber can thus be roughly divided into three different regions:

e The first region is defined as the part of the process where the glass is still in a liquid

state. This region extends from the working point (where the viscosity is about 102
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Pa-s) to the transition (where the viscosity has increased to about 10'? Pa-s). In
this liquid phase, experiments have shown a linear response of the stress to a strain
rate [24], characteristic of Newtonian fluids. The viscosity is thus independent of
the stress at a given temperature, but strongly varies with the temperature. In
particular, it increases by ten orders of magnitude between the working point and
transition. Therefore, glass can be considered as a Newtonian viscous fluid with

temperature dependent viscosity in this region.

e The second region corresponds to the part of the fiber where the glass passes through
transition. During this step, the rheology is much more complex than in the previous
region because it involves both viscous and elastic effects. In other words, glass
behaves like a viscoelastic material, characterized by multiple relaxation times. In
addition, the glass structure is frozen out of equilibrium, which implies a structural
relaxation mechanism toward equilibrium. This relaxation is non-linear and involves
relaxation times that are different from those linked to its viscoelastic behavior [25].
Furthermore, the structural relaxation is strongly coupled with the thermal history.
This structural effect must be considered in addition to the viscoelastic model in

order to entirely characterize the transition.

e Finally, the third and last region is defined as the region where the fiber is in a pure
glassy state. The glass behaves there as a Hookean solid. Because the velocity is
constant in this region, the fiber is in a state of pure translation without further

mechanical deformations. Note that thermal deformation may still occur.

The boundaries between these regions are not well-defined since transition occurs
continuously over a range of temperature. Viscoelastic effects begin gradually as the
temperature approaches the transition temperature 7. Following results in the literature
(see Section 1.2), all variations of the physical fields are assumed to occur in the first
region before transition. Therefore, the modeling effort mostly focuses on the liquid

region, where glass can be considered as a Newtonian fluid.

2.2 Two-dimensional axisymmetric model

This section focuses on the development of the physical model for the upper part of
the fiber forming where the glass is in the liquid phase, covering the region from the
working point to the transition (from a 1300°C to =~ 750°C). As mentioned in the previous
section, the rheology corresponds to that of a Newtonian viscous flow. In this region, heat

transfer plays a key role as the fiber is rapidly cooled, which in turn impacts its rheology,
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as viscosity depends strongly on temperature. In particular, conduction occurs inside
the fiber while convection and radiation at the fiber surface lead to the cooling of the
fiber. Radiation dominates in the vicinity of the tip, as the temperature is high, but
its contribution rapidly decreases along the fiber owing to the rapid cooling. Convective
cooling is due to the cooler ambient air that is entrained by the high-velocity fiber.

The model is based on conservation laws with corresponding boundary conditions, and
assumes that the fiber is axisymmetric. The formulation of the global balance equations
include internal radiation, which is then neglected to simplify the discussion. Internal

radiation modeling is treated separately in Section 2.6.

2.2.1 Transport equations

Because the flow is assumed axisymmetric, all field variables depend only on the radial
and axial position, r and z. For a single fiber, the axial direction is typically aligned
with the vertical direction. The liquid glass flow is governed by the equations of mass,
momentum and energy conservation for an incompressible Newtonian fluid with variable

density (i.e., density is independent of pressure but can depend on temperature):

dp
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where v = v,.e, + v,e, is the velocity vector, p the density, T' the temperature, 7 the
viscous stress tensor (including pressure), g the gravity acceleration and ¢, the specific
heat considered as constant in the liquid range (see Section 2.4). The heat flux within
the glass is due to conduction represented by Fourier’s law and a conductivity k, and the
internal radiation through the term ¢,. The additional term, 7 : Vv, corresponds to the
viscous dissipation. In cylindrical coordinates, Egs. (2.1)-(2.3) become respectively:
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where ¢, and ¢, , are the (r,z) components of q,.

Note that in the case of a single fiber in a uniform environment as considered here,
the axisymmetric approximation is justified. On the other hand, the industrial pro-
cess involves multiple filaments and finshields, whose relative spatial disposition induces
azimuthal variations. To take into account these variations in the model requires the
simulation of the air flow and heat transfer within the surrounding environment, which
must be coupled to the simulation of the fiber. In addition, a three-dimensional model
is needed which is computationally much more expensive. For all these reasons, angular

variations are neglected.

Viscous stress

The molten glass is described as a Newtonian fluid leading to the following formulation
for the stress tensor:
T = —pl + 21D, (2.8)

where p is the isotropic pressure, 1 the dynamic viscosity and D = 1/2(Vv + VvT)
the strain-rate tensor. Unlike other properties, the viscosity is highly sensitive to the
temperature. Because of the rapid cooling of the fiber, it is critical to account for this

temperature dependence. Viscosity is thus typically modeled with Vogel-Fulcher-Tamman

(VFT) law:

B

- 2.
T T (29)

log,,n(T) = 10gyg o
where 7., B and T, are three constants that depend on the glass composition. This
logarithmic dependence of the viscosity on the temperature leads to a strong coupling
between the momentum and energy equation. The VFT equation is empirical and has
been questioned by many authors, in particular due to the presence of a singularity at
finite temperature T.. As a result, the mathematical description of the viscosity is further
discussed in Section 2.4.1. Unless mentioned otherwise, all results presented in this work
are based on the VFT law.
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Internal radiation

Glass is generally considered as a participating medium for the range of near-infrared
wavelengths, so that internal radiation represents another contribution to heat transfer
within the medium. Furthermore, a part of the flux from the bulk passes through the
surface, which contributes to the cooling of the fiber. Accounting for the internal radiative
heat flux q, requires solving the radiative transfer equation, adding thereby significant
complexity to the simulations. As a consequence, an entire section is dedicated to the
internal radiation model (Section 2.6). The reference viscous model in the present section
is assumed to be opaque for all wavelengths, grey (i.e. independent of the wavelengths)
and diffuse. The internal radiative flux q, is thus neglected and only surface radiation is
considered. Heat transfer within the medium is consequently solely due to conduction and
convection. This approximation is made in order to compare the results with previous
work from the literature where internal radiation has not been considered. Moreover, the
numerical treatment of the bulk radiation leads to a dramatic increase of the computing

time. The impact of this simplification is discussed in Chapter 5.

2.2.2 Computational domain

The two-dimensional axisymmetric computational domain in cylindrical coordinates (r, z)
is shown in Fig. 2.2. It includes the fiber up to a distance L from the tip exit and the glass
flow within the tip itself. The origin of the coordinate system is located on the fiber axis
just at the tip exit, and the axial direction z points downwards. The tip has a radius rg
and a length [. The surface of the fiber below the tip is free to move and its position is a
solution of the model. The surrounding air is not part of the computational domain. The
ambient air flow is thus not explicitly resolved but its impact on the fiber is represented
through a viscous drag force and a convective heat flux imposed as boundary conditions
at the fiber surface. The axial length of the fiber domain is typically 8 ¢m, which is
generally sufficiently long to reach a constant final radius of the fiber and simulate the
entire viscous part before the transition. Nevertheless, this length is adapted for certain

cases.

2.2.3 Boundary conditions

The governing equations, Eqs. (2.4)-(2.7), must be supplemented with boundary condi-
tions to fully specify the problem. These boundary conditions include among others the
surface heat fluxes responsible for the cooling of the fiber and the impact of the surround-

ing environment of the fiber.
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Figure 2.2: Schematic view of the tip and the forming fiber. The computational domain
is delineated by the dotted line. The coordinate system and boundary conditions are
also indicated.

f

Inlet, outlet and symmetry

At the inlet of the tip, temperature and velocity must be imposed. The glass flow entering
the computational domain at the tip is driven by the hydrodynamic pressure of the glass
column above it, and depends on the viscosity and the geometrical parameters of the tip.
The working temperature Tj is imposed at the inlet of the tip. Assuming a cylindrical

shape of the tip, the volumetric flow rate is given by a Newtonian Poiseuille flow [26]:

Qo = 8%0 (%) rd = 8%0 (@) rd, (2.10)
where dp/dz is the static pressure gradient, g the gravity acceleration,, ny = n(7p) the inlet
viscosity, and H the height of the glass column. If the tip cross-section is not cylindrical,
the form of Eq. (2.10) must be modified. A list of relations for the flow rate associated to
different tip shapes can be found in the work of Lowenstein [2]. The height H of the glass
column, the tip radius rg and length [ are generally imposed by the design of the bushing
plate. Note that this relation is not accurate for significant temperature gradients along

the tip and/or at high drawing velocity, in which case it must be adapted. Finally, at the
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tip wall, a no-slip condition is imposed for the velocity.

In addition to being involved in the calculation of the flow rate, Ty is also set as
Dirichlet boundary condition for the energy equation at both the inlet and the tip wall.
Defining the value of Ty is not obvious since it is complex to measure due to the small
diameter of the tip (=~ 1-2 mm), limited accessibility in the production line and high

temperature. Three options can be considered to estimate the value of Tj:

e By considering Tj to be the working point, i.e., the temperature corresponding to a

viscosity of 100 Pa-s.

e By deducing it from the measured flow rate. If )y is known, for instance by measur-
ing the weight of the fibers drawn during a certain time, Eq. (2.10) can be used to
determine the viscosity 79. Then, the temperature is obtained by inverting Eq. (2.9).

e By simulating the glass inside the bushing, above the tip.

The first option is usually considered in this work, unless mentioned otherwise.

The winder velocity is also a control parameter imposed in the process. At the outlet,
the axial velocity is set to the velocity vy while the tangential force is equal to zero.
Although most of industrial companies use the final radius of the fiber r; as a target, it is
here an output and not an input of the model. By imposing the flow rate and the drawing
velocity, mass conservation automatically determines the final fiber radius of the fiber at
the outlet. Finally, because of the axisymmetric nature of the problem, a symmetry

boundary condition is imposed along the fiber axis.

Free surface

Most of the interactions with the environment take place along the free surface. This
includes for instance the viscous drag exerted by the ambient air and the cooling of the
fiber by convection and radiation. Representing accurately these interactions is thus

critical. The kinematic and dynamic interface conditions are given by

T
a [ t Air
Tg

Glass

Figure 2.3: Interface between the glass and ambient air where 7, and 7, are the stress
tensors for the glass and air, respectively, and n and t are the unit vectors that are
normal and tangent to the surface.
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(8;S—V>-n:0, (2.11)

n-t,—n-7,=yn(V-n), (2.12)

where x; is the position of the free surface, v the surface tension, n the surface normal,
and 7, and T, the interface stress tensors for glass and air, respectively. A schematic
representation of the interface is shown in Fig. 2.3. The term n-7, in Eq. (2.12) represents
the stress exerted by the glass on the air, which is simply obtained from the velocity field
given by Eq. (2.8). The second term, n - 7, is the stress from the air flow acting on the
glass, typically called air drag. This latter effect is discussed further below. Finally, the
term on the right-hand side of Eq. (2.12) is the force induced by surface tension, which

itself depends on temperature (more details on this are given in Section 2.4).

Radiative and convective heat fluxes are imposed at the free surface:

QS = QS,conv + QS,rada (213)

where each term is further developed below.

Velocity and thermal boundary layers

The fiber is typically drawn at high velocity. The ambient air is thus entrained by viscous
forces and a boundary layer forms around the fiber surface, as illustrated in Fig. 2.4.
The large velocity gradients at the surface create in turn a drag force acting on the fiber.
Similarly, the ambient air is typically at a much lower temperature than the fiber. Air
entrainment also creates a thermal boundary layer and the associated convective heat
transfer. Note that if additional cooling through an air conditioner is used (this is typical
in the industrial process), then the air flow might have not only a component parallel to

the fiber, but also a transverse component.

Different theoretical works have investigated the form of these boundary layers in order
to predict the drag and the convective heat transfer coefficients. The studies focused first
on a filament with constant radius at rest subjected to an air flow. The attenuation of
the fiber, induced by the drawdown, was later investigated. The research started with
Sakiadis [28] who calculated the velocity and thermal boundary layers using the Karman-
Pohlhausen integral method and assuming that the filament velocity is constant and the
flow laminar. Glicksman [6] used Reynolds analogy to obtain the Nusselt number and the
drag force for a filament with constant diameter. The curvature of the surface was taken
into account later by Sayles [29] who found an increase of the Nusselt number in this case.

Using integral techniques, Kubo [30] found that the drawdown leads to a decrease of the
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Figure 2.4: Schematic of the boundary layer developing along a filament with constant
radius moving in air at rest (taken from [27]).

thickness of the boundary layer (after a short initial growth) until it reaches a constant
value proportional to the filament thickness, as shown in Fig. 2.5. However, his analysis
was applied to specific cases of fiber spinning and not to a general fiber drawing process.
Finally, Miller [31] calculated the Nusselt number and the drag force and found the same
behavior of the drag as Sayles, i.e. the drag increases with the drawdown. Nevertheless,
unlike Sayles, his work shows that the Nusselt number tends to decrease due to the
drawdown. His justification is based on the questionable validity of the Reynolds analogy

when the drawdown is considered. Note that his work is only valid for laminar flows.

A large amount of experimental work have also focused on finding a correlation for
the Nusselt number and the drag coefficient. Each work is dedicated to a range of exper-
imental conditions expressed through the Reynolds number. In particular, a parallel and
a transverse Reynolds number are defined to represent the parallel and transverse flow.

They are expressed respectively as

2rg
Re, = £, (2.14)
Uy,
and 5
Rej = =% (2.15)
Va

where v, is the transverse air velocity, rg is the radius of the fiber, v, is the axial velocity

at the surface and v, the air kinematic viscosity.
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Figure 2.5: Schematic of the boundary layer in case of a constant radius filament
moving in air at rest (left) and of fiber drawing (right) (taken from [31]).

Drag force

The component of the shear stress 7, exerted by the surrounding air in Eq. (2.12) can be

expressed through a friction coefficient ¢ [32]:
1 2
n-7, t= PactV t, (2.16)

where t is the unit vector along the fiber and tangential to its surface, v the amplitude

of the local glass velocity v at the surface and p, the air density.

The results from the experimental and theoretical works led to an expression for ¢; as

a function of the parallel Reynolds number Rej [32]:
cg=a (Re”)b. (2.17)

Different values for the parameters a and b have been found in the literature from both
theoretical and experimental studies, depending on the range of Reynolds number consid-
ered. In this work, Re) varies between 1 and 10, depending on the final radius (17 to 10
pum), the winder velocity (= 20 m/s) and the temperature of the surrounding air (25°C -

600°C) influencing v,. Note that this latter value is taken for dry air.

Unlike for the polymer spinning process, most of the works on fiber glass drawing
have neglected the drag force such as Manfre [7], Huynh and Tanner [9], Lenoble [16] or
Von Der Ohe [15]. They justified this simplification by the small magnitude of this force
compared to the viscous force. However, this assumption has never been quantitatively

assessed. On the other hand, some authors have taken into account the air drag in their
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physical model. Glicksman [6] calculated the parameters from turbulent boundary layer
theory around a cylinder and found a = 0.4 and b = 0.7 within the range Rej < 100.
Purnode [11,12] considered the value of @ = 0.26 and b = 0.734 from the work of White
and Ide [33]. A summary of the correlation parameters a and b and their range of validity
is provided in the books of Beyreuther [32] and Ziabicki [26]. In the present work, the
parameters from Glicksman have been chosen, but the sensitivity of the model due to

variations of these values has been evaluated. Finally, no cross-flow is considered.

Convective heat transfer coefficient

The expression of the convective flux at the surface of the fiber can be written as

QS,ConV =h (Ts - Text,conv) 5 (218)

where h is the convective heat transfer coefficient and Tty cony is the temperature of the
surrounding air outside of the boundary layer. h is typically expressed in non-dimensional
form through the Nusselt number:

h2r,
Nu =
u P

(2.19)

where k, is the air thermal conductivity. Note that in the present case, because of the
fiber radius attenuation, the fiber radius r, and thus the Nusselt number, are not constant
but functions of z. The different studies have shown that the general form of the Nusselt
number Nu can be expressed in terms of parallel and transverse air flow and is written
as [32]

Nu=¢ (Reﬁ + CQRei)c3 : (2.20)

where ¢;, ¢, and c3 are fitting parameters, and Re; and Rej are defined in Eqs. (2.14)
and (2.15), respectively. These coeflicients are obtained under different conditions based
on the Reynolds numbers and experimental setup. A review of all the coefficients can be
found in the book of Beyreuther [32].

The most widely used empirical correlation comes from the work of Kase and Mat-
suo [34]. They obtained this relation using a wire with a constant diameter of 0.2 mm

subjected to an air flow at constant velocity and temperature. The correlation is given
by

v

Sy, A\ 2\ 0167
Nu = 0.42Re]* <1 + <ﬂ) ) , (2.21)

where v is the velocity of the filament. In the case of a single fiber considered here, the
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entrained air flow is mostly parallel to the fiber !, so that the transverse component can
be neglected. This leads to
Nu = 0.42Re*, (2.22)

for the Nusselt number, and to

h—042 0 Re "% (2.23)
27

for the convective heat transfer coefficient, where k, is the air thermal conductivity. Note
that the presence of the bushing plate and the cone shape of the free jet induce a more
complex flow in the region close to the tip than the experimental setup used to obtain
the correlation. Thereby, some inaccuracies can be expected in the prediction of the
convective heat flux in this region. Nonetheless, in spite of the large number of available
correlations, Kase and Matsuo relation (2.22) is used here as a starting approximation

since it has been used in most studies on fiber glass [9,11,15,19].

Figure 2.6 shows an example of the convective heat transfer coefficient as a function
of the axial coordinate computed with Eq. (2.23) for typical industrial conditions (see
Chapter 5). Initially, h rapidly increases because of the attenuation of the radius of the
fiber and the large increase of the fiber velocity. Further down, the coefficient reaches a

constant value when the forming fiber has converged to its final diameter.

The correlation (2.23) was developed for a constant radius rs, a constant velocity and
a constant surrounding temperature. Consequently, Text cony must be constant in order to
be consistent with the correlation. Nonetheless, considering a constant air temperature
around the fiber is a strong approximation for both single and multi-fiber drawing. More
specifically, the ambient air is generally first strongly heated in the vicinity of the bushing
plate (whose temperature is around 7j) before being entrained downwards by the fiber.
The temperature Tiy conv seen by the fiber thus varies axially. This was highlighted by
McKeone [13] who measured experimentally the air temperature both radially and axially
on a nine tip bushing. On the other hand, Offermans [35] used numerical simulations to
calculate the temperature profile for a complete bushing position and found that the
air temperature exhibits strong gradients in both axial and radial directions around the
fibers. Furthermore, the air flow was observed to be turbulent. In addition, Text cony has
been measured in this work using a bushing with a single tip. The results are detailed
in Chapter 3. Based on the results of Offermans [35], McKeone [13] and the results from

the experimental investigation, the convective air temperature could be approximately

IThe air flow is much more complex in the case of a complete bushing position with multiple filaments,
and one has to resort to numerical simulations of the flow to accurately predict the convective heat
transfer.
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Figure 2.6: Convective heat transfer coefficient h(z) as a function of the distance from
the tip z predicted by Eq. (2.23). The process conditions are: vy = 21.3 m/s,
Qo =1.677-107" m3/s, ro = 0.6 - 1072 m and Ty = 1300°C.

described by
Text.conv(2) = Ty + (Tr, — T7) exp(—az), (2.24)

where T, is the room temperature at the winder, 7}, the air temperature at the bushing
plate and a a parameter defining how the air temperature decreases axially. The values
found experimentally are presented in Chapter 3.

As the correlation for A has been developed for a constant external temperature,
applying it with an axially-varying temperature Toxt conv(2) (i.€., by assuming a quasi-
equilibrium at each location z) is questionable. Therefore, unless specified otherwise, sim-
ulations hereafter have been performed using a constant average air temperature Ti conv,
which was estimated at 600°C from the simulations of Offermans [35] in case of multi-
fiber bushing and at room temperature from experimental measurements in case of a
single fiber bushing. This problem is further discussed in Chapter 5, where simulations
with a temperature Ty cony that varies with z according to Eq. (2.24) are also performed.

Finally, the application of the correlation itself can be questioned considering the
radius attenuation in the region close to the tip, where heat transfer is critical. Despite
these deficiencies, Kase and Matsuo correlation is used here since it is the most widely
used correlation in the literature. A specific section of Chapter 5 focuses on providing a

more accurate representation of the convective heat flux.
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Radiation

The forming fiber is here initially assumed to be an opaque and grey medium for all
wavelengths, so that radiation is only emitted at the surface of the fiber, and the surface
absorbs and reflects diffusely the radiation flux from the surrounding environment. In
the case of multi-filament bushing, the surrounding components interacting with the fiber
are the finshields, the tip plate, the fiber itself, the surrounding fibers and the room.
Furthermore, all contributors influence each others and the system is fully coupled. In
the case of a single filament bushing, the finshields and the surrounding fibers are not
present (see Fig. 2.7).

Since the two-dimensional model is derived for an axisymmetric case, angular varia-
tions are neglected in the equations. For multi-filament bushing, the radiative contribu-
tions of the finshields and the surrounding fibers are function of the angular direction,
which cannot be captured under the axisymmetry assumption. On the other hand, in-
teraction with the tip plate can play an important role. Because of the concavity of the
cone shape of the forming fiber, the plate is not seen by an element of the fiber surface in
this region. When the concavity becomes smaller, the fiber surface can interact with the
plate. Additionally, the concavity of the fiber induces an interaction between the upper
and lower parts of the fiber. Both the interactions between the fiber and the plate, and
the fiber with itself are neglected here, but the impact of this approximation is discussed

in Chapter 5, where the surrounding environment is simulated.

Figure 2.7: Picture of a tip plate for a single fiber bushing.

Under these assumptions, the radiative environment for the fiber is treated here as a
black body, such that

(rad = €0 (TS4 - Télxt,rad) . (225)

where ¢, is the emissivity of the surface, o Stefan-Boltzmann constant, T the fiber surface
temperature and Ty aa the temperature of the surrounding medium. In the case of

single fiber bushing, Texraq is the room temperature and is set at 25°C. If a multi-
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filament bushing is considered, the fiber sees directly the finshields. As a result, Tix; raa 1S
approximated at the average finshield temperature. This temperature is equal to 200°C,

as shown by Offermans [35].

2.3 One-dimensional model

The axisymmetric model described in the previous section has the advantage of con-
sidering both axial and radial variations, and of including most of the relevant physics.
However, the numerical convergence is slow due to the different length scales involved,
the free surface and the non-linear viscosity law. As a consequence, simulations of many
different cases is very time-consuming. For this reason, a simplified one-dimensional
model has been developed based on the work of Glicksman [5], which was used later
by Rekhson [18] and Lenoble [16]. Glicksman’s model is based on the reduction of the
dimension of the problem by considering only axial variations of all variables. Starting
from these equations, this model is further simplified here by neglecting the influence of
some forces leading to a semi-analytical solution. Unlike Glicksman’s model, the form
of the model proposed here highlights the dependency of the solution on key parameters
and provides a powerful tool to understand the underlying physics. Evidently, these sim-
plifications reduce its accuracy compared to the two-dimensional model, as discussed in
Chapter 5. The one-dimensional steady-state approach of Glicksman, where only radial
variations are neglected, is first presented. Based on this model, the present simplified

formulation is then derived.

2.3.1 Glicksman model

Glicksman [5], followed by Rekhson [18] and Lenoble [16], considered a one-dimensional
simplification of the equations described in Section 2.2. Starting from the Navier-Stokes
equations written in the axisymmetric assumption, Eqgs. (2.4)-(2.7), he integrated them
over the cross section of the fiber in order to obtain a one-dimensional form. He assumed
that the resulting equations are only valid for a region where the relative radius variation
is less than one tenth, called the central region. He also neglected the influence of internal
radiation, based on the low value of the optical thickness in this central region, and of

viscous heating. However, he included the air drag, surface tension and gravity effects.



38 Physical modeling of the fiber drawing process

This led to the following set of equations:

pv.S = pQo, (2.26)
v, o) ov.| 0
pszl = — |3nS v +— [7\/ WS} + pgS —21,V7S, (2.27)
V. N——— v - Gravity Drag
Inertia Viscous force Surface tension
oT 0 |oT
R S ; 2.2
pr=56p 0z k@z [62] @s: (2.28)

where S(z) = 7r(z)? is the cross section of the fiber along the axial coordinate, and g
is the heat flux at the free surface given by Eq. (2.13). The detailed derivation of these
equations is given in the works of Glicksman [5] and Lenoble [16]. Eqgs. (2.26)-(2.28) were
then solved numerically, but no comparison with a more accurate two-dimensional model

was made.

2.3.2 Semi-analytical model

Although the complexity of the problem is reduced, Eqs.(2.26)-(2.28) still do not provide
explicit information about the underlying physics. However, further simplifications, i.e.,
neglecting some forces, can be applied to obtain a semi-analytical form. In particular,
Glicksman’s model (and the two-dimensional model of Section 2.2) takes into account the
viscous, drag, inertia, gravitational and surface tension forces acting on the fiber.
By neglecting all but viscous forces, Eq. (2.27) simplifies to
d

dv,
— = 0. 2.2
dz [3775 dz ] 0 (2:29)

This strong simplification is motivated by the fact that the viscous force has the largest
contribution owing to the very large glass viscosity, as discussed in Chapter 5. Integrating

Eq. (2.29) gives
dv,
dz

In other words, considering only the viscous force implies that the tensile force F'(z) is

3nS— = F(z) = const. (2.30)

equal to a constant along the coordinate z. Using Eq. (2.26), the latter equation becomes

dv,
377@ ”

v, dz

= F, (2.31)

which can be integrated between 0 and z to yield

v.(2) = vy exp (F3 ‘g?), (2.32)
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where vy = v,(z = 0) is the velocity of the glass at the tip and ¢ is the fluidity, defined as

o(z) = /OZ 77(12/)dz'. (2.33)

Note that the viscosity also depends on z through Eq. (2.9) as n(z) = n(7T'(z)). Evaluating

Eq. (2.32) at the coordinate where the drawing force is applied, z = z¢, one obtains

Fo 3%y, (3) , (2.34)
14 Vo
with
= (z)—/zf L gz (2.35)
PEVEIT ) @) '

Equation (2.34) for ' can now be used in Eq. (2.32) to obtain

v\ PR/ e
v,(2) = vy <—> : (2.36)
Yo
Using the conservation of mass, Eq. (2.26), the radius of the fiber is given by
—p(2)/2¢¢
r(2) = 1o (ﬁ) . (2.37)
Vo

Finally, the axial stress 7,, = F'/S is given by

3 Vg
me(2) = Zon(a)n <U—O) . (2.38)

The integral ¢(z) represents the variation of viscosity along the fiber. Because of
the temperature dependence of the glass viscosity, as given by Eq. (2.9), ¢(z) is highly
dependent on the temperature field. Low values of viscosity in the high temperature
region (i.e., close to the tip) represent the largest contribution to ;. Consequently, a
small variation in the fiber temperature in this region generates a large impact on the
fluidity, and thereby on the flow. The integrals ¢(z) and ¢ are the only link between
the flow dynamics and the cooling process. However, these equations require solving the

energy equation to obtain the temperature profile:

dT'(z) 27 . (- <ﬁ)<p(z)/2gaf

- S 9 239
& o (2.39)

Vo
where internal radiation, conduction and viscous dissipation inside the fiber have been
neglected. The solution of the one-dimensional model is not entirely analytical because

Eq. (2.39) requires a numerical solution, but numerical treatment is much less time con-
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suming compared to the two-dimensional model and Glicksman’s model. The numerical
method for solving Eq. (2.39) is presented in Chapter 4.

Although the above simplifications reduce the accuracy of the solution, the set of
equations provide a useful basis to understand the underlying physics and, in turn, to
identify strategies to reduce the stress. In particular, Eq. (2.38) demonstrates that the
axial stress depends on three parameters: the drawing ratio vf/vg, the drawing velocity v,
and the final value of the fluidity ¢¢. This can be used to optimize the operating window,
as discussed in details in Chapter 6. Additionally, the accuracy of this simplified model

compared to the axisymmetric two-dimensional model is discussed in Chapter 5.

2.4 Material properties

The equations of the viscous non-isothermal model require the properties of the molten
glass such as the viscosity, the specific heat, the density, the thermal conductivity and the
surface tension. The range of temperature over the region of interest is more than 500°C
and consequently, the thermal variability of the properties may have an impact. Unless
otherwise specified, the glass considered in this work is the commercial Advantex(c). Un-
fortunately, material properties are very sensitive to the glass composition and measured
data is not available in the literature for this glass as it is a commercial glass. As a
result, measurements of all required material properties over the relevant range of tem-
perature have been subcontracted to external laboratories. The present section describes
each property and their relative variation with temperature. In particular, the viscosity

is discussed in more details since it is a key property in the glass forming process.

2.4.1 Viscosity

The forming behavior of a liquid and super-cooled glass is essentially driven by the viscos-
ity. Viscosity is a measure of the internal friction due to the relative motion of different
layers of a fluid. More specifically, the viscosity 7 is defined as the ratio of the shear stress
to the shear rate. For a Newtonian fluid, this ratio is independent of the shear rate, so
that stress and shear are linearly proportional.

Since viscosity varies dramatically with temperature, it determines at which tempera-
ture the glass can be melted or produced. A typical viscosity-temperature curve is shown
in Fig 2.8. In particular, the viscosity increases strongly and continuously as the temper-
ature decreases. Different reference viscosity points are generally used in the industrial

process:

Melting point (10' — 10? Pa-s) Viscosity in the furnace required to perform a complete
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Figure 2.8: Viscosity as a function of the temperature for the Advantex(c) composition.

homogenization of the melt.

Working point (10? — 10% Pa-s) Viscosity at which the glass can be transformed into
its final shape. In the fiber glass process, the working point is taken at n ~ 102
which more or less corresponds to the viscosity at the tip exit. For other forming

processes, the working point can be around n ~ 103.

Softening point (10%¢ Pa-s) Viscosity at which the glass can sustain its own weight

without continuous deformation.

Transition/annealing point (10'? Pa-s) Viscosity value assumed for the glass tran-
sition temperature T,. It is also called the annealing point. It is related to the
relaxation of the stress, which takes several minutes at this temperature. This

reference point is thus used to remove residual stresses within the glass.

Strain point (10'*5 Pa-s) Viscosity at which the stress relaxes within a few hours.

These reference points are useful in the glass industry since they determine the tempera-
ture required at each step of the manufacturing process. The viscosity-temperature curve
is essential in a glass forming process because it gives a measure of the energy required,
and thus the cost of production, to melt and produce a glass. The objective is generally

to obtain a glass composition with a low melting temperature.

Viscosity law

The temperature dependence of the viscosity can be expressed mathematically through

different relations. Depending on the composition, the viscosity can follow different for-
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mulations. As a result, Angell [36] has classified its behavior with temperature into two
categories, fragile or strong glass. The fragility indicates a deviation of the viscosity

behavior from Arrhenius law, given by

n(T) = Aexp <%> : (2.40)

where A is a temperature-independent parameter, T' the glass temperature and R the
universal gas constant. Viscosity is assumed to be a thermally activated process where
molecules have to jump an energy barrier in order to move [37], which is represented by the
activation energy F,. For a strong glass', i.e., a glass whose viscosity follows Arrhenius
law, log,,n appears graphically as a straight line. However, most glass compositions
demonstrate a clear deviation from this straight line, especially in the super-cooled region.
A measure of this deviation around 7, is given by the fragility coefficient m:

m = M (241)

(/1) g,
A large value of m corresponds to a large deviation from Arrhenius behavior. In the case of
a fragile glass, an empirical temperature-dependent activation energy E,(7") seems more

accurate to fit experimental data [38] and is given by

T
E,(T) = E?

2.42
T T, (242)

where EY and 7. are two constants. This leads to the famous Vogel-Fulcher-Tamman
(VFT) equation (mentioned in Section 2.2):

B

1 T)=1 o + =——=-
0g1o1(T) = logyn +T—Tc

This relation has been the most frequently used model in the literature for many decades
and seems to be adequate in predicting the viscosity variation over the entire range of
temperature from equilibrium to transition [39].

Nevertheless, the empirical nature of this relation led Mauro et al. [40] to propose a
new viscosity law for liquid glass derived from the work of Adam-Gibbs [41] and based on

thermodynamic laws:

K C
logn(T") = logyg e + T &P (T) ; (2.43)

INote that the use of the words fragile or strong may lead to ambiguities. Here, their meaning is
related to viscosity and not to the brittleness of the material when a stress is applied.
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called the Mauro-Yue-Ellison-Gupta-Allan (MYEGA) law. In Eq. (2.43), 7, K and
C are parameters which are derived from thermodynamics. However, in practice, these
parameters are fitted with experimental measurements. The value of 7., should be, in
principle, the same as in the VFT model given by Eq. (2.43) because it is the viscosity
at infinite temperature. But measurements are always performed on a finite temperature
range leading to different values of 1.,. The major advantage of this model is to remove
the singularity at 7' = T, and to increase the accuracy of the viscosity-temperature law at
lower temperatures [40]. Moreover, its formulation is based on thermodynamics, removing

thus some of the empiricism of the VFT model.

Limitation

The formulation of the viscosity law is not trivial and many basic questions are still open
as highlighted by Mauro et al. [40]. The main difficulty is the form of the curve for
temperatures below Ty, i.e. 7 > 10" Pa-s. The VFT model implies an infinite viscosity
at T" — T, while the singularity occurs for a temperature equal to zero for Arrehnius
and MYEGA models. Some authors [42,43] have expressed some doubts related to this
singularity at finite temperature T.. According to Mauro et al. [40], the MYEGA model
is a strong evidence against the existence of this divergence in glass-forming liquids.

On the other hand, the glass structure is out of equilibrium near the glass transition
and depends on the thermal history. Because the viscosity depends on the structure, the
formulation may differ significantly from the viscosity law at equilibrium. The previous
relations, Eqgs. (2.40), (2.9) and (2.43), are obtained under the assumption of equilibrium
and do not take into account the information of structural deviation from equilibrium at
transition. Formulations for non-equilibrium viscosity exist [44] but are not considered in

this work.

Viscosity measurements

The viscosity has been measured experimentally by a coaxial cylinder viscometer over the
temperature range from 800°C to 1400°C. The sample is heated in a platinum crucible
from room temperature to 1400°C over five hours. Then, measurements are performed by
decreasing the temperature by steps of 50°C until reaching 800°C. Over the glass transition
region, a dilatometer was used instead of the viscometer. The principle is based on the
dilatation of a glass sample during a cycle of temperature variation. Viscosity can be
obtained from the measurement of dilatation. The error on the measurement for the
viscometer is estimated to vary between 3% at 1300°C and 6% at 800°C and the error on

the dilatomer points is less than 1%.
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Figure 2.9: (a) Viscosity as a function of the temperature obtained by the MYEGA and

VFT laws for the Advantex(c) composition. Experimental points from the viscometer
and dilatometer measurements are also shown. (b) Relative error from curve fitting at
the measurement points.

The measurement points can then be fitted to obtain the coefficients 7., B, T, for
the VFT law or 7, K and C for the MYEGA law. The fit is performed using the least

square method on the log values of the viscosity.

Figure 2.9 shows the results of the regression including the relative error at the different
measurement points, and Table 2.1 summarizes the temperature of the reference points.
As illustrated in the figure, a gap in the measurement points is visible between 996°C and

775°C, which is due to the limitation in temperature of the two measurement devices.
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Reference point log n [Pa-s] Temperature [°C]

Working point 2 1268
Softening point 6.6 895
Glass transition 12 730
Strain point 13.5 702

Table 2.1: Reference viscosity points and corresponding temperature for the
Advantex(c) composition.

The VFT and MYEGA laws seem to be adequate to predict the viscosity-temperature
dependence. The relative error at the measurement points show a maximal error of 2%.
The lower error in the low temperature range stems from the fact that few points are
available in this range. Overall, almost no difference is observed between the two laws.
Moreover, the relative error is smaller than the measurement uncertainties. Therefore,
all results shown in the following are based on the VF'T model. Nonetheless, a specific
section in Chapter 5 is dedicated to a discussion of the impact on the two viscosity laws
in the case of modeling the fiber drawing process. The parameters considered for ny, B

and T, are given in Table 2.2 further below.

2.4.2 Specific heat

1.6

Heating peak

0 200 400 600 800 1000
T [°Cl

Figure 2.10: Measurement of the specific heat ¢, as a function of the temperature in the
glassy and transitional state for the Advantex(c) composition, obtained with a
differential scanning calorimeter. The measurement error is approximately 3%.
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The specific heat ¢, measures the amount of energy required to increase the tempera-
ture of a material. The value of ¢, depends on the glass composition and temperature. The
measurements for temperatures above the transition were performed on a Calvet calorime-
ter, while a differential scanning calorimeter was used for the transition and glassy state.
It has been shown that the variation of ¢, with temperature is usually smaller than the
precision of the measurement [45]. As a consequence, ¢, is assumed to be constant within
the liquid region. The value taken in this model is equal to 1.48 J/g°C with an uncertainty
of 0.02 J/g°C (1.35%). However, a constant value is only valid in the liquid state since the
specific heat decreases abruptly by a quantity Ac, ~ 0.324 J/g°C during the transition
and then slowly decreases with temperature in the glassy state. Figure 2.10 shows the
measurements from the differential scanning calorimeter where the Ac, is clearly visible.
The measurement error was estimated to be about 3%. Note that the heating peak, as
depicted in Fig. 2.10, is only a memory effect occurring when the sample is heated up

from the glassy state. If the glass is cooled, the peak does not occur.

2.4.3 Density

The density p of a material is the mass per unit of volume. As the other properties,
p depends on the composition and temperature. The variation of the volume with the

temperature in the liquid state, i.e., the slope of the curve in Fig. 2.1, is due to [25]:

e variation of the vibrationnal mode of the molecules, denoted as «,

e and variation of the structure, denoted as a.

The slope is thus written as

1 [foV 5 o
Oéliqzv<a—T>p:aV+as:4-10 bect, (2.44)
where the values were measured by the beam bending method. The variation of the

volume automatically gives the temperature behavior of the density, which is typically

linear and can be written as

P(T) = pret(1 — (g (T — Thet))), (2.45)

where (Tref, pref) is a reference point taken at T = 1300°C. Additional experimental
measurements of the density as a function of the temperature are thus needed within
the liquid region and results are shown in Fig. 2.11. Density has been measured using
Archimedes method, which is based on the determination of a weight of a platinum-

rhodium sphere immersed into the molten glass at a given temperature. Fig. 2.11 includes
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the linear regression from experimental data which has the following form
p(T) = a, +b,T Kg/m* VT >T,, (2.46)

where the constants a, and b, are given in Table 2.2. It is a reformulation of Eq. (2.45).
Unfortunately, accounting for variable density in simulations would require specific numer-
ical treatment. Therefore, all following results have been obtained assuming a constant

density of 2470 kg/ m® in all simulations.
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Figure 2.11: Density as a function of the temperature in the liquid state
(Advantex(c) composition).
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Figure 2.12: Measurement of the density of different fibers at room temperature
(Advantex(c) composition).
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The glass structure in the solid state depends on the cooling rate applied during tran-
sition. Because fiber drawing involves a much higher cooling rate (= 10° °C/s) compared
to the usual cooling rate in laboratory (closer to 20°C/s), the density measurement at
room temperature must be performed on actual fibers, rather than glass samples cooled in
laboratory. Different samples have been used to capture the natural variability in cooling
rates during the manufacturing process. The results are given for each sample including

error bars in Fig. 2.12. The average density at room temperature is thus approximately
Peotd = 2575.2 4 6.7 kg/m”. (2.47)

While the solid state value is not involved in the viscous model, this value is required for
the calculation of different experimental parameters (e.g., mass flow rate), as discussed in
Chapter 3.

2.4.4 Thermal conductivity

The thermal conductivity k& measures the capacity of a medium to transport heat by
conduction. In the molten glass, this quantity often includes the effect of internal ra-
diation, and is called the Rosseland conductivity. However, this approximation is only
valid under certain conditions, which are discussed in detail in Section 2.6. In the case
of fiber drawing, the true thermal conductivity must be considered (i.e. without radi-
ation). The only available data found for the true conductivity in the literature for a
glass composition similar to Advantex(©) is for the E-glass. Manfreé [7] used a constant
value of k = 2.65 W/mK, while Huynh and Tanner [9] worked with a conductivity equal
to 1 W/mK. Lenoble [16] also took a constant value set at 1.8 W/mK. Similarly, Von
Der Ohe [15] worked with constant values (k =3 W/mK and k = 2.2 W/mK depending
on the melt considered). Additionally, she found that the dependency on temperature is
negligible in the fiber drawing process.

Fig. 2.13 shows the experimental measurements of the conductivity obtained with the
flat disk method. In molten glass, the conductivity seems to increase when temperature
decreases until the transition. Although the measurement uncertainty is large, the same
order of magnitude is found as in the literature. The dependency with temperature
between 800°C and 1350°C is calculated by a linear regression of the measured data, as

shown in Fig. 2.13. The relation is expressed as

where the constants a; and b, are given in Table 2.2.
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Figure 2.13: Measurement of the thermal conductivity for the Advantex(c) composition.
The measurement error is estimated to be around 7%.

2.4.5 Surface tension

The surface tension of molten glass strongly depends on the glass composition, and more
weakly on the temperature and level of OH in the melt. In addition, the chemical nature
of the surrounding atmosphere may have an effect on surface tension.

In the study of the fiber glass drawing process, surface tension is often considered
as a constant or even neglected. Nevertheless, Von der Ohe [15] found a temperature
variation of about 0.02 N/m per 100°C based on measurements in the range of 1200°C
to 1600°C, which led to the following expression: (T') = 2 - 10~*T" + 0.0864, where T'
is in Kelvin leading to (1145°C) = 0.37 N/m. Similarly, Pye [45] reported a variation
of the surface tension with temperature in the same range as Von Der Ohe. The error
of the measurement is approximately 2%. As a consequence, the measurement has to be
sufficiently accurate to capture the temperature dependency.

Some authors have studied the influence of the atmosphere on surface tension. A
complete review can be found in the book of Pye [45]. Gases such as SO, or NHj are
not present in the fiber drawing process, but water vapor in the atmosphere can lead
to variations of surface tension. Measurements of surface tension should therefore ideally
account for the air water content. Due to the difficulty of reproducing the exact conditions
of the process, this effect has been neglected here, and measurements have been made in
non-controlled atmosphere.

The method used is a sessile drop technique, which consists in measuring the contact
angle of a drop of molten glass. The measurement is performed using image processing.

However, the measurement is often dependent on the device and the error may be large.
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Figure 2.14: Measurement of the surface tension at 1262°C and the calculated linear
dependency with temperature. The slope is equal to 2 - 10~ for the
Advantex(c) composition.

A surface tension of
v =0.391 £0.011 N/m at T = 1262°C, (2.49)

was measured. Using the temperature dependence found by Von der Ohe, the dependency

on temperature is additionally modeled as
v =a,+ 0,7 N/m, (2.50)

where the constants a, and b, are given in Table 2.2. This relation is shown in Fig. 2.14.

2.4.6 Effective emissivity

The model developed in Section 2.2 assumes that the fiber is an opaque, diffuse and
grey medium. The model thus involves only surface radiation as boundary condition
(Eq. (2.25)). This is a strong approximation since glass is a semi-transparent medium.
This topic is further discussed in Section 2.6. Nonetheless, using this approximation
requires characterizing the surface emissivity e.

The surface emissivity depends on the temperature, but also on the thickness of the
medium because of the semi-transparent nature of glass. Gardon [46] in 1955 studied the
emissivity for glass plates with different thicknesses. He found a decrease of emissivity
from a value of 0.9 at room temperature to 0.3 at 7' = 1573 K. Moreover, the emissivity
was found to decrease with thickness for a thickness below 15 cm. In the present case,

the fiber thickness varies from 1-2 mm at the tip to 10 pym as final diameter. Based
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on the work of Gardon, Huynh and Tanner [9] used a constant value ¢, = 0.272 for E-
Glass and Von Der Ohe [15] took a constant emissivity equal to ¢, = 0.3. Purnode and
Rubin [11] performed numerical simulations with a constant e, but its exact value was not
mentioned. Lenoble [16] used for the first time an emissivity that depends on temperature
and fiber diameter 5. The relation found is for the E-Glass composition, which is written

as
e=e(l—e7), (2.51)

where 7 is the optical thickness of the glass, defined as

7= (77744549 - 107 T) (4r,) "1 7H107 T (2.52)
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Figure 2.15: Measurement of the emissivity ¢ as a function of the temperature and the
thickness of the medium for the Advantex(c) composition. The solid lines represent the
fitting of the experimental data through Eq. (2.53). The relation proposed by
Lenoble [16] (Eq. (2.51)) is also shown as dashed lines for comparison.

Measurements were performed on Advantex(c) glass for different diameters and tem-
peratures. The fitting of the data with respect to these two quantities is achieved through
the relation

€ = (a.T + b.) [1 — e“™], (2.53)

where the constants a., b, and ¢, are given in Table 2.2!. Results are presented in Fig. 2.15
where the experimental data is compared with Eq. (2.51) and Eq. (2.53). The interpola-
tion function proposed here (Eq. 2.53) clearly fits much better the experimental data for

!The units of temperature and radius are respectively °C and m.
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the Advantex(© than that proposed by Lenoble (Eq. 2.51).

It is important to note that, because glass is a semi-transparent medium, measure-
ments of surface emissivity cannot isolate the surface radiation from the radiation coming
from the bulk. Such measurements should therefore be seen as measurements of an effec-

tive emissivity, rather than a pure surface emissivity.

As a result, the influence of the thickness is a consequence of the radiation from the
bulk passing through the surface. The quantity ¢ is thus called effective emissivity in this
work. Despite the fact that the effective emissivity clearly depends on the temperature and
thickness (see Fig. 2.15), it is approximated here as a constant. Moreover, in the region
where the contribution of radiation is important for cooling, i.e., from 1300°C at z = 0 to
1200°C at z = 5 mm (see Section 5.1.2), the increase of €5 due to the temperature decrease
is partially compensated by the decrease of €5 due to the decrease of the thickness (i.e.,
fiber diameter). This is illustrated in Fig. 2.16, which shows the variation of the effective
emissivity along the fiber, where ¢, was computed from Eq. (2.53) using the temperature
T, and fiber radius rs from a simulation using the two-dimensional axisymmetric model.
Averaging over the range where radiation dominates leads to a value ¢, = 0.4. The error
introduced by approximating € as constant is thus small. The sensitivity of the results
on the value of this constant and a comparison between the effective emissivity approach

and the full model including internal radiation is discussed in Section 5.4.4.
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Figure 2.16: Emissivity variation as a function of the distance from the tip exit using
Eq. (2.53) and the solution from Section 5.1.2. The region from z = 0 to the dashed line
corresponds to the region where radiative cooling is dominant.
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2.4.7 Summary of the material properties of glass

Table 2.2 summarizes all material properties used in the one- and two-dimensional models
(i.e., molten glass) for the Advantex(c). For each property, both a temperature dependence
and a constant value are given. The temperature dependence is characterized by the equa-
tion used to model it, the value of the parameters obtained from fitting measurement data,
and its range of validity. As some simulations neglect temperature variations of material
properties, a constant value is also given, which has been defined as the corresponding

property evaluated at 7" = 1300°C (i.e., the tip temperature).

Glass properties Constant value Temperature dependence
T =1300°C  Parameters Eq. Range [°C]

Moo = —3.075

Viscosity n [Pa-s] - B = 5262.4 (2.9)  [725-1430]
T, =402.3

Specific heat ¢, [J/kgK] 1480 - - [800-1400]
a, = 2597.5

Density p [kg/m3] 2470 (2.46)  [750-1400]
b, =—0.1
ap = 1.65

Conductivity & [W/mK] 1.27 (2.48)  [800-1350]

by =—3.17-107*

a, = 0.1386
Surface tension 7y [N/m)] 0.39 (2.50)  [800-1400]

by =2-1074

ac = —5915-10"*
Effective emissivity ¢, [-] 0.4 b = 1.227 (2.53)  [600-1350]

c. = —2.062 - 10*

Table 2.2: Summary of the glass properties of the melt used in the viscous models for
the Advantex(c) composition.
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2.5 Model of the surrounding air

As mentioned previously, the use of Kase and Matsuo correlation (Eq. (2.23)) to estimate
the convective cooling is questionable. In order to assess its accuracy a simple model
of the ambient air flow is also considered. The objective is to compute the velocity and
temperature fields of the entrained air in the vicinity of the fiber. The heat flux at the
surface and the corresponding convective heat transfer coefficient can then be obtained
from the temperature profile in the thermal boundary layer.

As the fiber is drawn at rather large velocity, the entrained air is in a turbulent state.
To limit the computational cost, a Reynolds-Averaged Navier-Stokes (RANS) approach
is favored. The Mach number being sufficiently low, the ambient air is considered as

incompressible.

2.5.1 Governing equations

Using Reynolds decomposition, the random turbulent velocity v;, pressure p and temper-
ature T fields can be expressed as the sum of a mean value and some fluctuation around
this mean, i.e., v; = v; + v}, p=p+p', T =T + T', respectively, where - represents the
averaged quantity, and -’ the random fluctuation. Introducing this decomposition into the
incompressible Navier-Stokes equations and averaging leads to the RANS equations for

the mean quantities:

1 NG

’Ujaj’l}i = ——0;p+ MaVQUZ‘ — 8jvjvi, (255)
Pa

0;0;T = D,NV*T — 0;u[T", (2.56)

where i, is the dynamic viscosity of air, D, its thermal diffusivity and the overbar indi-
cating an average value has been omitted for the transported quantities to simplify the
notation. The RANS equations are unclosed since the Reynolds stress —W and turbulent
temperature flux v/7” are unknown. These two terms are here modeled through an eddy
viscosity and eddy diffusivity assumption using the realizable k-¢ model, an improved

version of the classical k-¢ model [47].

2.5.2 Computational domain and boundary conditions

Similarly to the fiber, the air flow is considered axisymmetric. Figure 2.17 illustrates the
computational domain. It is divided into two sub-domains: on the left the fiber itself that

is computed with the axi-symmetric two-dimensional model described above, and on the
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right the ambient air region in which the RANS equations are solved. It is important
to emphasize that the solutions (velocity and temperature fields) in the fiber and in the
ambient air depend on each other. Therefore, the two simulations, which use two different

solvers as described in Chapter 4, must be coupled.

Tip plate Air
A To To Tin Pin
I, e Tip
.............. Fiber
Tin
Pin

0.0821m
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Symmetry

y Pout

0.03m

Figure 2.17: Computational domain of the surrounding air and the forming fiber.

For the ambient air domain, the upper boundary is divided into two sections, cor-
responding to the bushing plate and to the air inflow. The boundary representing the
bushing plate has a length of 3.4 mm, which corresponds to the mono-filament bushing
(see Chapter 3). It is considered as a no-slip wall at uniform temperature Tj, similarly to
the tip wall. On the other hand, the inflow is set at a constant pressure p;, and tempera-
ture Ti,. Similarly, the right boundary corresponds to an inflow at a constant pressure py,
and temperature Tj,. The bottom boundary is considered as an outflow. To mimic the
low pressure area present in the industrial process, and to ensure that no recirculation
takes place across this boundary, a constant pressure poyy < pin is imposed. The continuity
of velocity, stress, temperature and heat flux is imposed at the fiber surface by coupling
the two simulations. The boundary conditions for the axisymmetric fiber model is thus
adapted accordingly. The inflow conditions for the turbulence quantities correspond to
a low level of turbulence (i.e., 5% turbulence intensity and a turbulent viscosity ratio
equals to 10). As it is shown in Chapter 5, the impact of the inflow boundary conditions

is negligible as most of the air velocity and temperature variations occur in a a very thin
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region next to the fiber.

This model could be further improved by considering different turbulence models and
more realistic boundary conditions. Moreover, the influence of other setup elements (fin-
shields, air conditioning system, etc.) could also be added. Nevertheless, the aim of this
model is mostly to assess the accuracy of the empirical correlation, so that the present

level of fidelity is deemed sufficient.

2.6 Semi-transparent model

The models derived in Section 2.2 and Section 2.3 assume that the glass is an opaque
diffuse grey medium, i.e. all radiative phenomena occur at the surface of the fiber and do
not depend on the wavelength and direction. Consequently, heat transfer within the glass
is only due to conduction and convection. However, molecules internal to the glass can
participate to the radiation phenomenon by emitting and absorbing photons in a certain
range of wavelengths. The consequence is an additional heat transfer mechanism inside the
glass. Depending on the glass composition and the size of the medium, the corresponding
internal radiative heat flux may be as large as the conductive heat flux. While this aspect
is critical for glass furnaces, it is more ambiguous in the glass forming process because
of the small dimensions of the fiber. Several studies of different glass forming processes,
such as flat glass tempering [48], glass sagging [49] or optical glass fiber drawing [50], have
demonstrated the importance of accounting for internal radiation to obtain the correct
temperature field. In the case of the fiber drawing process, all studies have neglected
internal radiation because of the small fiber dimensions and the complexity of numerical
simulations. Nevertheless, some authors recognized the importance of investigating this
problem, such as Glicksman [5] and Lenoble [16].

A detailed model for internal radiation is presented here. The objective is to determine
quantitatively the impact of internal radiation in the fiber drawing process. This section
is dedicated to describing the physical models for internal radiation in semi-transparent
media, including appropriate boundary conditions and material properties. The different

radiative regimes are also discussed. Results are presented in Chapter 5.

2.6.1 Radiative regimes

The convection and conduction mechanisms are local phenomena occurring at the atomic
scale (~ 107 m), while the scale of radiative phenomena (i.e., the photon mean-free-path
length) ranges between ~ 1072 and ~ 10'° m. This scale is linked to the capacity of the

medium to interact with an electromagnetic wave crossing it, which is generally a function
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of the wavelength A. As a result, the importance of internal radiation within a medium
is a function of the scale and material considered.

A macroscopic quantity measuring the emission and the absorption of photons by the
molecules of the medium is the absorption coefficient k. It represents approximately the
inverse photon mean-free-path and is thus an inverse length scale with units m=!. Its
value strongly depends on the wavelength. Three different situations can occur when a

medium is exposed to an irradiation:

e k) = 0: the in-coming radiative energy is not affected when traveling through the

medium, that is in this case called transparent;

e k), = 0o: the in-coming radiative energy is completely and instantaneously absorbed

at the surface of the medium, that is then called opaque;

e otherwise: the semi-transparent medium absorbs and emits radiation leading to a

variation of the radiative energy.

Strictly speaking, all materials are semi-transparent. Opaque and transparent are only
two limit cases. However, for some scales and values of the absorption coefficient, the
assumption of a transparent or opaque medium is adequate, which simplifies the problem
as it avoids the complex treatment of internal radiation. A common example is a glass
window, which is transparent for typical thicknesses. But, if the thickness of the window
increases, it becomes more and more difficult to see the light coming from the outside,
until the point where the thickness is so large that the light from the outside is not visible
any longer. At this point, the window can be considered to be opaque. As a consequence,
the length, or the thickness, must be taken into account to determine if the medium
should be treated as transparent, opaque or semi-transparent. This is measured by the
optical thickness

T\ = /OS kads = Kliad, (2.57)

assuming k) to be independent of the length scales considered and [,,q a characteristic
scale. The optical thickness is thus a non-dimensional parameter that measures the ratio
between a characteristic length scale [,,4 of the medium and the average distance traveled
by a photon (1/ky). The estimation of 7, thus gives an information on the radiative

regime of the medium. Three main regimes can be distinguished:

Optically thin 7, < 1: The scale is much smaller than the distance required to at-
tenuate the in-coming radiation. This situation can occur when l,,q is very small,
even if k) is high, or for very small values of k) even if the scale is large. The

electromagnetic waves traveling within the medium interact only weakly with the
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particles over the distance traveled. Their loss or gain of energy are very small. In

the limit of a very small 7, the medium can be assumed to be transparent.

Optically thick 7, > 1: In this case, [,,q and/or k) are very large. The electromagnetic
waves interact many times with the emission and absorption of the particles of
the medium over the distance traveled. The emission of the particles is rapidly
absorbed by the neighbor molecules, with the consequence of a rapid attenuation of
the radiative information along the path. The radiation in this regime tends towards
a diffusion process, as it has been mathematically demonstrated [45,51,52]. In the

limit of very high 7,, the medium can be considered to be opaque.

Intermediate 7, ~ 1: The medium must be considered as semi-transparent in order
to accurately characterize the radiative transfer. This situation occurs mostly in
the case of glass forming processes, such as for TV panels, blow molding and many

others.

2.6.2 Semi-transparent window of glass

For typical length scales involved in glass forming processes (~ 107* — 1072 m), the range
of wavelengths in which glass behaves as a semi-transparent medium is in the infrared. At
lower A, the glass can be assumed transparent, while at higher A, it usually behaves as an
opaque medium and radiation is modeled as surface radiation. In order to determine the
radiative regime in the fiber drawing process, the absorption coefficient is first analyzed,
and then the optical thickness is estimated by considering typical length scales of the
forming fiber.

The absorption coefficient x, has been measured for the Advantex(c) glass for different
wavelengths and at two temperatures. The results are shown in Fig. 2.18. Two peaks
at A = 1.1 ym and A = 2.9 um are visible. The first peak, occurring in the smaller
wavelength region, is due to the level of Fe and Cr in the melt [53], while the second
comes from OH molecules. Although the height of the first peak is much lower than the
second one, it occurs at wavelengths where the emissive power of a black body is higher.
Consequently, the energy of the particle emission can be important even if k), is smaller.
The data also shows a small influence of temperature on this coefficient. The height of
the peaks decreases as the temperature increases, which was also observed by Faber [53]
for borosilicate glass.

In order to determine the radiative regime in the fiber glass forming process, the scales
must be considered in addition to the absorption coefficient. The forming fiber involves

different length scales. The radial length, i.e. fiber diameter 2rg, varies from the tip
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Figure 2.18: Absorption coefficient as a function of the wavelength at two different
temperatures for the Advantex(c). The symbols represent the measured values.
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Figure 2.19: Optical thickness as a function of the wavelength at different values of [,.4
representing both the radial length from the tip diameter (= 1 mm) to the final
diameter (=~ 1072 mm), and the axial length (=~ 10 mm).

diameter (=~ 1 mm) to the final diameter (=~ 1072 mm). Furthermore, the axial length
at the symmetry line has a magnitude of a few centimeters. Figure 2.19 illustrates the
optical thickness as a function of the wavelength for these different characteristic lengths.
Near the tip, 7, &~ 0.1 —1 for the radial direction and 7, &~ 1—10 for the axial direction. In
this particular region, the glass is semi-transparent according to the definition presented

in the previous section. Nevertheless, as the fiber radius decreases, 7, becomes very small.
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When the fiber reaches its final diameter, the radiative regime is close to be transparent.
In conclusion, a semi-transparent model to characterize the radiation is justified for the
upper region of the forming fiber, at least in this range of wavelengths. Nevertheless,
the model assumes a semi-transparent in the entire region of the fiber. In particular, the

radiative regime as a function of the wavelength can be modeled as follows:

e At wavelengths lower than 0.7 pum, the only remaining mechanism to emit and
absorb a photon is due to the electronic excitation (i.e. change in the orbit of
the electron) [53], while it is due to vibrationnal transitions in the range of A =
0.7 — 3.8 pm. Since the energy required for electronic excitation is very high, it
occurs at very short wavelengths (< 1 pum) leading to isolate vertical lines in the
absorption coefficient spectrum [53]'. However, the temperature needed to reach
such an amount of energy is not available in the fiber drawing process and the black
body intensity tends to zero in this range of wavelength. For these reasons, the
glass is assumed transparent below this wavelength and the electronic excitation is

neglected.

e On the other hand, glass tends to be opaque at larger wavelengths. In this opaque
region, radiation is only considered as a flux at the surface. Like for a transpar-
ent medium, the radiative energy in the medium does not contribute to internal
energy variations. An opaque emissivity €.,y depending on temperature is thus
used, which approximates the part of the radiative flux escaping the medium to the
surrounding environment. The transition from a semi-transparent to opaque case is
often considered at one wavelength, called the cutting wavelength A.. In reality, the
transition occurs continuously when 7, — co. As a result, the choice of A\, depends
both on the scale and the absorption coefficient. Different cutting wavelengths for
glass can be found in the literature, such as A = 6 pm [54], A = 4.8 pum [55] or A = 8
pum [50]. For wavelengths above ., these authors consider ), = co. Unfortunately,
measurements data of the absorptivity coefficient are not available for wavelengths
above A = 3.8 yum. This wavelength is thus taken as the cutting wavelength above
which glass is considered to be opaque. Measurements of the opaque emissivity are
shown in Fig. 2.20. In the opaque region, a constant opaque emissivity is used,

which is obtained by averaging the measurement data over the wavelengths.

e Finally, the semi-transparent window is defined from A = 0.7 to 3.8 um.

!The measurements, represented in Fig. 2.18, do not provide data for the range below 0.7 pm.
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Figure 2.20: Opaque emissivity €, as a function of the wavelength in the opaque
region of the spectrum for Advantex(c) glass.

2.6.3 Equation of radiative transfer

Within this semi-transparent window, the divergence of the radiative heat flux ¢, in the
energy equation, Eq. (2.3), is non-zero. In order to calculate this flux, an additional
equation is needed based on the conservation of radiative energy. This section focuses on

developing this equation.

Absorption and emission

The quantity typically used to describe radiation in a semi-transparent medium is the
spectral radiative intensity I\(s), which is the energy at one specific wavelength A per
unit of time, solid angle and unit area normal to the ray. It depends on the direction of
the ray as described by the unit vector s. When radiation passes trough an element of
a participating medium, its beam intensity is attenuated by absorption and scattering.
At the same time, it can gain intensity by emission and scattering from other directions
intercepting the beam. In the case of a glass material, scattering can be neglected in
comparison to emission and absorption [48,50,55, 56].

Considering the intensity I)(r,s) at position r, traveling in a direction s within an
element of volume ds at constant temperature 7', the energy d/us \ lost due to absorption
is expressed as

dlaps x = —Kalnds, (2.58)

which is proportional to the magnitude of the incoming energy I,. The proportionality
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factor k) is the absorption coefficient. If only absorption is considered, the solution of this
equation shows that the beam intensity decreases exponentially with the distance traveled
in the medium. The higher k), is, the more attenuated the beam is in the medium. A
transparent medium thus corresponds to k), = 0 while the opaque case corresponds to
K) — 00.

On the other hand, the gain of energy due to the spontaneous emission of the molecules
in the same direction s, d/ey ), is proportional to the intensity of a black body I}, ». This
is given by

dlem ) = /{Anélw\ds, (2.59)

where the proportionality constant involved is again the absorption coefficient x,. It can
be demonstrated that the proportionality coefficient is exactly the same for the absorption
and emission mechanisms [51]. Additionally, n, is the index of refraction of the glass,
which is a function of the glass composition. Note that, in general, the index of refraction
also depends on the glass structure, and thus on its thermal history during transition.
However, this is not relevant here, as radiation only plays a role at high temperature in
the liquid state, before transition. Finally, a dependence on the wavelengths may exist but,
unfortunately, only grey and constant values have been measured for the Advantex(c) glass

composition. The value is assumed constant in the following and equal to n, = 1.56.

Overall balance
The balance of these effects over the infinitesimal volume ds leads to the following relation

ol
Efmﬁzﬁmgm—mhm@. (2.60)

This equation is called the Radiative Transfer Equation (RTE). The intensity field within
the medium is thus obtained by solving this equation for each wavelengths and directions.
The radiative heat flux is then calculated by integrating the intensity over all directions

and wavelengths
&= [ [ nirs)sdoa, (2.61)
0 4

where (2 is the solid angle. The heat flux is then used in Eq. (2.3) to calculate the temper-
ature field. Because the black body intensity in Eq. (2.59) depends on the temperature,
Egs. (2.60) and (2.3) are coupled and must be solved iteratively.

From Eq. (2.60), the different radiative regimes can be highlighted and explained in

more details:

Optically thin 7, < 1: When k) — 0, the gradient of the intensity along a path is

very small. The solution can be calculated by considering a linear variation of the
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intensity in the medium. In the limit of k) = 0, the intensity gradient is equal
to zero leading to a constant flux within the medium, which is the definition of a

transparent medium.

Optically thick 7, > 1: In this cas, the intensity can be developed into a Taylor series
related to the direction s. Since 7y > 1, only the linear term of the development
is kept. The calculation of the divergence of the radiative flux leads to a diffusion
form, similar to conduction. This form is called Rosseland approzimation [57]. Tt
is a powerful approximation since the RTE can then be replaced by an effective
conductivity koss added to the thermal conductivity & in the energy equation (2.3).
This is why this form is frequently used, especially in the modeling of glass furnaces.
Note that the radiative conductivity ks scales with 7°. Finally, it can be shown
that if the absorption coefficient tends to infinity, the rosseland conductivity tends
to zero, i.e. the medium is thus opaque. In this case, the in-coming radiation is
instantaneously absorbed and I = Iy,  within the medium. The divergence of the
radiative flux is thus equal to zero. At the surface, the opaque emissivity represents
the part of the black body intensity escaping from the medium, and its value depends

on the refractive index (see Section 2.6.4).

Intermediate 7, =~ 1: The full problem must be solved considering the RTE without

approximation.

2.6.4 Boundary conditions

The RTE, Eq. (2.60), requires boundary conditions. In fiber drawing problems, there
are two types of surface delimiting the domain: an opaque wall at the tip, and a semi-
transparent interface between glass and air. Because radiation is not simply a surface
phenomenon, the boundary condition at the interface, Eq. (2.25) for the energy equation
(2.3), has to be modified accordingly. Specifically, the fiber is still opaque for a certain
range of wavelengths, where the radiation is a surface phenomenon. The radiative flux
in this range must be considered in addition to the boundary conditions of Eq. (2.60).
Additionally, an insulated inlet and outlet are prescribed, while a condition of symmetry is

used at the symmetry line. An overview of the boundary conditions is shown in Fig. 2.21.

Tip wall - Opaque boundary

The tip wall is considered as an opaque boundary. It emits itself radiative intensity and
reflects and absorbs radiative intensity from the glass. The emission is given by the

emission of a black body at the temperature of the wall multiplied by the emissivity of
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Figure 2.21: Overview of the radiative boundary conditions: radiative flux from the
surface in the opaque range of wavelengths gyaq,0p, and radiative flux in the bulk from
the semi-transparent part of the spectrum goyt,a-

the tip surface. The surface is assumed diffuse and grey. Because surfaces are generally
not polished, specular surfaces are rarely considered for glass [50, 55].

The intensity leaving the wall is equal to the sum of the reflected intensity and the
intensity emitted by the wall, as shown in Fig. 2.22. The boundary condition is thus

written as

I(Tw, ) = ept(T) y(ry) + M/ I(ry,s') |n-s|dY, (2.62)
/s n-s<0

where r,, is the vector position of the boundary and n the normal to the surface pointing
out of the domain, and €, (ry) and pyp(ry) are the grey emissivity and reflectivity of
the surface, respectively. It is assumed that the surface properties are constant along the
tip wall, so that ep(ry) = €pt and purpt(rw) = prrpt- Finally, the flux leaving the surface

in all directions is calculated as
Gout = naepe0 T + (1 — €pt) Gin- (2.63)

The first term represents the emission and the second the reflection, where the incoming
flux ¢, is given by
Gin = / I(ry,s') n-s|de. (2.64)
n-s<0
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Note that in the case of a non-grey model (i.e. the parameters depend on the wavelength),
these relations are calculated for each wavelength. The total intensity is then calculated

as the integral over the spectrum of intensities.

Emission .3

Opaque wall

in | I &

Figure 2.22: Representation of the radiative boundary condition for a diffuse opaque
wall where g, is the incoming flux given by Eq. (2.64). The diffuse reflection of ¢, and
emission of the wall are also represented.

Figure 2.23: Representation of the radiative boundary condition for a diffuse
semi-transparent wall. The quantities [i, ; and I;, , are respectively the incoming
intensity from the glass with a refractive index ny and from the air, while I, is the
sum of the reflected intensity from the glass and the transmitted intensity from the air.
Finally, I,y . is the sum of the reflected intensity from the air and the transmitted
intensity from the glass.

Free surface - Semi-transparent boundary

The free surface of the fiber is considered as a semi-transparent surface where a part of the

bulk radiation passes trough the surface. Similarly, the radiation from the surrounding
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environment can penetrate into the fiber. A schematic view of the semi-transparent
boundary is shown in Fig. 2.23. As a diffuse surface is also assumed here, the interfacial
reflectivity is independent of the direction s and is only a function of the ratio of the
refractive indices of the air and the glass medium, nya0 = Ng/na. The reflectivity for a

diffuse internal surface to air, called py¢ g, is given by [55]

1— Prf o
prf,g =1- T, (265)

ratio

where p,¢, is the reflectivity for a flux incident to the diffuse surface from the air medium

given by Richmond [58] as

_1 (3nratio + 1) (Mratio — 1) 1250 (Moatio — 1)2 1 Nratio — 1
Prie =3 6 (Mratio +1)° (s +1)° (nratio + 1)
2n§atio (n%atio + 2Npatio — 1)

(Miatio + 1) (Npagio — 1)

87, atio (Mratio T 1) - In(Mpagio).  (2.66)
(Meatio T 1) (Matio — 1)

Assuming a surface which does not absorb the radiative flux, the transmission is deduced
from Eq. (2.65) and Eq. (2.66):

Ttrg — 1_prf,ga (267)
Ttra — 1_prf,a- (268)

Figure 2.24 shows the evolution of the transmissivity and reflectivity at the surface as a
function of n.a0. An increase of this ratio causes the decrease of the transmitted radiative
flux to the surrounding air and increases the reflection. The value of the refractive index
of the air is taken as n, = 1 so that the ratio is equal to the refractive index for glass
Nratio = Ng = 1.56. The values for the reflectivity and transmissivity for the internal

surface (glass-to-air) are given in Table 2.3.

As a result, the intensity I, o leaving the internal surface into the glass is the sum of

the reflective flux from ¢, ¢ with the transmitted flux from the air

T in + r,ain,a
Iy = e~ Tradine, (2.69)

™

The flux leaving the free surface into the ambient air is given by

I _ Prf,alin,a + Ttr,gqm,g
out,a — T .

(2.70)
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In order to calculate the flux, the intensities are integrated over all relevant directions and

wavelengths.

Boundary condition for the energy equation

Since the transfer of heat is modified at the free surface, the boundary condition for the
energy equation presented in Section 2.2.3 must be adapted accordingly. Although the
convective heat flux remains identical, the radiative flux is different when the glass is con-
sidered a semi-transparent medium. In the previous model from Section 2.2, the condition

at the free surface was given by an opaque and grey radiative flux for all wavelengths

oT
— ke = h(Ty = Toxsoms) + €0 (T = T raa) - (2.71)
Considering a non-grey glass with a semi-transparent window, the condition on the flux
has to be modified to take into account only the opaque region of the spectrum (i.e.
above A = 3.8 um). Note that the energy loss due to the semi-transparent part is already
included when the RTE is solved by considering its adequate boundary condition. The

new condition at the free surface of the fiber is written as

T

_ l{;% = h (Ts - Text,conv) + /}\ Eop,)\ [[b,)\<Ts) - [b)\(Tenv)]d)\, (272)

where €,y and Ty, are respectively the emissivity of the opaque part of the spectrum
and the temperature of the environment if an isothermal enclosure is considered.

The opaque emissivity €y, in Eq. (2.72) is different from the value of the emissivity
€s taken in Section 2.2 where the fiber is assumed opaque for all wavelengths. €, 5 iS
represented in Fig. 2.20 for the range from [4 - 12] pum. It rapidly increases to approxi-
mately reach a value of one, i.e., that of a black body. Above A\ = 8 um, the emissivity
then begins to decrease, before increasing again around A\ = 10. For simplicity, a constant
opaque emissivity is assumed in this work. Its value is determined as a weighted average

€op = ;Zm %d)\, (2.73)
where Iy, 5 is calculated at 1300°C. The integration provides a value of €,, = 0.91. Note
that, if the black body intensity is taken at 7" = 600°C, e, varies by about 0.1%, which
demonstrates that the temperature used to compute the blackbody intensity has almost
no influence. Assuming a constant opaque emissivity, Eq. (2.72) can be reformulated as

orT

— k?a—n =h (TS - Text,conv) + €op [fglb(TS) - fenv-[b(TenV)] ) (274)
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where the ratio f, and fe,, are ratios of a black body emission in the opaque spectrum to

the total emission over the whole spectrum, given by

[ I (T

S oA (T)dN (2.75)

As in Section 2.2.3, the radiative environment surrounding the fiber is not uniform and
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Figure 2.25: Black body emissive power as a function of the wavelength for a body at
different temperatures. A = 3.8um is the cutting wavelength.

its modeling requires a complex treatment. Nonetheless, for the same reasons as discussed
in the case of a grey opaque fiber, the environment is taken here as a black body leading
t0 feny = 1 and I,(Tpny) = 0T . On the other hand, the fraction f¢ has to be considered
and its value is a function of the temperature. The variation is large over the range of
temperature, from 0.4 to 0.8. The value is set to 0.47 which is the average between 1300°C
and 1000°C considered as the range of temperatures where radiation has a non-negligible
contribution. It is easy to show through the black body emission, represented in Fig. 2.25,
that the temperature has a strong effect on radiation. The figure shows the large decrease
of emission with temperature. As a result, the term sy, » in Eq. (2.60) decreases leading

to a lower radiative flux.

2.6.5 Band model approach

Since it is impossible to solve the RTE for a continuous spectrum, which would require
an infinite number of equations, the spectrum is generally divided into different bands

of approximately constant absorption coefficient. The absorption coefficient of the corre-
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sponding band is then calculated as

_ 1 / T ad) (2.76)
Rband,i = )\z‘+1 — )\Z A R . .

This simple average of k) over the range of wavelengths is the common band calculation
used for glass [48,50,54,55]. The number of bands chosen depends on the level of accu-
racy. Unfortunately, each additional band leads to an additional equation to solve, which
increases the complexity of the problem. Generally, the choice of bands is made such as
to specifically represent the Fe?* and the OH absorption bands leading to a total of four

bands. The following range has been arbitrarily chosen to take into account these two

peaks!:
0 it A <0.7 pm,
100.42 if 0.7 <\ < 1.5 pum,
kA =1480.96  if 1.5 <A< 2.6 um, (2.77)

457.83  if 2.6 <\ < 3.2 um,
322.04  if3.2< A< 3.8 um.

These bands are represented in Fig. 2.26. At wavelengths below 0.7 um, it is assumed
that the glass is transparent. On the other hand, at wavelengths above 3.8 pum, the glass
is opaque: k) is not considered and the radiation is taken into account as a surface flux

associated to a surface emissivity.

2.6.6 Summary of the radiative properties

The different material properties and parameters used in the semi-transparent treatment

of radiation are summarized in Table 2.3.

2.7 Summary

This chapter has been entirely dedicated to the description of the physics of the fiber
drawing process and to the development of the corresponding mathematical models. After
a brief review of the specificities of the glass material, the two-dimensional axisymmetric
model and its simplified one-dimensional version have been developed in details. This
has been followed by a summary of all material properties required by these models and
their experimental measurement. Finally, the models describing the ambient air flow and

internal radiation have been introduced as extensions to the main axisymmetric model.

! A more detailed study would be required for optimizing the band limits.
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Figure 2.26: Absorption coefficient ) (solid line) and emissive power of a blackbody

Iy jambda (dash line) as a function of the wavelength at temperature 7" = 1300°C. The

dash-dotted line represents to approximation of the four bands used to represent the
absorption coefficient in the band model.

As a single fiber is considered, the main, two-dimensional model is considered axisym-
metric. The region of interest includes the tip (~1300°C) and the liquid region until the
transition point (~750°C). The molten glass is assumed to be a Newtonian liquid and
the effects of inertia, surface tension, drag, viscosity and gravity are included. The drag
force and convective heat transfer due to the entrained air flow at the fiber surface are
modeled through empirical correlations. Convective heat cooling is based on a constant
air temperature, but an axially varying temperature is also considered. In its standard
form, this model represents the fiber as an opaque medium whose surface is approximated
as grey and diffuse with an effective emissivity to account for the semi-transparent nature
of the glass. The environment is considered as a black body at constant temperature.
Except for the density and the specific heat, all other material properties of the glass
are considered temperature-dependent. In particular, the strong variation of the glass
viscosity with temperature is modeled by the VFT law. Unless otherwise specified, the
glass composition considered corresponds to that of the Advantex(c) glass, whose material
properties have been measured experimentally. Given a flow rate and a drawing velocity,
the model provides the position of the free surface, the velocity and temperature fields
inside the fiber, and all other derived quantities.

A simplified one-dimensional model has then been derived by assuming that the main

variations take place along the fiber. It accounts only for the viscous effects, and neglects

those of inertia, surface tension, air drag and gravity. This semi-analytical model is
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Refractive index glass ng [-] 1.56
Refractive index air n, [-] 1

Absorption coefficient [0.7,1.5] pm, Kpana1 [1/m] 100.42
Absorption coefficient [1.5,2.6] pm, Kpana2 [1/m]  80.96
Absorption coefficient [2.6,3.2] ym, Kpana,3 [1/m] 457.83

Absorption coefficient [3.2,3.8] ym, Kpana4 [1/m] 322.04

Absorption coefficient (grey) x [1/m] 207
Emissivity platinium e, [-] 0.18
Emissivity opaque €op |-] 0.91
Black body ratio f; [-] 0.47
Reflection coefficient air pyf, [-] 0.1005
Reflection coefficient glass py g [-] 0.6304
Transmission coefficient air-to-glass 7y, » [-] 0.8995
Transmission coefficient glass-to-air 7, 4 [-] 0.3696

Table 2.3: Summary of the radiative properties and parameters used in the
semi-transparent model for the Advantex(c) composition.

thus numerically much more tractable and provides a more intuitive interpretation of the

relation between key process parameters.

Finally, the main two-dimensional axisymmetric model has also been extended to
account for the flow of the entrained ambient air and the semi-transparent nature of
glass. The air flow is obtained by solving the RANS equations coupled to the main fiber
model so as to provide a more accurate estimation of the convective heat transfer at the
fiber surface. On the other hand, the internal radiation model assumes that the glass is
transparent for wavelengths below 0.7um, semi-transparent between 0.7pum and 3.8um,
and opaque above. The semi-transparent window is solved using either a one- or four-band

model. The fiber surface is assumed diffuse for reflection and transmission.

The numerical resolution of these models is detailed in Chapter 4. They are subse-
quently used to analyze the drawing process, to assess through sensitivity analysis the
quantitative contribution of different modeling fidelity levels and key parameters, to char-

acterize the process operating window, and to predict the break rate.
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Although very detailed, these models are still based on several simplifications. First,
they focus solely on the liquid region of a single fiber and neglect any azymuthal variation.
Then, the surrounding environment is considered uniform and constant for both radiation
and convection. In particular, the interaction with the bushing and other potential setup
elements (e.g., finshields) is neglected. Additionally, the viscoelastic behavior expected
when approaching transition is completely neglected. Finally, the wetting effect of the
glass melt at the tip is not considered. These simplifications should be kept in mind when

analyzing the simulation results.






Chapter 3
Experimental approach

Although the main focus of this work is on the physical and numerical modeling of the
drawing of a single fiber, experimental measurements are also carried out. The objective
is three-fold: ¢) to determine the value of several input parameters for the model, i) to
provide validation data, and 4i7) to support the investigation of the break in Chapter 7.

A dedicated fiberization unit with a single tip has been designed and built for this
study. The motivation for drawing only one fiber is to eliminate interactions with other
fibers and to provide easier access for measurements. Several data can be recorded, such
as the flow rate, the tip temperature or the surrounding air temperature. One of the
key feature of the setup is the possibility to measure the radius of the fiber meniscus.
Nevertheless, the small scales involved in the process leads to measurement limitations,
as discussed below.

This chapter focuses on the description of the overall apparatus and measurement
equipments. The different measurements are presented, but their comparison with nu-
merical results is postponed to the next chapters. The first section provides an overview
of the device and test facility. Each type of data measurement is then described separately

and in details in the subsequent sections.

3.1 Overall apparatus

A schematic of the facility is shown in Fig. 3.1. Glass cullets are melted at a temperature of
up to 1450°C inside an electrically heated platinium-rhodium container. The temperature
inside the furnace is monitored through three type-R thermocouples located at different
heights. A regulation system is associated to the middle thermocouple in order to maintain
a constant temperature of the melt in the container. The maximum height of the liquid
glass in the furnace is about 8 cm. Before each experiment, the same amount of glass is

put into the melter, which has previously been emptied, to ensure the same level of the
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melt at the beginning of each experiment, as this level determines the flow rate at the tip
exit. A single cylindrical tip is used with a diameter of 1.2 mm and a length of 4.2 mm.

The forming fiber is drawn by a winder, with a drawing velocity range of 0 — 3000 m/min.

Thermocouples
Glass melt
T ..... R eeulation
e N - system
i v - m
Image Thermocouple
acquisition
JE—— Diameter
Fibo r acquisition
Winder
Velocity
acquisition

Figure 3.1: Schematic of the experimental unit.

Operating window

The operating window and the related process parameters are close to those used in the
industrial production, except for the glass height, which is here lower. This results in
a lower flow rate although the tip diameter is of the same order of magnitude as in a
production bushing. Consequently, the winder speed is also lower in order to achieve the
same range of final diameter. The device has two control parameters, the regulation tem-
perature and the winder velocity, with which the tip temperature and the final diameter
of the fiber can easily be controlled.

The temperature at the tip determines the flow rate through the viscosity, as given by

Eq. (2.10), rewritten here:

_m pgH 4

= ——Ty,
87’]0 l

where 79 is the viscosity of the glass at the tip of the experimental unit. The evaluation

Qo
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of the conservation of mass at the winder leads to the following relation:
Qo = constant = 7rivg, (3.1)

where 7 and v are the final radius of the fiber and the drawing velocity at the winder,

respectively. The final radius is then obtained by

_ &
Tf——-\/;;;;. (3.2)

The choice of these two control parameters, Ty and vg, automatically fixes r¢ (or the

diameter 2r¢, which is usually the quantity reported).

The operating window of the device is shown in Fig. 3.2. The figure intentionally
focuses on lower values of the diameter 2r¢, which are observed to be more critical in the
production line. The curves are non-linear due to the temperature-viscosity dependence.
In particular, the increase of the tip temperature leads to a higher flow rate and, therefore,
a higher winder velocity to keep a constant final fiber diameter. The range of speeds of
the winder is large so that smaller diameters (3-6 pum) can also be produced, as those are

important for the study of the fiber breaking.
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Figure 3.2: Operating window: winder velocity as a function of the tip temperature for
different values of the final fiber diameter.
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Measurement capabilities

The experimental approach is mainly used as a support to the physical modeling described
in Chapter 2. In particular, different types of measurements have been implemented to
provide boundary conditions for the model. In addition, the radius of the free surface
and the final fiber diameter can also be measured for model validation. The physical

quantities directly measured are:

e final fiber radius r,

flow rate Q)o,

fiber radius rs(z),

tip temperature Ty,

air temperature 7o conv-

Note that the winder speed is not considered as a measurement because it is a control
parameter, like the regulation temperature. Moreover, for a given winder velocity v¢, the
flow rate (), final radius r¢ and tip temperature Ty are dependent on each other, as shown
through Egs. (2.10) and (3.1). This relationship is used below to assess the quality of the
measurements and the validity of Eq. (2.10).

Additional measurements are currently technically not feasible due to the small scales
of the fiber and the high temperature of the melt. Moreover, the accuracy of most ex-
perimental devices is not sufficient to capture the large spatial variations close to the tip.
Similarly, glass temperature measurements are not performed either. Such measurements
are typically based on the radiative emission of the glass measured by a pyrometer. This
thermal radiation depends on the wavelength, the spatial scale of the fiber and its tem-
perature. All these effects inevitably lead to large measurement errors, rendering any
measurement meaningless. Finally, it should also be mentioned that the velocity field of
the ambient air is not investigated experimentally, as it is typically turbulent and involves

large temperature gradients.

3.2 Flow rate

The glass flow rate ()¢ flowing out of the tip is an input of the model. It is controlled by the
glass height H, the tip radius 7o, and the glass temperature at the tip Ty (see Eq. (2.10)).
The flow rate can be either directly measured, or calculated from the measurement of

other quantities, as described below.
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3.2.1 Direct measurement

The measurement of )y consists in weighting the fibers produced during a period of time
At. The average flow rate over this time period can be deduced from their mass M

through
M
At) = —. 3.3
Qu(at = - (33)
This assumes that the flow rate is constant in time. However, the glass height in the
furnace decreases over time, which reduces the static pressure and, thus, the flow rate.

The importance of this decrease is investigated further below.

3.2.2 Indirect measurement

The flow rate can also be deduced from the final radius measurements trough Eq. (3.1),

that is
QO = 71-,r,f2,Uf7

where the winder velocity, as a control parameter, is known. Similarly, () can be calcu-

lated from the measurement of the tip temperature Ty using Eq. (2.10),

™ pgH ,

= —7 s
QO 8770 (TQ) l 0

where [ and ry are fixed by the bushing design and H is assumed to be approximately

constant, as discussed in the next section.

3.2.3 Pressure loss

During an experiment, the decrease of the glass height H over time causes a pressure loss
at the tip, and correspondingly a decrease in the flow rate. The relation between the flow

rate and the glass height can be expressed, from Eq. (2.10), as

Qo(t) = aH(t), (3.4)

where t is the time, and the proportionality factor a = wpgrs /8ngl remains constant. On

the other hand, the variation of the glass height can be estimated by conservation of mass:

H(O) - H(t) = 5 [ Q) (3.5)
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where S is the constant cross-section area of the furnace through which the glass flows.

Taking the derivative of this relation with respect to time leads to

dH(t) 1

0 - —ng(t)- (3.6)

By combining this expression with the time derivative of Eq. (3.4), one obtains the time

dependence of the volumetric flow rate:

(1) = Qe (- ). (37

and, consequently, the total mass of fiber produced:
t at’
M(t) = p/ (Qo(0) exp <—§>dt’. (3.8)
0

Experimental validation
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Figure 3.3: Comparison between the measured mass of fiber produced on the
experimental device for several experiments of increasing duration and the prediction of
Eq. (3.8) as a function of time. The dashed curves represent the uncertainty of the
prediction due to the uncertainty on the tip temperature, which is about £10°C.

In order to assess the validity of relation Eq. (3.8), the mass of fiber produced has
been measured experimentally for different durations of the experiment and compared to
the prediction of this equation, as shown in Fig. 3.3. The major source of uncertainty
in evaluating Eq. (3.8) stems from the uncertainty on the tip temperature, which has an

accuracy of + 10°C, and leads consequently to an uncertainty on the factor a through the
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Figure 3.4: Comparison between the measured final fiber diameter for several
experiments of increasing duration At and the diameter calculated from the prediction
of Eq. (3.8) as a function of time ¢. Note that the measured values (symbols) correspond
to an average over the experiment duration At and not at the instantaneous time ¢. The
dashed curves represent the uncertainty of the prediction due to the uncertainty on the
tip temperature, which is about £10°C.

temperature dependence of the viscosity. This uncertainty is represented by the dashed
lines. As the figure shows, the measured mass follows very well the theoretical curve.
Some discrepancies can be observed, which are due to the limited accuracy of the glass
height measurement at the beginning of the experiment.

Figure 3.4 shows the final fiber diameter measured for several experiments of increasing
duration using scanning electron microscopy (SEM) as the average and the standard
deviation (error bar) of 30 samples randomly taken from the fibers drawn over the time
of the experiment. Note that this measured value does not represent the fiber diameter
at the end of the experiment, but rather an average over the duration of the experiment.
For comparison, the diameter 2r¢(t) = 2,/Q(t)/mv; calculated by mass conservation from
the prediction of Eq. (3.8) is also shown including the uncertainty on the tip temperature.
Both measurements and predictions agree again very well. Moreover, it can be observed
that the mass flow rate, and thus the final fiber diameter vary only slowly in time. More
specifically, the final diameter decreases by less than 1 um over a period of 2 hours, which
is much less than the standard deviation.

This excellent agreement provides support to Eq. (3.8), and, consequently, to the
estimation of the volumetric flow rate, Eq. (2.10). Additionally, it shows that for short
duration experiments (< 40 min) the decrease in flow rate over time has a negligible

impact on the measured quantities.
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3.3 Tip temperature

The tip temperature is involved in the physical model as a thermal boundary condi-
tion. This temperature depends on the temperature regulation, but differs from the value
measured by the regulation thermocouple due to heat transfer in the glass container.
Therefore, Ty must be directly measured with a non-intrusive device. On the other hand,

it can also be indirectly determined from the flow rate.

3.3.1 Direct measurement

The tip temperature Tg is measured using a two-color pyrometer pointing towards the
tip. In order to validate the measurement, three different regulation temperatures are
chosen: T = 1260°C, T = 1290°C and T = 1320°C. For each of those temperatures,
the data from the thermocouple situated at the lower position (see Fig. 3.1), called TC
Down, is recorded in addition to the data from the pyrometer. The error bar is related
to the repeatability of the measurement over 4 experiments (which is higher than the
variability observed with both devices during one experiment). Note that the absolute
error on the measurement is not known. Moreover, in both cases, the temperature of the

Pt-Rh container and not the glass melt is measured.
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Figure 3.5: Temperature measured from the pyrometer and from the thermoucouple
situated at the lower position in the bushing. The z-axis represents the temperature
imposed for the regulation (i.e. measured by the thermocouple at the middle position).

These two measurements are then compared. Even if the lowest thermocouple is not
located in the direct vicinity of the tip, it is the region closest to the tip where the tem-

perature is recorded. The results are shown in Fig. 3.5 for each regulation temperature.
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Excellent agreement is found at 7' = 1320°C and T' = 1290°C between the two measure-
ments, while a small variation is observed at T' = 1260°C. It is thus assumed that the
lowest thermocouple provides a good estimate of the tip temperature, although the melt

temperature is probably slightly higher.

3.3.2 Indirect measurement

The temperature at the tip can also be calculated from the measured flow rate. More
specifically, if () is known, the viscosity ny and thus the temperature T can be computed
from Eqgs. (3.4) and (2.9), respectively. However, the direct measurement of )y described
in Section 3.2 provides an average value over the experiment duration. Another option is
to use an indirect measurement of )y based on the winder speed and the final radius. As

it is shown in the next section, this radius is recorded on-line as a function of time.

3.4 Final radius

The final fiber radius is typically an output of the model. Unlike the flow rate or the tip
temperature, it is thus not a required input parameter. Moreover, it does not represent
a very useful quantity for validation as it depends directly through mass conservation on
the flow rate and the winder velocity. Nonetheless, the measurement of r¢ is rather easy
and accurate, and provides data that can be used to deduce other important quantities,
as already illustrated above. Therefore, the final radius is investigated experimentally

using three different techniques, as described below.

3.4.1 Direct measurement

The final diameter of the fiber can be measured using three different devices:

Laser diffractometer Located 40 cm below the tip exit, the measurement of the diam-
eter with this equipment, called Keyence, is based on the deviation of a laser beam
and the measurement of the projected shadow due to the presence of the fiber.
Although this equipment allows an on-line measurement, the horizontal vibration
of the fiber represents a major limitation. Figure 3.6(a) illustrates a measurement
over a period of 900 seconds. The sampling rate is equal to 1 Hz so that higher
frequencies are not captured. Its accuracy is estimated to 0.5 ym. Unfortunately,

the device is not calibrated for diameters below 8 pum.

Particle size analyzer Called Occhio, the measurement is based on imaging a sample

of typically thousand of fiber pieces that have been previously cut. Although the
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method is off-line, it has the advantage of providing a statistical distribution. More-
over, it does not have the resolution limitation of the laser diffractomer so that
smaller diameters can be measured. An example of distribution obtained with this
equipment is shown in Fig. 3.6(b). The measurement error is estimated to be about

0.3 pm.

Scanning Electron Microscope (SEM) It consists in measuring off-line the radius of
a few fiber samples from a scanning electron microscope image. Although this tech-
nique has the highest measurement resolution, it requires the operator to manually
identify on the screen the contour of each sample. This introduces a repeatability er-
ror of about 0.1 ym. Generally, around 30 samples per experiment can be measured
compared to 5000 samples for the Occhio. This method is thus less representative

of the average diameter. An example of the results is presented in Fig. 3.6(c).

3.4.2 Indirect measurement

In addition to these devices, the final radius can be indirectly obtained from the flow rate
Qo and the winder speed, or the total mass of fiber produced. It is important to recall
that the measurement of the flow rate, or the mass, represents an average value over the
duration of the experiment. Thereby, the indirect measurement of the final diameter is
also an average value. In other words, this approach does not yield a distribution. These

different methods are now compared and discussed.

3.4.3 Comparison of the methods

The measured diameter obtained with these four methods (including the indirect one) are
summarized in Tab. 3.1 and in Fig. 3.6. The test case chosen corresponds to a regulation
temperature set to 1320°C and a winder speed of 120 m/min, and the experiment has
a duration of 900 s. Several samples of the fiber produced are also analyzed with the
particle size analyzer and the SEM. As shown, the particle size analyzer leads to the
largest mean diameter of 19.9 um, while the laser diffractometer provides a mean diameter
of 18.2 ym. Both measurements have a standard deviation of 0.9 pum, which is lower
than the difference between their respective averages. This discrepancy can come from
the calibration of the particle size analyzer, because of its slightly larger average than
the other measurements. On the other hand, the stabilization of the fiber in the laser
window of the laser diffractometer is poor due to the horizontal vibrations of the fiber.

Unfortunately, the magnitude of this error cannot be readily quantified.
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Figure 3.6: Measurement of the final diameter of the fiber 2rg with (a) laser

Samples

(c)

diffractometer (b) particle size analyzer and (c¢) scanning electron microscope. The test
case was performed with a temperature regulation set to 1320°C and a winder velocity

of 120 m/min. The solid and the dashed lines correspond to the average and the
standard deviation, respectively.
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The scanning electron microscope measurements lead to a larger standard deviation
compared to the two methods, which is simply due to the lower number of samples. Note
that the average diameters obtained with both the laser diffractometer and the particle
size analyzer fall in the standard deviation of the SEM measurements. Finally, an averaged
diameter of 18.7 um is indirectly obtained from the mass of fiber produced over the 900 s
of the experiment. This value lies between those provided by the particle size analyzer

and laser diffractometer devices.

Method Average [pm] Standard deviation [pm]
Particle size analyzer 19.9 0.9

Laser diffractometer 18.2 0.9

SEM 19.2 1.27

Weight 18.7 -

Table 3.1: Summary of the measurements of the final diameter 2r; using different
techniques over a duration of 900 s.
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Figure 3.7: Distribution of the final diameter 27 recorded by the Keyence during 900 s
for the test case.

The measurements with the laser diffractometer and the particle size analyzer are both
based on a sufficient number of samples to provide a relevant distribution, which is not the
case of the scanning electron microscope. Figure 3.7 shows the distribution of the laser

diffractometer data, which can be compared to the Occhio distribution from Fig. 3.6(b).
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Figure 3.8: Final diameter 2r; as a function of time recorded by the laser diffractometer.
Only the first 30 s are shown here.

The range of variation is the same as mentioned previously, but the distribution from the

Keyence is slightly narrower.

3.4.4 Discussion

The different measurements show clearly that the fiber diameter varies in time during the
drawing process. All measurement techniques lead to a minimum diameter of ~ 16 pm,
while the maximum value is found to be around 22 pym. A zoom on the first 30 s of
the Keyence measurement is shown in Fig. 3.8, where the data clearly suggest that the
frequency of the radius fluctuations is lower than 1 Hz. For instance, the diameter varies
between ¢ = 19 s and ¢ = 20 s by more than 6 yum over 1 s. Onofri et al. [17], based
on the work of Lenoble [16], studied the fiber final diameter fluctuation using a laser
diffractometer that they had developed for many years. They were thus able to reach a
resolution of 0.02 um (compared to 0.5 ym here') and to remove the displacement effect
of the fiber in the laser window. They considered E-glass and several tip temperatures
between 1140°C and 1243°C. In order to keep the final diameter around 15-16 pm, the
drawing velocity was increased for increasing tip temperatures. Their results show that
the fluctuations of the diameter occur at frequencies between 0.69 Hz for lower 7}, and 0.96
Hz for higher Ty. They also observed a variation of about 0.3 to 0.5 um over a duration
of 3 minutes, which is lower than the 1 um observed here. This indicates that the present
process is more sensitive to fluctuations. Nevertheless, the origin of the fluctuation of the
fiber radius was not found.

As the winder speed remains constant during the experiment, Eq. (3.1) indicates that
this variability most likely originates in variations of the tip flow rate )y, which itself can

be due to variations of the glass height H(t) or of the tip temperature T through the

INote that the laser diffractomer used here is a commercial device.
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viscosity 7y. As discussed in Section 3.2, the glass height continuously decreases over time
and induces a slow decrease of the mean diameter. Therefore, it cannot explain the rapid
fluctuations of the diameter observed here. Moreover, the duration of the experiment is

too short to explain a variation of 1 pm.
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Figure 3.9: Temperature of the tip Tj calculated from the conservation of mass based on
the winder speed and the final diameter from the Keyence measurements shown in
Fig. 3.6(a). The solid and the dashed lines represent the mean and the standard
deviation respectively.

Consequently, the most likely explanation for these rapid diameter variations would be
fluctuations in the tip temperature. Figure 3.9 shows the hypothetical time evolution of
the tip temperature that would lead to the time behavior of the fiber diameter measured
by the laser diffractometer (Fig. 3.6(b)), as calculated by mass conservation. The average
temperature is 1322°C, while the standard deviation is 6.7°C. This result suggests that
the fluctuation of 6 pum observed in the diameter could be caused by a maximal variation
of about 50°C that takes place over less than 1 s. It is however difficult to verify this
hypothesis. Furthermore, the tip exhibits an axial temperature gradient that can lead
to variation of the flow rate calculation. Finally, the pyrometer provides a measurement
of the bushing plate temperature rather than of the glass within the tip, and it cannot
report fluctuations. Note that the temperature provided by the pyrometer is 1327°C, and
falls within one standard deviation of the reverse temperature calculation.

Based on these considerations, it is suggested that the rapid time variations of the
fiber diameter observed by the laser diffractometer are partly due to error measurements
caused by horizontal vibrations of the fiber. The large variations (up to 6 pm) also
observed by the other measurement techniques could be slower variations induced by
time fluctuations of the tip temperature and, possibly, the slow decrease of the flow rate.
Nonetheless, additional unknown factors could also play a role.

In conclusion, each measurement technique suffers limitations. In view of these results,

the accuracy of the final fiber diameter is about 1 pm, which is non-negligible.
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3.5 Surrounding temperature

A part of the air entrained by the fiber is first heated by the bushing plate, which is
typically at a temperature of 1260 - 1320°C. In order to analyze the non-homogeneity
of the ambient air temperature, it has been measured at a distance of 4 cm from the
fiber for several axial locations using a thermocouple. The thermocouple measurement
error is estimated to be about 1°C. However, an additional error due to the radiative
emission of the bushing plate must be taken into account. The thermocouple directly
absorbs this radiation and is consequently heated. The temperature recorded is thus
not solely associated to the surrounding air. This effect has been demonstrated here by
covering the thermocouple with a sheet of commercial aluminum. This material has a
very low emissivity and thus reflects the major part of the irradiation. The temperature
measurements with and without the aluminum protection are shown in Fig. 3.10. As
expected, the aluminum strongly impacts the temperature measured by the thermocouple,
as also reported by McKoene [13]. Furthermore, the discrepancy is larger near the bushing
where the thermocouple is more exposed to radiation. Nevertheless, in both cases the axial
distribution of the surrounding air temperature that is used for convection heat transfer
calculations can be expressed in terms of an exponential function (Eq. (2.24)), rewritten

here
Text,conv(z) - Tr + (Tb - Tr) eXp(—az).

The parameters are T}, = 106.6, T, = 31.61 and a = 0.449 for the case with the aluminum

protection, which is assumed to be the more representative of reality:.

3.6 Free surface

The evolution of the radius as a function of the axial coordinate can be optically measured
in the vicinity of the tip. Because it is the only variable of the physical model that can be
experimentally measured as a function of the axial coordinate z, it is used for validation,
as discussed in Chapter 5.

The measurement consists in acquiring a digital image of the forming fiber in the
visible range of wavelengths. A camera with macro-lenses provides sufficient resolution to
accurately capture the meniscus region, as illustrated in Fig. 3.11. Note that the major
limitation is due to optical effects at the edges of the fiber, and not to the resolution. A
post-processing method has been developed to extract the position of the fiber edges from
the image and thus determine the fiber radius. This method is based on the canny edge

detection algorithm [59].
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Figure 3.10: Measurements of the surrounding air temperature at a distance of 4 cm
from the fiber as a function of the vertical coordinate. One data set has been obtained
by covering the thermocouple with an aluminum sheet to minimize the effect of
radiation. An exponential fit of the experimental data for the case with aluminum
protection is also represented.

The different steps of the post-processing are the following:

1. calibrate the image by imposing an angle of rotation in order to align it with the

horizontal;
2. transform the picture from RGB components into grey level,
3. calculate the contour of the free surface using the canny method;
4. identify the pixels associated to the contour;
5. transform these pixels into coordinates;
6. filter the residual noise.

The calibration is required to subsequently determine the spatial coordinates from the
pixels. On the other hand, the use of a binary image (i.e. grey level) is a requirement for
the canny method.

The third step consists in applying the canny edge detection algorithm. Because the
edge detection can be performed using numerous methods depending on the problem and
the required accuracy, several approaches have been tested (i.e., Prewitt, Sobel, Roberts
and Canny). The Canny edge detection algorithm was found to yield the best results, as
it is based on two detection thresholds, which leads to a better control of the method. The
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grey scale intensity gradient is computed in the axial and radial directions. The location
of the local maximum of the magnitude is extracted. The particularity of this method
is the possibility to eliminate a certain range of maximum intensity. If the maximum is
below the low threshold, it is rejected. If the value is between the two threshold values,
the edge is declared as weak. Finally, if the maximum is above the high threshold, the
maximum is denoted as strong. As a result, the algorithm ensures the continuity of the
edge, i.e. the strong edges are maintained, while the weak edges are preserved only if they
are connected with a strong edge. This technique consequently allows the choice of the
level of detection. The method has been implemented in the image processing toolboox
of the software Matlab®.

At the end of this step, each pixel has a value of 1 if an edge is found or 0 otherwise.
However, due to radiation, the border is usually spread over a few pixels and an additional
treatment must be performed to obtain a smoother contour. A specific routine has been
developed based on the calculation of the continuity of the border line. It consists in
calculating the distance of a pixel to its nearest neighbors. If this distance is larger than
a certain threshold value, the pixel is discarded. Finally, the spatial coordinates can then
be calculated based on the position of the edge pixels. In addition, a final filtering is

applied to remove the residual noise if necessary.

Figure 3.11: Picture of the cone meniscus including the tip obtained with a camera with
macro-lenses. The regulation temperature was set to 1350°C to achieve a final diameter
of 35 pm.

The variability of the fiber emissive radiation along the axial direction and the radiative

edge effects limit the accuracy of the method. Since the radiation is high near the tip,
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the exposure time of the camera must be short in order to avoid any saturation of the
CCD captors. However, the fiber does not emit as much in the lower region, since the
temperature is lower. As a result, the camera capture less light and the image is darker,
but a longer exposure time for this region would be detrimental for the tip region. The
compromise made here explains the lower accuracy of the edge detection in the lower
region. The result of the overall method is shown in Fig. 3.12. The margin of error of

about 2.4 -107° m is inherently present.
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Figure 3.12: Radius r¢ of the fiber meniscus as a function of z for the case Ty = 1350°C
and 2ry = 35 pm.

3.7 Summary

This chapter provided an overview of the capabilities of the single tip bushing position,
which is used to support the physical modeling effort. The device can draw a single fiber
from a glass melt covering a bushing temperature range from 1230°C to 1350°C, while
the winder velocity can reach a maximum value of 3000 m/min. This corresponds to a
fiber with a diameter 3-4 pm.

Following quantities are measured: the final fiber radius r¢, the flow rate @y, the
tip temperature Tp, the axial variation of the ambient air temperature Ty conv(2), and
the axial distribution of the meniscus radius r¢ in the vicinity of the tip. Some of these
measurements are used as input parameters for the model (Qo, 70, Text,conv(%)), While
others (r(z), r¢) provide data for validation of the simulation results. For some of these
quantities (7, r¢), several measurement techniques have been considered. Furthermore,

the conservation of mass that relates the tip temperature, the drawing velocity and the
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volume flow rate has been validated by comparing direct measurements to indirect cal-
culations. In particular, it was shown that the decrease in flow rate over the duration of
the experiments can be neglected.

The different sources of measurement errors are discussed and margins of error are
provided. The limited accuracy of the measurements stems from the small scales and
large temperatures involved in the process.

In conclusion, the experimental unit represents a very useful tool to support the mod-
eling effort. Although the quantities that can be measured and their respective accuracy
are limited, several assumptions of the model could be validated. Moreover, several in-
put parameters could be determined. The validation of the numerical model with the

measurements is discussed chapter 5.






Chapter 4
Numerical approach

The mathematical models describing the fiber drawing process have been presented in
Chapter 2. Both the two-dimensional model, including or not the internal radiation and
the air environment, and the simplified one-dimensional model are too complex to be
solved analytically, and thus require a numerical solution. Numerical simulations have
been performed with the two commercial software, ANSYS Polyflow and ANSYS Fluent,
except for the one-dimensional model, for which an in-house code has been developed.
This chapter gives a brief overview of the underlying numerical methods, discusses nu-
merical parameters and simulation strategies, and presents convergence studies.

Section 4.1 is dedicated to the one-dimensional model. The numerical scheme based
on a finite difference method, is presented including convergence tests. The next section
focuses on the numerical solution of the two-dimensional model where only the fiber is
considered (i.e. without internal radiation and surrounding environment). This is done
with ANSYS Polyflow, which is based on a finite-element method. Section 4.3 deals with
numerical and implementation aspects regarding the surrounding air flow model and its
coupling with the model of the fiber, while Section 4.4 presents the specific method used

to solve the internal radiation within the fiber.

4.1 Numerical solution of the one-dimensional model

The one-dimensional model, derived in Section 2.3, is based on different approximations
leading to a simplified form of the governing equations (Egs. (2.36)-(2.39)). In partic-
ular, the model involves an ordinary differential equation for the energy conservation
(Eq. (2.39)), which needs to be solved numerically. This initial-value problem can be
discretely integrated along the axial coordinate z using a 4th order Runge-Kutta scheme.
This scheme has been chosen as it has good accuracy and stability properties, while still

being explicit. Note however that the temperature along the fiber depends on the final
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value of the fluidity ¢¢ so that an iterative procedure is required. The discretization and

the iterative method are first presented, and the convergence is then discussed.

4.1.1 Numerical scheme

The energy equation, Eq. (2.39), is of the form

dT'(z)
dz

= M(T,z), (4.1)
where M depends on the temperature 1" and axial coordinate z as

21ry . Vg ) —p(2)/2¢¢
M(T, 2) = - 24 (2L . 4.2
(T,2) =~ i) (42

The computational domain is discretized from z = 0 to z = L into N+1 points with a
constant spatial spacing Az = L/N, such that z, = nAz with n = 0,1,2..., N. Knowing

the temperature 7, at z,, temperature 7T},,1 at node z,. is obtained by

A
T = T+ =k + 2k + 2k + ] (4.3)

where the Runge-Kutta coefficients k; are

ki = M(z,Th), (4.4)
A A

ky = M(z,+ TZ,T,@ + 7’%), (4.5)
A A

ks = M(zn+ TZ,TH + 7%), (4.6)

ky = M(z,+ Az, T, + Azks). (4.7)

Starting from the initial condition at the tip, T,,—g = Tp, the temperature is solved for
each n, until n = N.
In order to avoid numerical stiffness when approaching the transition region, the value

of the viscosity is limited

loglonoo—i_%a 1anZT7
log 17 (Th) = e ¢ (4.8)
12, it T, < T,

where 7., B and T are given in Table 2.2. In other words, the viscosity increases
with decreasing temperature until transition, after which it remains constant at n(7,) =
10" Pa-s (see also Section 2.4.1).
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Equations (2.36)-(2.38) are evaluated as

on/oN
Un = Un=0 < N ) ) (49)
Un=0
—on/2¢N
Tn = Tn=0 ( N ) ) (41())
Un=0
3
Tzzm = —Up In ( N ) . (411)
PN Un=0

The velocities v,—¢ and vy are given by the boundary conditions

Un=1 = 7o, (412)
Up=N = Uy, (4.13)

where v is the winder velocity and vy is the velocity at the tip. The latter value is

calculated using the conservation of mass, written as

vo = Qo/7Te, (4.14)

where rq = r,—g is the tip radius and @) is the flow rate.
The integral in the calculation of the fluidity ¢, is evaluated using the trapezoidal
method

z=nAz ] 12 1 1

Finally, the last quantity to calculate is the final value of the fluidity oy = ¢, from
Eq. (2.35). However, its value is unknown a priori. Because each variable depends on
this value, i.e. an integral over the entire computational domain, an iterative method is
necessary. An arbitrary value for ¢y is first chosen, the problem is then solved numerically
and a new guess for ¢f is computed. The procedure is repeated until convergence is

reached.

4.1.2 Convergence

The spatial discretization Az must be sufficiently small in order to obtain an accurate
solution. Moreover, the iterative process should converge towards a constant solution.
Simulations with decreasing values of Az have been performed for a case with realistic

process conditions on a computational domain of size L = 0.08 m (case B in Table 5.1,
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with Tixtraa = 200°C and Toxt cony = 300°C). The results are presented in terms of the
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Figure 4.1: The relative root mean square error (a) and duration of the simulation ¢,
(b) as a function of the number of nodes used for solving the one-dimensional model.
The iterative process is assumed to have converged when the relative change of the
solution between two iterations is below the threshold value of 107°.

axial stress because it takes into account both the drawing ratio v¢/vy and the cooling

through the fluidity ¢f. Moreover, the stress 7., ¢ is the most sensitive variable due to its

proportionality to 1/¢¢. For this mesh convergence study, the iterative process is assumed

to have converged when the relative change of the solution between two iterations is below

the threshold value of 1075, The adequacy of this value is analyzed further below.
The absolute Root Mean Square Error (RMSE) on a variable field ¢ (= 7, here) is
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calculated for each Az, by

nN:O ((bn - (En)Z
N )

RMSE = \J (4.16)
where ¢,, should be the exact solution at position z,. However, this solution is not know
and thus is assumed to be the solution where Az tends to zero (approximated as the
solution with Az = 2.5-107% m, which corresponds to N = 32’000 points). The relative
RMSE can be evaluated by divided the absolute RMSE by the total variation of the stress
Tozt — Ton0 & Tzt (Tozo ~ 10% is much lower than 7., &~ 107). The results, including the
required simulation time, are shown in Fig. 4.1 and summarized in Table 4.1. The relative
RMSE for the temperature field has been also calculated. Both the temperature 7" and the
stress 7,, converge as Az increases. It is interesting to notice that although the number of
points is multiplied by a factor of 2, the simulation time increases by a factor 2.8 between
N = 8000 and N = 16’000, and 3.8 between N = 16’000 and N = 32'000. This is
explained by the larger number of iterations required to satisfy the iteration convergence

criterion. Note that the code was not optimized for CPU time.
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Figure 4.2: Relative root mean square error of the axial stress as a function of the
convergence test used for solving the one-dimensional model.

The sensitivity of the results on the value of the threshold used as criterion to stop
the iterative process is then analyzed. Several threshold values are considered, from 1073
to 1078, with a mesh size Az = 2.5-107° (corresponding to N = 32000 grid points). The
smallest value, 1078, is used as reference with respect to which the error is computed.

The results are shown in Fig. 4.2. All results of the one-dimensional problem in the
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Az [m] N tam [s] Relative RMSE 7,, Relative RMSE T
1-1073 80 2.8 8.4-1071 3.8-1072
1-107* 800 3.9 1.6-107" 8.1-107°
1-107° 8000 115.3 1.3-1072 6.9-1074
5-107% 16’000 326.2 4.8-1073 2.5-107*

2.5-107% 32000 1256.8 - -

Table 4.1: Summary of the mesh convergence study for the one-dimensional model. The
iterative process is assumed to have converged when the relative change of the solution
between to iterations is below the threshold value of 1076,

next chapters are based on a discretization of the domain with N = 16’000 points and
a threshold value for the iterative process of 107%. This choice provides a good trade-off

between accuracy and computational cost.

4.2 Numerical solution of the two-dimensional model

The two-dimensional axisymmetric model derived in Section 2.2 is more complex, which

adds new challenges to its numerical treatment:

e Because the position of the free surface is an output of the model, the geometry

needs to be recalculated during the simulation.

e The high drawing ratio (r¢/ro & 10?) introduces large variations of length scales
along the domain, which can be critical for the uniformity and the quality of the

mesh.

e The viscosity law (Eq. (2.9)) is highly non-linear and the viscosity increases by ten
orders of magnitude over the range of temperature considered. As a result, the
numerical convergence is very sensitive to the temperature field. In particular, a
small thermal variation can cause a large variation of the viscosity, and thus, has a

strong impact on the flow and the position of the free surface.

The two-dimensional model is solved with the commercial software ANSYS Polyflow
[60] as it is suited to deal with these challenges. Specifically developed for viscous and
visco-elastic flows, this software has three main advantages: ¢) it can simulate free-surface

flows, i) large mesh deformations can be simulated through the evolution parameters
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convergence method, #ii) the physical properties of glass, such as the viscosity law, are
already implemented. Nevertheless, the numerical convergence is still not straightforward
and requires a robust methodology. This methodology is explained in Section 4.2.1. Then,
the numerical method on which the solver is based is briefly presented in Section 4.2.2
with a specific focus on the numerical treatment of the free surface. Note that, since
the code is commercial, the detailed implementation is not available. Finally, a mesh

convergence study is discussed in Section 4.2.3.

4.2.1 Methodology

Since the final shape of the fiber is a priori unknown, an initial geometry is arbitrarily
chosen. This geometry is then deformed during the calculation. Because the difference
between the tip (rg ~ 1 mm) and the final diameter (r¢ ~ 1072 mm) is large, the iterative
procedure to solve the continuity equation can diverge. Figure 4.3 illustrates the evolution

of the free surface from the initial guess (left) to its final shape (right) at the end of the

simulation.
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Figure 4.3: Initial geometry of the fiber before the start of the simulation (left) and final
geometry of the fiber as a result of the simulation (right). Only the upper region of the
computational domain is represented.

In order to facilitate convergence, a multi-step simulation strategy has been developed,
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that gradually adds complexity:

1.

The initial geometry is defined as a rectangle with dimensions 7o X (L + 1), as
illustrated in Fig. 4.3 (left). The upper and lower part of the domain correspond to
the tip (fixed domain) and the fiber (with a moving boundary), respectively.

The solution is then calculated for an isothermal process, providing a first deforma-
tion of the mesh. Because the ratio vg/vy between the outlet and the inlet velocity
is of the order of 103, intermediate solutions are calculated for increasing values of
the outlet velocity. The starting value is vy = vg to avoid any motion of the free
surface and thus, any mesh deformation. Then, a new solution is calculated for a
slightly larger value of vy where all fields are initialized with the previous solution
(velocity, temperature, pressure and coordinates). This step is repeated until the
required value of v; is reached. This allows a gradual deformation of the mesh to

ensure convergence.

. From this converged isothermal solution, the non-isothermal case is computed with

a temperature-dependent viscosity but without a heat flux at the fiber surface. This
provides a constant temperature and viscosity field as initial condition for the next
step. The main motivation is to avoid temperatures close to T.. that would lead to an
infinite viscosity (see Eq. (2.9)) and large viscosity variations during the iterations

of the next step.

. The convective heat flux (i.e., the convective coefficient h) is gradually increased to

avoid large mesh deformations caused by the high sensitivity of the viscosity on the

temperature.

Finally, the radiative heat flux is also considered to obtain the final solution, as
illustrated in Fig. 4.3 (right).

A converged simulation can then be used as initial guess for a new case, as long as the

case parameters do not change too dramatically. In practice this is possible if the position

of the free surface does not change too much. Otherwise, a multi-step strategy is also

required to achieve convergence.

4.2.2 Numerical method

The solver in Polyflow is based on the finite element method (FEM) to solve the par-
tial differential equations (2.1)-(2.3). The details of the numerical method and of its

implementation are not described here, but some specific numerical aspects are briefly
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summarized. The domain is divided into a certain number of elements. The differential
equations are approximated into a set of algebraic equations for each of those elements.
Then, all the elements are assembled leading to a non-linear matrix system of algebraic
equations. The solution of the system provides the variable fields at the nodes of the ele-
ments. This method is based on shape functions, which are used to interpolate the solution
between the nodes. Quadratic functions are used for the velocity and temperature, and
linear functions for the pressure. This choice respects the Ladyzenskaja-Babuska-Brezzi
(LBB) criterion ensuring numerical stability [61]. Furthermore, they represent a good
compromise between computation time and accuracy, as the problem is two-dimensional.
A Petrov-Galerkin formulation is used to relate the test and shape functions, but the
Streamline Upwind Petrov-Galerkin (SUPG) method can also be chosen for the temper-
ature field to provide upwinding for more stability. The resulting velocity-pressure for-
mulation can be seen as an optimization problem under constraints due to the presence
of the pressure, which is solved by the Lagrange multipliers. Specifically, this pressure
variable is considered as a Lagrange multiplier. Finally, the solver for the matrix system
is based on an Algebraic Multi Frontal (AMF) method, which is well-adapted to treat
sparse matrix systems. A good review of the finite element method for fluid mechanics

can be found in the book of Zienkiewicz et al. [62].
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Figure 4.4: Schematic of the spines method (taken from [61]).

Because the position of the free surface is part of the solution, the initial mesh must
be deformed during the computation. To account for the relative motion of the mesh, the
conservation equations are expressed in an arbitrary Langrangian-Eulerian formulation
[63]. Additionally, the position of the interior mesh nodes needs to be re-calculated at
each iteration. For this two-dimensional problem, a structured mesh can be used. Mesh
deformation is achieved through the method of spines, in which nodes are allowed to move
along lines, called spines, adding thereby one degree of freedom. These spines are defined

in the direction normal to the surface, as shown in Fig. 4.4. The two extremities of the
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spines are the nodes (zP!,yP") on the base line (i.e., the symmetry axis here) and the nodes
of the moving surface

= agihi + o (4.17)

2

ye = ayehi+ (4.18)

where o, ; and «a,; are the directions of the spines and h; the length of spine i. The
position of the interior nodes, moving along the spines, is re-calculated proportionally to
the displacement of the boundary nodes. More details about the method can be found in
the book of Reddy and Gartling [61].

4.2.3 Convergence

In order to assess the mesh convergence, three different meshes with an increasing number
of elements and nodes have been considered, as summarized in Table 4.2. The same case
is used as for the one-dimensional model (case B in Table 5.1 with Ty raa = 200°C and
Text.conv = 600°C). Convergence is evaluated based on the temperature Ty and stress 7,,
evaluated at the free surface. The relative root mean square error is calculated through
Eq. (4.16) (with ¢ = 7.. and Ty) where the reference solution has been obtained with

mesh 4 as an approximation of the exact solution (see Table 4.2).

Mesh t nodes f elements tun [s] Relative RMSE T, Relative RMSE 7, ¢

Mesh 1 11’506 10’450 58 1.2-107° 2.7-1074
Mesh 2 29504 27645 208 6.9-10°6 1.6-10~*
Mesh 3 64/386 61'300 552 2.3-1076 88.107°

Mesh 4 251’371 245’200 4301 - -

Table 4.2: Summary of the mesh convergence study results for the two-dimensional
model.

The number of elements for this specific mesh is considered sufficiently high to reach a
solution close to the exact one. The three smaller meshes are compared to the finest mesh
(Mesh 4) using the RMSE. For these calculations, the convergence criterion for iterations
is set to 1077. It is defined as the highest variation of the velocity, temperature and surface
coordinates between two iterations over all the nodes. The results for the temperature
and the axial stress are shown in Fig. 4.5. One can clearly see the overall error decreases

when the mesh is refined. The calculation time is difficult to evaluate due to the different
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Figure 4.5: Relative root mean square error of the axial stress 7., s and temperature 7
taken at the free surface (a) and the computational time ¢y, (b) as a function of the
number of mesh nodes used for solving the two-dimensional model.


chap_4/figs/ConvergencePLF_stressT.eps
chap_4/figs/ConvergencePLF_Time.eps

106 Numerical approach

manual steps involved in the convergence. Nevertheless, the time considered here is the
time required for the final step 5 in Section 4.2.1 so as to provide an estimate of the
overall computational cost. Based on these results, the coarsest mesh provides sufficiently
accurate results while keeping the computational cost affordable. Mesh 1 is thus used to

solve the two-dimensional axisymmetric model in the following chapters.

4.3 Numerical implementation of the ambient air flow

model

The numerical solution of the RANS equations governing the air flow around the fibers
(see Section 2.5) requires a different solver than for the fiber. In particular, these simula-
tions are performed with ANSYS Fluent, which is well-adapted for flows at high Reynolds
numbers. Since the aim is to study the heat exchange between the fiber and the envi-
ronment, a coupling between the fiber and the air model is necessary. However, Fluent
cannot solve a free-surface problem by re-meshing. Consequently, a coupling between the
two solvers Polyflow and Fluent is needed. This coupling introduces two main challenges:
i) the meshing technique of the domain is different and cannot be used from one solver to
the other, 77) Fluent is based on the finite volume method where the solution is calculated
at the center of the mesh cells while Polyflow uses the finite element method in which
the solution is defined at the mesh nodes. To overcome these challenges, an iterative
approach is used that consists in solving sequentially the fiber and air flow models with
their respective solver.

First, the methodology of the coupling is presented in Section 4.3.1. Section 4.3.2 then
briefly describes the numerical method used by Fluent. Finally, convergence aspects are

discussed in Section 4.3.3.

4.3.1 Methodology

The objective of the coupling is to determine the convective heat transfer between the
fiber and the environment, avoiding thus the need for an empirical correlation. In par-
ticular, the details of the air flow, including the velocity and thermal boundary layers,
are computed with Fluent. Knowing the air temperature gradients at the fiber surface
directly provides the convective heat flux, from which the convective heat flux coefficient
h(z), can also easily be obtained. Since the convective heat flux between the fiber and
the air depends on the fiber surface temperature, which itself depends on the convective
heat flux, the process must be iterated until convergence. As illustrated in Fig. 4.6, the

main steps of the iterative process are:
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Figure 4.6: Schematics of the iterative coupling between Polyflow and Fluent.

1. The two-dimensional model of the fiber is first solved with Polyflow following the
methodology described in Section 4.2. In this initial step, the empirical correlation
of Kase and Matsuo, Eq. (2.23), is used to determine the convective heat transfer
coefficient h(z).

2. The radius of the fiber (i.e., the free surface) and the glass velocity field, but not

the glass temperature field, are transferred to Fluent.

3. Since Fluent cannot deal with free surfaces, the position of the fiber surface obtained
with Polyflow defines a new, fixed geometry in Fluent. The computational domain
in Fluent includes thus both the fiber and the air environment. Because the shape of
the fiber depends on the glass velocity field, this velocity field obtained with Polyflow
is imposed in Fluent. Polyflow being node-centered, while Fluent is cell-centered,
a new mesh is created in Fluent, not only for the air, but also for the fiber. The
glass velocity field transferred from Polyflow must therefore be interpolated onto
the Fluent mesh.

4. Fluent is then used to compute on the one hand the air flow by solving the Reynolds-
averaged continuity, momentum and energy equations, and on the other hand, the
glass temperature field only, by solving the energy equation in the glass phase.
This step provides the convective heat flux along the fiber surface, from which an

improved estimation of the convective heat transfer coefficient h(z) is calculated.
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5. As a change of the heat flux at the fiber surface modifies the glass velocity and
temperature fields, and thus the position of the free surface, a new calculation of
the fiber is performed with Polyflow using the updated value of h(z) obtained from
Fluent.

6. Steps 2 to 5 are repeated until convergence is reached.

4.3.2 Numerical method

Fluent solves the steady-state RANS equations based on the finite volume method, which
takes advantage of the integral form of the conservation laws. Because a steady in-
compressible flow is considered, a projection method using a pressure-based algorithm
(SIMPLE) is used to solve for the pressure and ensure a divergence-free velocity field [64].
Moreover, an iterative procedure is required to deal with the non-linearity and coupling
of the equations.

The discrete solution is defined at the cell centers. The fluxes at cell faces are computed
using a second-order upwind scheme for the transported quantities and a second-order
scheme for the pressure. The evaluation of the different variables at the cell faces is based

on a least-square approximation of the gradients.

4.3.3 Convergence

Since an iterative process between Polyflow and Fluent is required, the convergence of the
coupling is first analyzed, then the mesh convergence is discussed. For these two studies,
case C in Table 5.1 is chosen with 7j, = 300°C (see Fig 2.17).

Convergence of the coupling

The convergence is assessed by calculating the relative error on the convective heat transfer
coefficient h between two consecutive iterations (i.e., the error at iteration k is thus given
by errory = (hy — hx_1)/hg). Since h is a function of z, two errors are calculated:
the average over the fiber surface (mean relative error) and the error at the outlet (final
relative error). Figure 4.7 shows the evolution of both errors as a function of the number of
iterations. Both measures of the relative error reach about 1% after 5 iterations. Further
iterations would be optimally necessary for a fully converged solution. However, the overall
procedure is computationally very expensive and the convergence rate strongly decreases.
This slow convergence could be due to a systematic error induced by the interpolation of

the velocity field obtained with Polyflow onto the Fluent mesh. As the solution of the air
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flow model only aims to assess the accuracy of the empirical correlation, the convergence

level obtained after 5 iterations is considered sufficient.
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Figure 4.7: Convergence of the coupling between Polyflow and Fluent based on the
convective coefficient h(z). Two different relative errors are represented as a function of
the number of iterations: for h averaged over z and for h evaluated at the outlet.

Mesh convergence study

The impact of the mesh resolution is quantified by comparing the solution obtained on
three different meshes with an increasing number of elements, from 65450 for the coarsest
to 421’800 for the finest (see Table 4.3). Convergence is assessed by comparing the aver-
aged temperature and the air velocity at the outlet of the domain obtained on the finest
mesh with the solution on the two coarser meshes. More specifically, a relative error is
defined as the absolute error between two meshes divided by the maximum variation of
the corresponding quantity along the outlet boundary. This provides thus an estimate of
the numerical error with respect to the maximum variation of both quantities.

The results are summarized in Table 4.3. The variation between the coarsest and the
finest mesh (mesh 1 and mesh 3, respectively) is about 5% for both outlet velocity and
mean temperature. On the other hand, the relative error between mesh 2 and mesh 3
decreases to 1.3% for the mean temperature and 1.9% for the outlet velocity, which is of
the same order of magnitude as the coupling error discussed previously. The intermediate
mesh with 26 - 10* elements is thus chosen as a good compromise between accuracy and

cost.
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Mesh  f nodes f elements er [%] e, [%]

Mesh 1 66’456 65’450 4.8 )
Mesh 2 259235 257232 1.3 1.9

Mesh 3 424’266 421’800 - -

Table 4.3: Mesh convergence study for the ambient air flow computation.

4.4 Computation of internal radiation

The solution of the radiative transfer model, governed by Eq. (2.60), provides an estimate
of the radiative intensity within the medium. Since the aim is to compute the radiative
flux from it, the calculation involves the integration of the intensity over the total solid
angle. Numerically, this implies that not only the space, but also the solid angles must
be discretized, which adds complexity to the problem. Furthermore, if the medium is
non-grey, the integration over the continuous spectrum of wavelengths is required. As
described in Chapter 2, the spectrum is divided into bands, in which the coefficient of
absorption is constant. The intensity is thus calculated for each band and each direction,
and then integrated to obtain the radiative flux. Because this flux impacts the energy
balance and thereby the temperature of the medium, the energy and radiative transfer
equation are coupled.

Different numerical methods have been developed to solve the radiative transfer equa-
tion, such as the spherical harmonics method [65], the zonal method [66] or the Monte-
Carlo method [67]. In the present work, internal radiation is solved with the Discrete
Ordinate Method (DOM), first proposed by Chandrasekhar [68], and that is available in
both ANSYS Polyflow and ANSYS Fluent. However, Polyflow is limited to grey bodies,
i.e. where the intensity is considered constant over the entire spectrum of wavelengths.
On the other hand, the temperature field cannot be directly imposed in Polyflow so that
a full iterative coupling between Polyflow and Fluent, similar to the one used for the air

flow model, is not possible. Due to these restrictions, two approaches are taken:

e The full problem, including internal radiation but with the assumption of a grey
body, is solved in Polyflow. This approach cannot consider the variation of the

absorption coefficient with the wavelength.

e A one-way coupling is used between Polyflow and Fluent. In this case, the solution
obtained from the first approach is transferred to Fluent, where the energy equa-

tion and internal radiations are solved again, this time assuming a non-grey body.
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However, the updated temperature field cannot be transferred back to Polyflow and

no iterative process is possible.

The second approach is therefore only used to quantitatively assess the impact of the full
internal radiation model on the heat flux compared to an internal radiation model with
a grey medium assumption or with only a surface radiation model.

The next sections describe the discrete ordinate method, the angular discretization
and the spatial integration. Then, Section 4.4.4 discusses the convergence for the angular

discretization in both Polyflow and Fluent.

4.4.1 Discrete Ordinate Method
AZ

Figure 4.8: Schematics of the axysimmetric coordinates used in the formulation of the
RTE (Eq. (4.19)) for the Discrete Ordinate Method.

In the Discrete Ordinate Method, the total solid angle is discretized into N differ-
ent directions s;, where ¢ denotes the direction considered. In cylindrical coordinates,
Eq. (2.60), is rewritten for each direction s; as [69]

pi 0(rly:) 10 midyi) |, 9(h)

— . — 2 — .
, 87“ , 6’17[) + fz 82’ K\ {n)\[b)\ [)\,z} s (419)

where ;, 7; and &; are respectively the component along the directions e,, e, and e, of


chap_4/figs/RTE_eqCylindrical.eps

112 Numerical approach

s; (see Fig. 4.8) given by

ft; = sin 6; cos 1, (4.20)
n; = sin 0; sin 1, (4.21)
& = cos b;. (4.22)

The angular discretization is based on the choice of the directions u;, n; and &; or, equiv-
alently 6; and ;. The optimal directions are discussed in the next section.

The radiative flux is calculated by integrating the intensity over the total solid angle
(Eq. (2.61)). In the DOM method, this integral is approximated by numerical quadratures
[51,55] leading to the following expressions for the radiative flux in the r and z directions

and wavelength A,

N

Arr = ZwifA,im, (4.23)
i=1
N

e = Y wily & (4.24)
i—1

where w; are weights associated to each direction s;. Since a band model is used for a

non-grey medium, the total flux is the sum of the partial fluxes over all bands, such that

Nyand

A= Y qarr (4.25)
7j=1
Nyand

q. = Z dAN;,z, (426>
7j=1

where A); denotes the bandwidth and Npaug is the total number of bands.

4.4.2 Angular discretization

The directions s; can be chosen arbitrarily [70], but some choices lead to a better accuracy.
The common approach for the angular discretization is called the Sy-approximation [68]
that provides a set of directions according to a set of conditions. However, both Fluent and
Polyflow are based on the Piecewise Constant Angular quadrature [71] in two dimensions,
which is described here.

In the Piecewise Constant Angular method, the angles ¢ and 6 are uniformly dis-

cretized into N, and N, elements respectively, such that [71]

U = (m — 1) A, (4.27)
0, = (n — 1/2)A0, (4.28)
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where m = 1,2,...,Ny and, n = 1,2,..., Ny, AY = 21/N, and Af = 7/Ny in two-

dimension. The weights are calculated as

Ym O
W = [ / " Sin 0, d0dy. (4.29)
Ym—1/2 JOn_1/2

4.4.3 Spatial integration

For each given direction, the resolution of the RTE requires the spatial integration of the
intensity within the domain. The approach taken here ensuring energy conservation is to
discretize the RTE through a finite volume method. By integrating the divergence terms
over the volume 6V, the volume integrals are transformed into surface integrals through

Gauss theorem. The gradient of intensity in Eq. (2.60) is thus rewritten as
/ s-VIdV:/ V-(s[)dV:/Is-ndS, (4.30)
5V 1% S

leading to
/ / Is-ndSdQ = / / (inDnp — Kad) dSAQ, (4.31)
Qi S Qi S

where (); is the integrated solid angle. As previously, the intensities within a volume V'
and at the cell faces S are considered constant and interpolation schemes can be used to
relate them [51]. The system is thus reduced to a set of algebraic equations that can be

solved numerically.

4.4.4 Convergence

The solution accuracy depends on both the number of discrete directions s; and on the
spatial mesh discretization. The convergence of the RTE solution with increasing number

of directions is assessed here in both Fluent and Polyflow.

Polyflow

In Polyflow, the total number Ng;, of directions can be imposed (up to a maximum
of 30), but not their respective repartition across the azimuthal and polar directions.
Convergence is quantified by comparing the solution with Ng;, = 4,6,8,16 directions
with the solution obtained with Ng;, = 30 on mesh 1 in Table 4.2. For each case, the
relative RMSE (Eq. (4.16)) is computed for the temperature 7', intensity I and axial stress
7., at the free surface. The reference case corresponds to case B in Table 5.1 and the
radiative properties are given in Table 2.3 for a grey body. The relative error is 107 for

Ngir = 4, and of the order of 1071 for Ny, = 6, suggesting that 6 directions are sufficient.
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Additionally, the influence of the mesh resolution is quantified for Ny, = 6 by performing
a mesh convergence study. The relative error on the temperature between the coarsest
(mesh 1) and finest mesh (mesh 4) is 1.6 - 107°. This accuracy is considered sufficient and

mesh 1 is used for all subsequent simulations.

Fluent

Fluent is only used here to investigate the effect of a non-grey model on the temperature.
This solver allows to separately choose Ny, and Ny so that the total number of directions
in two dimensions amounts to 4V, X Ny. Because the velocity and the stress are obtained
from Polyflow, only the temperature is analyzed (see Section 4.3.1). The same case is used
as previously (case B in Table 5.1) and the radiative properties are given in Table 2.3 for
the four-band model. A reference solution is obtained on mesh 2 in Table 4.3 with a fine
angular discretization, i.e., Ny X Ny = 10 x 10, which corresponds to 400 directions. The
relative error is 21072 % for Ny x Ny = 4 x 4 and 7- 1072 % for Ny x Ny = 8 x 8.
Consequently, a discretization with N, x Ny = 4 x 4 (i.e., 64 directions) is chosen for
the angular discretization. Using this value, the relative error between the two coarsest
meshes and the reference mesh 3 (see Table 4.3) is 7.6 - 1073 and 4.3 - 107, respectively.

As for the ambient air flow, the intermediate mesh is considered in the next simulations.

4.5 Summary

This chapter has briefly summarized the numerical approach for solving the mathemat-
ical models developed in Chapter 2: ¢) the one-dimensional model for the fiber, i) the
two-dimensional axisymmetric model for the fiber, 7i7) the two-dimensional axisymmetric
model for the ambient air flow, and ¢v) the semi-transparent model for internal radia-
tion. Additionally, the influence of different numerical parameters (e.g., mesh resolution,
iterative convergence criterion) has been quantified to determine their optimal value with
respect to accuracy and computational cost. These optimal values are used for all subse-
quent simulations, unless otherwise specified.

The one-dimensional model is solved with an in-house Matlab code based on a fi-
nite difference scheme combined with an iterative procedure. A mesh with N = 16’000
points is chosen, while the iterative procedure is considered converged when the relative
temperature change between two consecutive iterations is below 1076,

The standard two-dimensional axisymmetric model for the fiber (i.e., without the
ambient air flow model and internal radiation) is solved with the commercial finite-element
software ANSYS Polyflow. The mesh deformation imposed by the displacement of the free

surface is based on the spine method. Because convergence is often tenuous, a manual
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multi-step procedure has been developed for the most challenging cases. All following
simulations are performed on mesh 1 in Table 4.2 with approximately 10’000 elements.

The temperature and velocity fields in the ambient air are computed with the finite-
volume solver ANSYS Fluent. Because Fluent cannot treat the mesh and free-surface
deformation, it is coupled to Polyflow through a sequential iterative procedure. In par-
ticular, Polyflow is used to compute the velocity field in the fiber and the position of its
free-surface, while Fluent is used to compute the velocity field in the ambient air and the
temperature field in both the ambient air and in the fiber. Due to specificities of the two
solvers, two different meshes are used for the fiber, which imposes an interpolation step
during the transfer of the solution between the two solvers. Mesh convergence study has
shown that mesh 1 in Table 4.2 for Polyflow and mesh 2 in Table 4.3 for Fluent provide
a good compromise between accuracy and computational cost. Moreover, a number of 5
coupling iterations seems to be adequate.

Finally, the radiative transfer equation of the semi-transparent model for internal
radiation is solved with Polyflow if a grey assumption is used, and with Fluent otherwise.
In the latter case, only a one-way coupling between Polyflow and Fluent is considered.
In both cases, the Discrete Ordinate Method is used with a piecewise constant angular
quadrature. As previously, the spatial discretization relies on mesh 1 in Table 4.2 for
Polyflow and mesh 2 in Table 4.3 for Fluent. On the other hand, internal radiation
computed with Polyflow is based on 4 angular directions and with Fluent on 64 angular
directions.

In conclusion, the analysis of the present chapter has demonstrated that sufficiently
accurate solutions can be obtained for the different mathematical models. These numerical
tools are used in the following chapters to investigate several aspects of the physical

modeling and to gain a more detailed understanding of the underlying physics.






Chapter 5

Analysis of the physical models

Before focusing on characterizing the break, it is important to assess the different physical
models. In this context, the objectives of the present chapter are to understand the
contributions of the different physical processes, to identify the limitations of the different
models, and to quantify their sensitivity to process and material parameters. The results
of this analysis provide the basis for a further investigation of the process discussed in
Chapter 6. In particular, the goal is to determine which approximations or simplifications
can be tolerated to still obtain meaningful results in the optimization of the process and
the investigation of the fiber break. This is motivated by the large computational cost of a
full model that incorporates all details of the physics. The four main models developed in
Chapter 2 and solved with the numerical techniques described in Chapter 4 are analyzed
in details: 7) the two-dimensional axisymmetric model of the fiber, i7) the one-dimensional
model, 777) the model of the surrounding air coupled to the fiber and finallysv) the internal

radiative model added to the two-dimensional model.

The first section focuses on the two-dimensional model. After a validation with ex-
perimental data, the general solution for the field variables are presented including a
characterization of the uncertainties related to the glass properties. Then, Section 5.2
discusses the accuracy of using a one-dimensional model to describe the process. The
influence of the different physical forces and radial variations on the solution is assessed
in this section. On the other hand, the results obtained by coupling the fiber and the sur-
rounding air are discussed in Section 5.3. In particular, the accuracy of the correlation for
the convective heat transfer coefficient is investigated in some details. Finally, Section 5.4
focuses of the influence of the internal radiation model coupled with the two-dimensional

model.
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5.1 Two-dimensional solution

The solution of the standard two-dimensional axisymmetric model developed in Sec-
tion 2.2 and solved with the methodologies described in Section 4.2 is analyzed in this
section. First, experimental measurements of the fiber radius along the axial direction
are used to validate the model. The overall solution is also reported in details. Then, the
sensitivity of the solution to the material properties is discussed, in particular in the light
of the measurement errors of these properties (see Section 2.4). Finally, the impact of the

viscosity law is assessed by comparing both the Fulcher and MYEGA models.

5.1.1 Experimental validation

The predictions of the two-dimensional computational model have been compared to
experimental measurements for two different cases. The first one is taken from the work
of Glicksman [4], and corresponds more specifically to his M5 case. The second case
(referred to as case A in Table 5.1) is provided by measurements from the dedicated
experimental unit described in Chapter 3. The process parameters are summarized in

Table 5.1 (case B is closer to industrial production and is used in the next sections).

Glicksman Case A Case B

Glass type E-glass ~ Advantex(c) Advantex(c)

Qo [mm?3/s] 3.171 0.486 1.67
o [mm] 0.86 0.6 0.6
T, [°C] 1227 1325 1300
vr [m/s] 25.88 1.55 21.3
re [pm] 6.2 10 5

Table 5.1: Process parameters and type of glass for the three cases considered in this
study: volumetric flow rate )y, tip radius rg, tip temperature Tg, drawing velocity vy,
and corresponding final radius 7y.

The process parameters of case A are slightly different from the ones in Glicksman
experiment in order to test a different set of process conditions. In particular, the flow
rate and drawing velocity are one order of magnitude lower. In addition, the glass ma-
terial in case A is Advantex(c), while Glicksman used another glass composition. As the
compositions are different, the temperature of the melt required to reach the working

point is in Glicksman’s case lower and closer to a standard E-glass. In case A, the flow
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rate is deduced from the measurement of the mass of the glass fibers produced during a
10 minute period. The tip temperature is calculated from the flow rate. Finally, the final

diameter is measured on-line with the Keyence laser diffractometer.

It is important to recognize that, by mass conservation, the final fiber radius depends
directly on the flow rate and drawing velocity, both of which are used as input parameters
for the simulation. The final fiber radius is thus trivially predicted, and consequently does
not represent a pertinent quantity for assessing the accuracy of the numerical predictions.
The radius attenuation in the vicinity of the tip provides on the other hand a better
validation measure. A comparison between measured and predicted values of the radius
along the axial coordinate z is shown in Fig. 5.1. As the experimental data for the radius
in this region relies on the post-processing of high-resolution images, a margin of error of
about 2.4 - 1075 m is inherently present, as depicted by the error bars (case A). A good
agreement, between predicted and measured values is obtained for both cases. However,
some discrepancies of the order of the margin of error can be observed close to the tip. As
discussed later, radiative heat transfer dominates in this region. These discrepancies can
be explained by the approximation made regarding the effect of the bushing plate, the
internal radiation and in particular the value of the surface emissivity, and the inherent
uncertainties on the glass properties (as discussed later). Although these results are not
fully conclusive, they indicate that the two-dimensional model captures relatively well the
radius attenuation in the tip region. Since the cone-shape of the fiber is very sensitive to
all physical processes, it can be deduced that the most relevant contributions are rather

adequately represented, but that some discrepancies still remain.

5.1.2 General solution

The predictions of the axisymmetric two-dimensional model are analyzed here from a
physical point of view. The test case chosen is based on process conditions very similar
to the industrial production of 10 um fibers, referred to as case B in Table 5.1. The flow
rate is obtained with a glass height H = 0.35 m and a tip radius rp = 0.6 mm. The
glass properties are given in Table 2.2 where the different dependences on temperature
have been taken into account. Due to numerical limitations, only a constant density is
considered using the reference value at 1300°C. The sensitivity of the solution to the glass
properties, and specifically to the density, is further investigated in Section 5.1.3.

The solution profiles for the temperature and the axial velocity at the free surface are
shown in Fig. 5.2. The temperature of the fiber drops by more than 500°C over a distance
of 8 cm before approaching the glass transition temperature (7, ~ 750°). The heat fluxes

responsible for this rapid cooling are represented in Fig. 5.3. Radiation is dominant in a
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Figure 5.1: Comparison between the prediction of the two-dimensional model and
experimental data for the fiber radius r5(z) as a function of the axial coordinate z in the

region very close to the tip. The process parameters of the two cases are summarized in
Table 5.1.

small region near the tip where the temperature is the highest and the radius the largest.
As the temperature and radius decrease, just a few millimeters away from the tip exit,
the convective flux becomes more important and exceeds the radiative flux. This results

are consistent with those of Huynh [9] and Purnode [11].

On the other hand, the axial velocity increases rapidly to reach the winder velocity
after about 3 cm and remains constant afterward, as the fiber reaches its final diameter
(Fig. 5.2(b)). This plateau can easily be explained by considering the one-dimensional
model of Section 2.3, and more specifically Eqgs. (2.36)-(2.38). The rapid cooling is as-
sociated with a large increase in viscosity. As shown by Eq. (2.33), larger values of
the viscosity (i.e., further downstream) contribute less and less to the fluidity ¢, which
then asymptotes to a constant value ¢¢ as defined by Eq. (2.35). This is illustrated in
Fig. 5.4(a). Similarly, Fig. 5.4(b) shows that the axial stress rapidly grows until it reaches
a constant value 7, ¢, as predicted by Eq. (2.38). These results demonstrate that the fiber
experiences most of its variations (except for the temperature) within the first 3 cm. The
practical implication is that this region is critical for controlling the process. Another
interesting conclusion is that the one-dimensional model, despite its simplicity, provides

an invaluable insight into the physics of the process.
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Figure 5.2: Temperature Ty (a) and axial velocity v, (b) at the free surface as a
function of the axial coordinate z obtained with the two-dimensional model for case B
(see Table 5.1).
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Figure 5.3: Radiative, convective and total heat fluxes at the free surface as a function of
the axial coordinate z calculated with the two-dimensional model for case B in Table 5.1.

5.1.3 Sensitivity to glass properties

The model depends on the properties of the glass material (summarized in Table 2.2),
which are inevitably affected by measurement errors. The sensitivity of the solution to
these errors is investigated here. In addition, the response of the model to temperature-

dependent properties compared to isothermal values is also assessed.

Impact of the error measurements

The impact of the material property measurement errors on the results of the physical
model is studied independently for each property, where two solutions are calculated
in each case by considering the lowest and the highest values of the error bar. The
temperature dependence of the material properties is considered for all properties (except
for the density and specific heat where the reference value at 1300°C is taken). The relative
variation of the solution for each variable field, denoted by A, is calculated through the
absolute difference between both cases, which is then divided by the maximal variation
of the variable over z. As later demonstrated in Section 5.2, the radial variations are very
small, so that all quantities are considered at the free surface along z. Since the error
bars are different for each property, this study cannot be seen as a sensitivity study of the
model to the glass properties, but only to the measurement errors. This specific point is
treated in the next chapter.

The results are shown in Fig. 5.5 for the axial velocity, temperature and axial stress,

and the impact is summarized as follows:

Density The error on the density measurement leads to a maximal uncertainty of ~ 0.5%
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Figure 5.4: Fluidity ¢ (a) and axial stress 7,, (b) at the free surface as a function of the
axial coordinate z obtained with the two-dimensional model for case B (see Table 5.1).
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Figure 5.5: Variability of the axial velocity (a), temperature (b) and axial stress (c) at
the free surface as a function of the axial coordinate z due to uncertainties in the glass
property measurements. The relative variation A denotes the relative difference between
simulations using the highest and lowest value of the error bar, divided by the maximum
variation over z.
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for the axial velocity and 0.2% for both temperature and axial stress.

Specific heat The error bar on the specific heat leads to maximum uncertainties of 3%

for the velocity and 1.2% for the temperature. The uncertainty on the stress is also

high with 3.5%.

Surface tension The effect of the error on surface tension measurements leads to a max-
imal variation of less than 0.5% on the velocity and the temperature, while it reaches

1.5% on the axial stress.

Conductivity A similar error magnitude as for surface tension is observed for the con-

ductivity, except for the temperature peak very close to the tip.

Viscosity The difference on the final stress reaches almost 19%. The viscosity strongly
depends on the temperature. A variation in the viscosity law leads, in particular,
to a different viscosity at the tip for a given temperature. However, this value is
the highest contribution in the calculation of the fluidity integral. As the stress is
inversely proportional to the fluidity, a large impact is observed. However, this is
mainly caused by a variation in the process conditions rather than a real uncertainty.
Furthermore, the impact on the temperature and the velocity field are much lower

with a maximum of 0.6% and 1%, respectively.

Overall, the impact of uncertainties on material properties is rather small. In particu-
lar, a 0 — 2% uncertainty is observed on the final axial stress, which is the main quantity

of interest in the context of fiber breaking.

Impact of the temperature dependence

It has be shown in Section 2.4 that several properties are temperature-dependent in the
temperature range of the liquid state above the glass transition. In particular, the conduc-
tivity, emissivity, surface tension and density are found to vary linearly with temperature,
while the viscosity has a logarithmic dependence. The impact of potentially neglecting
this temperature dependence is investigated in this section. However, the viscosity is not
included in the analysis since its temperature-dependence is primordial and could not be
neglected. Furthermore, the temperature dependence of the emissivity is investigated in

Section 5.4, which is dedicated to radiation.
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Each property is studied independently from the others by performing two simulations:
one with the property constant obtained for a temperature 7" = 1300°C, and one with
the temperature dependence. The values used in each case are summarized in Table 2.2.
These two solutions are then compared in the same way as previously: the difference of the
variables, v,, T and 7., taken at the free surface along z, is calculated and then, divided
by the total variation over the computational domain. The results for the surface tension
and conductivity are shown in Figs 5.6(a) and 5.6(b), respectively. The temperature
dependence of the density cannot be considered due to the solver limitation, but its
sensitivity is discussed later. These results demonstrate that the impact is relatively
low. Considering 7., it amounts to 0.3% and 0.4% for surface tension and conductivity,
respectively. These errors on the stress in both cases continue to increase after the end of
the domain (for z = 0.08 m), although they tend to zero for the two other variables. In
comparison with the uncertainties due to the measurements, the error made by considering
a constant value for the surface tension and the conductivity over the range of temperature
is lower, especially for the axial stress.

The impact of neglecting the dependence of density on temperature is investigated by
considering the density value at 800°C (2500 kg/m®) and at 1300°C (2470 kg/m?). The
error between these two cases is less than 1 % for the temperature, and a maximum of
about 1.2% and 1.7% for the velocity and the axial stress, respectively. On the other
hand, the variation of the final axial stress 7., ¢ is approximately 0.6%.

In conclusion, the error introduced by neglecting the temperature dependence of ma-
terial properties (except for the viscosity) is in general smaller than the uncertainties due
to measurement errors. As a consequence, the conductivity, surface tension and density
can be approximated as constant over the range of temperature considered here. Note
however that this conclusion is not valid around the glass transition, where the variation of
the properties with temperature are much larger, or in unsteady conditions where surface

tension can play an important role (e.g., Marangoni effect).

5.1.4 Viscosity equation

The viscosity and its temperature dependence play a key role since they directly link
the cooling of the fiber to the stress. As described in Section 2.2, the physical model is
based on the VFT viscosity law, which is commonly used in numerical simulations of glass
forming. Mauro [44] have proposed the MYEGA law for the viscosity of a liquid glass

(see Section 2.4.1, Eq. (2.43)), rewritten here for convenience:

K C
logy9n = 10810 11 + T OXP (?) :
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Figure 5.6: Variability of T', vs and 7, s between constant properties taken at 1300°C
and properties that are function of temperature, as given in Table 2.2, for the surface

tension (a) and the conductivity (b).
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The influence of the viscosity law is analyzed by comparing predictions obtained with
the VFT and the MYEGA formulations. The calibration constants in the two models,
Eq. (2.9) and Eq. (2.43), have been obtained by fitting experimental data.

Results for the viscosity and axial stress along the fiber are presented in Fig. 5.7.
Figure 5.7(a) shows that the largest viscosity variation is about 17%, in the lower tem-
perature range. On the other hand, almost no variation of the axial stress is observed in
Fig. 5.7(b). This is fully coherent with the fact that the axial stress is mostly affected
by variations in the lower viscosity range, i.e., at high temperature where both models
are very similar. It can be concluded that the choice of the viscosity law, i.e., VFT or
MYEGA model, is not as important as an accurate calibration of the model constants,

especially around the working point.

5.2 One-dimensional model solution

A one-dimensional model has been derived in Section 2.3, based on following approxi-
mations: i) the radial variation is neglected and, 7i) only the viscous force is considered.
Besides its simplicity, the advantages of using this model are the reduced calculation time
and the semi-analytical form of the solution. This section presents the solution of this
model in comparison with that of the two-dimensional model and discusses its limitations.
First, the contribution of the different physical forces is presented, the impact of the radial

variation is then analyzed.

5.2.1 Contribution of the different physical forces

The one-dimensional model assumes only a viscous force. More specifically, the inertial,
gravity, surface tension and drag forces are neglected. The impact of neglecting these
forces on the axial stress is investigated here. The influence of each individual force can
be estimated with the two-dimensional model by turning off all other forces but the viscous
force and the specific force to be investigated. A comparison of the results to those found
with only the viscous force leads to the contribution of this specific force.

Figure 5.8 shows the contribution of each individual force to the final axial stress
compared to the case where only the viscous force is considered, as in the one-dimensional
model. In other words, these individual contributions correspond to an estimate of the
error committed by neglecting the corresponding force. It can be seen that both the
gravity and the drag force have only a small negative contribution. On the other hand,
surface tension leads to the largest contribution, which amounts to about 25% of the total

stress shown in Fig. 5.4(b). Finally, the inertial force has a non-negligible effect (< 10%)
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Figure 5.7: (a) Relative variation of the viscosity between the VFT (n,) and MYEGA
(Mm) models as a function of z. (b) Difference in axial stress obtained with the MYEGA
viscosity law compared to a simulation using the VFT law. The reference case is based

on case B in Table 5.1 using the two-dimensional model.
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Figure 5.8: Difference in axial stress along the free surface between predictions of the
two-dimensional model where only the viscous force is taken into account and the cases
where each other individual force is also considered. The solution is based on case B in

Table 5.1 using the two-dimensional model.

due to the large velocity gradients along the fiber. It can be shown that the axial velocity
is mostly affected by these two forces in the vicinity of the tip exit, which in turn impacts
the axial stress along the entire fiber but leaves the temperature field almost unchanged.

These results demonstrate that gravity and air drag can be safely neglected. However,
discarding the effects of surface tension and inertia negatively impacts the quantitative

prediction of the model.

5.2.2 Radial variations

The radial variations in temperature and axial stress are then analyzed in order to assess
the validity of the one-dimensional assumption. To specifically isolate this assumption
from the other simplifications on which the model is based, the two-dimensional model is
used here with only the viscous force (i.e., neglecting gravity, surface drag, surface tension
and inertia) and with constant properties. Results are then compared to the predictions
of the one-dimensional model.

The temperature and axial stress profiles are considered both at the symmetry line and
at the free surface. Figure 5.9 shows the difference in temperature and axial stress between
the centerline and the free surface along the axial direction (continuous line) obtained
with the two-dimensional model. The temperature difference reaches a maximum value
of 16°C at a distance of 5 mm away from the tip and then decreases to almost zero (see

Fig. 5.9(a)). This peak occurs where the radius of the fiber is still relatively large. As the
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Figure 5.9: Temperature difference AT (a) and axial stress difference Ar,, (b) between

the symmetry line and the free surface as a function of z obtained with the

two-dimensional model (continuous line), and between the two-dimensional and the
one-dimensional model at the symmetry line (dotted line) and the free surface (dashed

line). The solution is based on case B in Table 5.1.
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radius decreases, heat diffusion within the fiber is much more effective at homogenizing
the temperature, leading to a more oblate radial temperature profile, as illustrated in
Fig. 5.10. Note also that the maximum radial temperature variation is small compared
to the local temperature, and represents only 3.2% of the 500°C temperature drop along
the first 8 cm of the fiber.
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Figure 5.10: Radial distribution of the temperature across the fiber at different axial
positions for case B in Table 5.1. T and 7, represent the temperature and radius of the
free surface, respectively.

Since the viscosity is temperature-dependent (as indicated by Eq. (2.9)), radial tem-
perature variations also induce radial viscosity variations. As a consequence, the axial
stress varies also radially, which is illustrated in Fig. 5.9(b). In this case, the difference in
axial stress between the centerline and the free surface increases along the fiber until it
reaches a constant value at the same location as the axial stress itself reaches its plateau.
The radial variation in axial stress remains below 1 MPa, which corresponds to about 6
% of the final axial stress shown in Fig. 5.4(b). Moreover, the maximum axial stress is
observed at the free surface and not at the symmetry line.

Figure 5.9 also shows the temperature and stress difference between the two-dimensional
and the one-dimensional models at both the symmetry line and free surface. It can be
observed that those differences are of the same order of magnitude as the radial varia-
tions. Compared to the total temperature drop across the computational domain, the
one-dimensional approximation leads to a maximum temperature variation of 2.4% in
the vicinity of the tip and much smaller variations further downstream (less than 1%).
The stress difference is slightly higher, but still of the same order as its radial variations.
Moreover, the difference between the two models is smallest at the free surface, where the

stress is maximum, and amounts to about 0.08 MPa (0.8%). As the axial stress plays an
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important role in fiber breaking, its maximum value is of key importance. The maximum

stress can thus be relatively well predicted by the one-dimensional model.

5.2.3 Conclusion

These results demonstrate that neglecting radial variations is adequate. The main varia-
tions in the fiber occur in the axial direction and the problem is almost one-dimensional.
However, the other assumptions on which the model is based lead to larger deviations. In
particular, neglecting all forces (inertia, gravity, drag and surface tension) but the viscous
one results in an underestimation of the axial stress, as discussed in the previous section.
This precludes the one-dimensional model from providing accurate quantitative results.
Nonetheless, the qualitative behavior is well captured. Moreover, its quasi-analytical so-
lution clearly identifies the dependency between all the parameters. Finally, its numerical
resolution is much faster, which is advantageous when a large number of simulations is

required.

5.3 Solution of the surrounding air flow model

The solution calculated in the previous sections involved an empirical correlation for the
convective heat transfer coefficient. As mentioned previously, the accuracy of this corre-
lation is questionable. In order to investigate the cooling by convection, the surrounding
air flow around the fiber is solved numerically. The convective heat flux is then extracted
and compared to predictions given by the empirical correlation. More specifically, the
surrounding air model developed in Section 2.5 is solved with the numerical approach
described in Section 4.3. This requires the manual coupling of both solvers Polyflow and
Fluent, which partially limits the investigation of this topic. First, the general solution
of the air flow and heat transfer is presented in Section 5.3.1. Then the comparison
with the correlation is discussed in Section 5.3.2. Finally, a brief comparison with other

correlations found in the literature is provided in Section 5.3.3.

5.3.1 General solution

The general solution of the surrounding air model coupled to the fiber model is first
analyzed. The case study chosen is case B in Table 5.1 for the fiber, while the surrounding
air temperatures T, (see Fig. 2.17) is set to 20°C to represent a single tip bushing. In
addition, the air heating by convection at the bushing plate, assumed to be at the tip
temperature Tj, is taken into account. The temperature and velocity fields across the

domain are shown in Fig. 5.11 and Fig. 5.12, respectively.
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Figure 5.11: Temperature field of both the surrounding air and the fiber.
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Figure 5.12: Vertical velocity field of both the surrounding air and the fiber.
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Because of the no-slip boundary condition at the fiber surface, the air is entrained by
the fiber, at the surface of which a boundary layer forms (see Fig. 5.12). The thickness
d, of this boundary has been calculated and is shown in Fig. 5.13. In this particular case
where the surface moves in quiescent air, the thickness §, is defined such that v,(r —rg =
dy) = 0.01v, 5, where v, 4 is the free surface axial velocity. As depicted in Fig. 5.13, the
thickness increases along z. Note that the final radius of the fiber is reached around
z = 0.04 m. Very close to the tip, the radius attenuation is large and the bushing plate
limits the air displacement in the axial direction, so that the velocity is low compared
to its final value. As a result, the boundary layer is extremely thin. The impact of the
bushing plate is however limited to the region close to the tip.

Similarly, the temperature difference between the fiber surface and the ambient air,
leads to the creation of a thermal boundary layer. The particularity here is that the
bushing plate preheats the air surrounding the tip. This impact is very large on the
thermal boundary layer thickness dr defined as Ty, — Ty = 0.99(T,—o — T3) , as shown by
the large initial value of o7 for z = —0.004 m to z = 0.02 m (see Fig. 5.13).

As there is a difference of 1270°C between the tip and the room temperature, a strong
temperature gradient can be observed around the fiber. This gradient decreases along the

fiber as the fiber cools down.
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Figure 5.13: Thickness of the velocity and thermal boundary layers along the fiber.

The objective is to analyze the convective heat transfer coefficient,

Us = Gsroa

M) =7

(5.1)

where T, = Ti,. Note that h(z) varies along the fiber. The convective heat transfer
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coefficient obtained from the coupled simulation is illustrated in Fig. 5.14. It rapidly
increases along the fiber until a plateau is reached. Although the qualitative behavior
is the same, a large quantitative discrepancy is observed between the convective heat
transfer coefficient obtained from the air flow simulations and that from Kase and Matsuo

empirical correlation. This is discussed in more details in the next section.

5.3.2 Comparison with the Kase-Matsuo empirical correlation

Although the Kase and Matsuo empirical correlation [34] is widely used in the literature,
it has been developed for conditions that differ from those of the fiber drawing process, as
discussed below. The objective here is to compare this correlation with the coefficient h
found by numerical simulations of the surrounding air flow. Other empirical correlations
are treated in the next section.

The coefficient h given by Eq. (2.23) is calculated using the velocity v, and the
radius ry of the fiber surface. On the other hand, the solution from the coupled fiber
- surrounding air flow simulation provides a different value of the convective coefficient.
The comparison in Fig. 5.14 shows that the coupled air flow simulation yields a convective
heat flux that is half that predicted by the Kase and Matsuo correlation. This reduced
cooling leads then to a much higher fiber temperature, as shown by Fig. 5.15.
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Figure 5.14: Convective heat transfer coefficient h(z) along the fiber from the coupled
air-flow simulation and from Kase-Matsuo correlation (Eq. (2.23)).

The Kase-Matsuo correlation was obtained experimentally by recording the cooling of a
wire with a constant diameter (0.2 cm) and exposed to an air flow. The cooling behavior of
the wire was then expressed as a relationship between the Nusselt and Reynolds numbers.

The schematic in Fig. 5.16 illustrates the experiment. Note that the transverse term
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Figure 5.15: Temperature at the free surface as a function of z using Kase-Matsuo and
empirical correlation with A calculated by the coupled simulation.

is neglected here as the air velocity is mostly parallel to the fiber. Unfortunately, the

Figure 5.16: Schematic of the experiments of Kase and Matsuo. x and y denote the
parallel and transverse directions and « is the angle between the wire axis and the air
flow direction.

details of the experimental procedure (such as whether a constant wire temperature or
a constant heat flux were imposed, or whether h represents a local or average value)
and the methodology to calculate h are not available. Furthermore, the adequacy of this

correlation to model the glass fiber drawing process is questionable for several reasons:

e The diameter of the forming fiber continuously decreases over the first centimeters
from the tip exit, while the correlation is obtained for a constant diameter of 0.2

cim.

e The fiber entrains the ambient air otherwise at rest, while the correlation is based
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on a stationary wire inside a forced air flow.

e The velocity of the forming fiber increases gradually. The air speed in the experi-

ment, which is supposed to represent the fiber velocity, is constant.

e The bushing plate perturbs the flow and preheats the air, while the wire is located

in an undisturbed environment at constant ambient temperature (not known).

All these aspects can potentially explain the large discrepancy observed.

5.3.3 Other convective correlations

Beside Kase-Matsuo correlation, others can be found in the literature (see for instance

the review of Beyreuther [32]). These correlations have all the form given by Eq. (2.20)

and are represented in Fig. 5.17 as a function of the Reynolds number Re typically

involved in the drawing process. The predicted convective heat transfer coefficient for

these different correlations is shown in Fig. 5.18, without changing the others boundary

conditions. The correlation from Andrews leads to the largest cooling which is two times

larger than the one of Kase-Matsuo. The correlations from Brunig, Copley and Glicksman

yield values of h that are closer to that obtained with the coupled fiber-surrounding air

flow simulations, but a discrepancy of about 40% is still observed. Further work is thus

required to completely elucidate this discrepancy.
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Figure 5.17: Nusselt number as a function of the Reynolds number for several empirical

correlations.
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Figure 5.18: Convective heat transfer coefficient h along the fiber for several empirical
correlations (case B in Table 5.1).

5.3.4 Conclusion

The surrounding air study demonstrates that the convective coefficient provided by the
correlation of Kase and Matsuo is questionable, although it is the most widely used in the
literature. The two approaches yield a convective cooling that differ by a factor of two. As
the details of the experimental procedure are not available, it is complex to identify the
major reason for this discrepancy. A brief comparison with other correlations found in the
literature also shows a large difference with respect to the simulations of the surrounding
air. Nonetheless, the discrepancy between air flow simulation and Kase-Matsuo is of the
same order of magnitude as the discrepancy between some of these other correlations. This
indicates that the exact form of the convective coefficient remains an open question and
requires a more detailed analysis. Note also that the convective heat transfer coefficient
can greatly vary in the case of multi-filament bushing, where the transverse velocity plays
a more important role. The precise simulation of the surrounding air flow appears in these

conditions as the best adapted approach.

5.4 Solution of the semi-transparent radiation model

Section 5.1-5.2 focused on the solution of the physical models in which internal radiation
is neglected. The glass was assumed to be opaque and grey. As a consequence, only
the conduction heat flux took part in the energy transfer within the material, while a
grey radiative flux was imposed at the surface as a boundary condition. This assump-

tion has been systematically used in the literature and leads to a major simplification
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for the resolution of the model. Nonetheless, the energy balance within a glass melt can
be significantly impacted by radiative transfer. In particular, it is well known that the
radiative flux must be considered in the case of a furnace or in other glass forming pro-
cesses. Because this effect has never been assessed in the case of the fiber drawing process,
the present section focuses on quantifying the contribution of internal radiation on the
temperature and stress fields.

The first section deals with the general solution of the grey semi-transparent model
where a comparison with the solutions from the previous sections (opaque model) is pre-
sented. The semi-transparent band model is then studied in Section 5.4.2. Subsequently,
Section 5.4.3 discusses the influence of the radiative properties on the solution. The influ-
ence of the effective emissivity depending on the fiber radius and temperature in the case
of an opaque grey fiber is analyzed in Section 5.4.4. Finally, conclusions and a discussion

on the model limitations are given in Section 5.4.5.

5.4.1 General solution of the grey internal radiation model

The internal radiative flux may be sufficiently high to modify the conservation of energy
(Eq. (2.3)) and thereby impact the temperature field. This can in turn lead to a variation
of the final value of the axial stress. Neglecting this flux can lead to an error, which is
analyzed here. The discussion is based on the comparison between the two-dimensional
opaque and semi-transparent models. In the first case, only conduction is considered
within the fiber and the radiative flux is imposed through Eq. (2.25). The results of
this case have been largely studied in Section 5.1.2. On the other hand, the second model
considers a semi-transparent radiative flux in the energy equation including the associated
boundary conditions (Eq. (2.74)), as developed in Section 2.6.

This second model has been simulated using the numerical approach presented in
Section 4.4. Unless otherwise specified, the results are generated with Polyflow and only
a grey body, i.e., independent of the wavelength, is considered in the radiative transfer
equations (RTE). Since this is a strong approximation, the effect of a non-grey body is
studied in Section 5.4.2. The process parameters are the same as previously (case B
in Table 5.1). Table 2.3 provides the radiative properties. The general solution is first

analyzed in terms of temperature and then stress.

Temperature analysis

The solution of the radiative model is compared to the solution where the fiber forming
is considered as an opaque medium. The temperature profile at the free surface for both

solutions is shown in Fig. 5.19.
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Figure 5.19: Temperature at the free surface as a function of the axial coordinate z
obtained with the two-dimensional grey opaque and semi-transparent models for case B
in Table 5.1.

As a first observation, considering the fiber as semi-transparent increases slightly the
cooling of the fiber at high temperature. The temperature difference between the opaque
and the semi-transparent cases is shown in Fig. 5.20(a). The difference increases rapidly
in the first millimeters until a maximal variation of about 6°C at z &= 2 cm is reached. It is
not surprising that the impact of the internal radiation is the largest at higher temperature
in the region near the tip, since the radiative heat transfer dominates the cooling there
(see Fig. 5.3). After this maximal variation, the difference between both cases decreases
slowly until the overall effect of internal radiation becomes negligible. At these lower
temperatures, convective heat transfer dominates the cooling.

The impact of the radiative flux can be also analyzed in the radial direction. Fig-
ure 5.20(b) provides the difference between the axial temperature profile at the free surface
and at the axis of symmetry. Considering the fiber as a semi-transparent medium leads to
a similar radial profile to those for the opaque case. The maximal variation between the
center and the surface of the fiber reaches 18.8°C in the opaque case and 19.3°C in the
semi-transparent case. This maximum difference occurs in a very narrow peak, the radial
non-homogeneity being much lower afterwards. Once again, the impact of the internal
radiation is shown to be the largest at higher temperature.

Two effects could be a priori expected from considering internal radiation: the radial
temperature distribution should be modified, and the cooling heat flux should increase.
Figure 5.20(b) shows that the first effect is negligible, while Fig. 5.20(a) indicates that
internal radiation leads to a slightly larger cooling rate, as heat from inside the fiber can

escape through radiation.
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Figure 5.20: Temperature difference at the free surface and symmetry axis between the
two-dimensional semi-transparent and grey opaque case (a), and between the free
surface and the axis of symmetry for the two models (b).

Stress analysis

Figure 5.21 shows the axial stress at the free surface for the two models. The semi-
transparent model leads to the same qualitative behavior but some quantitative differences
can be observed. In particular, the final value of the axial stress 7, is larger by about
1.6 MPa (i.e. ~ 8%). This stress increase is directly linked to the larger cooling rate.
From Eq. (2.33), the stress is proportional to the inverse of the fluidity. If the cooling rate

increases, then the stress also increases. Furthermore, this quantity is more sensitive to
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variability at lower viscosity, and thus at higher temperature where radiation dominates.
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Figure 5.21: Axial stress 7., at the free surface as a function of the axial coordinate z for
the two-dimensional semi-transparent and opaque models.

5.4.2 Impact of a non-grey model

The results in the previous section were calculated using a grey model, i.e. independent
of the wavelength, for the radiative transfer equation supplemented with a radiative flux
at the free surface representing the opaque contribution of the spectrum!. Nevertheless,
a grey model can be a strong approximation if one considers the form of the absorption
coefficient in the semi-transparent window shown in Fig. 2.18. Furthermore, the model
calculates an intensity which is constant for all wavelengths. The impact of a non-grey
model compared to a grey model is studied here including the effect of the opaque band.
Since Polyflow cannot deal with a non-grey body, Fluent is used to simulate the fiber. Un-
fortunately, as mentioned in details in Section 4.4, only a one-way coupling from Polyflow
to Fluent can be performed. As a consequence, the radiative problem is solved for a fixed
geometry of the fiber. Following results are thus more qualitative than quantitative, but
they still provide an estimate of the effects of a grey assumption. The process conditions
are the same as previously. Additionally, the opaque part of the spectrum is investigated
here in more detail. In particular, the influence of this region and the value of the cutting

wavelength on the cooling is analyzed.

!The denomination opaque can be confusing here: the grey opaque model is the model without
internal radiation, while the opaque band denotes the range of wavelengths where the optical thickness
T\ — OQO.
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Influence of the semi-transparent region

First, the impact of a non-grey body is studied only in the semi-transparent region where
the opaque band is removed to clearly isolate the effect of the non-grey body. Two different

cases are considered:

e The first one solves the RTE only for one band in which £ = 207 [m~!]. This band is
taken from 0.7 to 3.8 pm. The remaining part of the spectrum does not contribute

to the radiative transfer.

e The second model solves the RTE using a four-band model within the same range

of wavelengths. The bands are given in Table 2.3.

The results are shown in Fig. 5.22 where the absolute free-surface temperature difference
between the two cases is represented. The maximal variation is only about 2°C, and
occurs again at high temperature. Then, the variation decreases to ~ 1.5°C. This seems
to indicate that the spectral variation of the absorption coefficient in the semi-transparent

region has a very limited impact on the solution.
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Figure 5.22: Difference of temperature along the free surface for the two-dimensional
semi-transparent model between the case where only one band is considered (k = 207
m~') and the case with four bands (given in Table 2.3).

Influence of the opaque region

The opaque part of the spectrum, which corresponds to wavelengths larger than 3.8 pm,

is represented by condition (2.74) where the opaque radiative flux is

qs,op = €op [fg[b(Ts) - fenv[b(Tenv)] )


chap_5/figs/RTE_BAND1.eps

146 Analysis of the physical models

and the ratio f, and fe,, are given by

S ToA(T3)dA

U DY

Although the emission of a black body at large wavelength is lower than in the semi-
transparent range, it can impact the cooling of the fiber. In order to highlight the con-
tribution of this opaque flux, a case study where the opaque radiative flux s, is set to
zero has been simulated. The result is shown in Fig. 5.23(a). The impact of the opaque
flux is very large with a maximal difference of 100°C after 0.02 m. Then, the difference
decreases to 60°C at z = 0.08 m. For the axial stress, shown in Fig. 5.23(b), the variation
is also very important with a difference of 10 MPa for its final value. The main conclusion
is that the opaque region represents a major contribution to the cooling of the fiber and

cannot be neglected.

On the other hand, ¢s,, depends on the value of f,. This parameter is a function
of the temperature and the cutting wavelength A\.. In the reference solution f, = 0.47,
which is an average between 1300 and 1000°C, and A\, = 3.8 um. The sensitivity of the
solution to f, is investigated here considering two extreme cases, f, = 0.37 and f, = 0.72.
This range corresponds to the variation of temperature between 800°C to 1300°C. The
results for the temperature and the stress are presented in Fig. 5.23(a) and Fig. 5.23(b)
as the two dotted lines for f, = 0.37 (1300°C) and 0.72 (800°C). Note that the case
ds,op = 0 corresponds to f; = 0. The axial profile of the temperature shows a variation
with the value of f,. An increase of this value yields a higher cooling of the fiber because
of the increased opaque radiative flux. The final axial stress value is largely impacted
with an increase of about 8 MPa between the case 1300°C and 800°C. The cooling is thus
sensitive to f,. Nevertheless, the opaque flux ¢, dominates the convective heat transfer
for temperatures higher than 1200°C, as shown in Fig. 5.24. Consequently, f, has been
calibrated at a higher temperature, i.e., the average between 1000 and 1300°C.

On the other hand, f, is also dependent on the cutting wavelength A.. This wave-
length represents the transition between the semi-transparent and the opaque region where
Kk — 00. As discussed in Section 2.6, there is no specific physical criterion for defining the
value of A, and it has thus been chosen arbitrarily to be 3.8 um. The sensitivity of the
solution to the choice of this cutting wavelength is presented in Fig. 5.25. The range of
uncertainties on this value is between taken 3.8 um (i.e. reference case) and 4 ym. Above
4 pm, the measurement of the opaque emissivity can be taken into account. The results
are again based on the axial stress and show a variation of 0.75 MPa for the final value
T.2s. A decrease of the value of \. increases the range of wavelengths taken into account

in f, from Eq. (2.75) and leads to a higher opaque flux, a larger cooling, and thus a larger
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Figure 5.23: Solution of the two-dimensional semi-transparent model for temperature
(a) and axial stress (b) as a function of z considering different values of the opaque band
parameters. The reference denotes the semi-transparent case studied in Section 5.4.1
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Figure 5.24: Radiative and convective flux as a function of the temperature of the fiber
surface T; for different values of f, in the two-dimensional semi-transparent model.
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Figure 5.25: Axial stress as a function of z for two different cutting wavelengths.

T.»s. However, since the impact is small (= 3%), the value of 3.8 um is kept.

5.4.3 Sensitivity of the radiation model to radiative properties

The radiative model involves two fundamental radiative properties: the absorption coeffi-
cient k) and the refractive index of the glass ng. The first one represents how the radiation
is transferred within the medium, while the second is related to the transmission of the
radiation intensity through the fiber surface. This section investigates the sensitivity of

the grey semi-transparent radiative model to these two properties.


chap_5/figs/RTE_OpaquePart_flux2.eps
chap_5/figs/RTE_OpaquePart_Lambda.eps

5.4 Solution of the semi-transparent radiation model 149

Effect of the absorption coefficient

The variation of the absorption coefficient originates in variations of the level of FeO or
OH content in the glass. Since this variability can be critical in the furnace, this section
focuses on its impact on the fiber drawing process and the resulting stress. The absorption
coefficient varies from x = 64 m~! to k = 866 m~! within the semi-transparent range,
as depicted in Fig. 2.18. The sensitivity analysis is based on the two-dimensional semi-
transparent model with the grey assumption. Three values of k are considered: x = 866
m~!, k=207 m™! and kK = 64 m~!, corresponding to the maximum, mean and minimum
values of the absorption coefficient in the semi-transparent range. Figure 5.26 shows the
temperature and axial stress difference at the free surface between two solutions using a
different value of k. As expected, the maximum variation is found between the minimum
and maximum values of k. These differences remain rather small so that a mean value of
k =207 m~! can be used. When the absorption coefficient increases, the gradient of the
radiative flux within the medium is smaller and its contribution to the energy equation

becomes lower. The transport of energy is thus lower within the fiber.

Effect of the refractive index

The refractive index of the glass ny is a property involved in the transmission of the
intensity between the glass and the air, as defined in Section 2.6.4 for the semi-transparent
boundary conditions. In particular, an increase of n, leads to a decrease of the quantity
of energy transmitted through the fiber surface. This quantity depends on the glass
composition. The range of variation is taken from 1.42 (pure silica glass [50]) to 1.56
(Advantex(©) glass). A similar analysis to that described in the above section is performed.
The impact on the temperature profile at the free surface due to the variation of n, is
less than 0.1°C, as shown in Fig. 5.27(a). As expected, the cooling is higher in the case of
ne = 1.42 leading to a lower temperature than for the case with n, = 1.56. The impact

on the axial stress is also very small with a difference of 0.025 MPa (i.e. ~ 1%).

5.4.4 Comparison with the effective emissivity

The previous sections have highlighted the limited impact of using a radiative transfer
model within the glass in the context of the fiber drawing process. As the modification
of the radial profile of temperature is negligible when internal radiation is considered, the
main impact is observed in the radiative cooling flux. This flux consists of the radiative
flux from the glass bulk and the flux from the opaque part of the spectrum at the surface.

As a result, the stress is more affected by the cooling of the fiber than the variation of
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Figure 5.26: Difference in the (a) temperature and (b) the axial stress at the free surface
between the reference solution £ = 207 m~! and the solution with k = 866 m~! (case 1),
k=270 m~! (case 2), and k = 64 m~! (case 3), using the two-dimensional
semi-transparent model with the grey assumption.

the radial temperature profile due to the internal radiation. In other words, the radiative
heat loss is the most relevant aspect.

The opaque model assumes a constant emissivity that cannot take into account the
variability of the flux from the bulk. In Section 2.4.6, an effective emissivity was measured
experimentally (Eq. (2.53)), whose value depends on the thickness and the temperature
of the surface. This measured effective emissivity includes the contribution to radiation

not only from the surface, but also from the bulk. The purpose of this section is to
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Figure 5.27: Temperature (a) and axial stress (b) difference at the free surface as a
function of z between two solutions computed with n, = 1.42 and n, = 1.56. Results are
obtained with the two-dimensional semi-transparent model with the grey assumption.

analyze the adequacy of using an effective emissivity in an opaque grey model compared
to a full internal radiative model. The use of an effective emissivity without significant
deterioration of the solution accuracy would greatly simplify the modeling of radiation
and reduce the computational cost.

In order to analyze the possible use of an effective emissivity, three fiber models are

considered:

e The two-dimensional model where the medium is considered as a grey opaque
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medium without internal radiation. The emissivity of the surface flux is equal to

0.4 as previously. It corresponds to the reference model analyzed in Section 5.1.

e The two-dimensional model where the medium is also considered as a grey opaque
medium without internal radiation, but with an effective emissivity that depends

on the fiber radius and surface temperature (see Eq. (2.53)).

e The two-dimensional semi-transparent model with the grey assumption, as discussed
in Section 5.4.1.

The temperature and axial stress along the fiber obtained with the three models are
shown in Fig. 5.28 and the corresponding differences between the effective emissivity and
the two other models are illustrated in Fig. 5.29. The comparison between the effective
emissivity approach and the internal radiation model, and between an effective emissivity
and a constant emissivity approach shows a maximum temperature difference of 11.5°C
and 9.5°C, and an average temperature difference of 5.7°C and 8°C, respectively.

On the other hand, the axial stress profiles given in Figs. 5.28(b) and 5.29(b) show
that the final axial stress 7,,; at the free surface is almost the same for the internal
radiation and for the effective emissivity model. The main difference is observed in the
region very close to the tip. Although temperature differences are larger between the
effective emissivity approach and the full internal radiation model, the difference in axial
stress is lower.

Finally, Fig. 5.30 represents the difference of temperature and axial stress between
the free surface and the symmetry axis for the three radiative models. The use of an
effective emissivity leads to very similar profiles of temperature and stress compared to
the semi-transparent model. Consequently, the use of this approximation seems to be

reasonable.

5.4.5 Discussion

Overall, these results demonstrate that accounting for the details of internal radiation
does not significantly modify the solution. The quantitative differences observed are
small, especially in light of all other approximations and uncertainties. Moreover, the
main impact of including internal radiation is seen in the increased radiative heat flux
leaving the fiber surface rather than in the modification of heat transfer within the fiber.
It can be concluded that the use of an effective emissivity in the context of a grey opaque
radiation model provides an accurate and computationally much less costly alternative to
modeling the full internal radiation. Finally, it was also shown that the semi-transparent

model is only weakly sensitive to the value of the refraction index, but much more to that
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Figure 5.28: Temperature (a) and axial stress (b) at the free surface as a function of z
obtained with three radiative models: i) an opaque grey medium with ¢, = 0.4, i7) an
opaque grey medium with ¢, that is a function of the fiber surface temperature and
radius, and #77) a grey semi-transparent medium.


chap_5/figs/RTE_EffEm_T.eps
chap_5/figs/RTE_EffEm_Stress.eps

154 Analysis of the physical models

151

e =€&(T,rs) - €, =0.4

— — —¢ = &(T, rs) - internal radiation

10 . . . )
0 0.02 0.04 0.06 0.08

z [m]

()

AT, s [MPa]

\ // e =¢6(T,rs) - €5 =04
15+ \\ , — — —¢& = &(T, ry) - internal radiation
N
2 L L L )
0 0.02 0.04 0.06 0.08
z [m]
(b)

Figure 5.29: Temperature (a) and axial stress (b) difference at the free surface as a
function of z obtained between an effective emissivity and constant emissivity approach,
and between an effective emissivity approach and a full semi-transparent model.
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Figure 5.30: Temperature (a) and axial stress (b) difference between the free surface and
the symmetry axis as a function of z for the same three radiative model as in Fig. 5.29.
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of the absorption coefficient. In particular, an increase of the absorption coefficient leads
to a larger final axial stress.

It should be recalled that the present analysis did not take into account the radiative
heat transfer between the bushing plate and the fiber, which could have an important

impact on the cooling and thus partly modify these conclusions.

5.5 Summary

This chapter has provided a detailed investigation of the physics involved in the fiber
drawing process. In particular, it has presented an analysis of the opaque two-dimensional
model and its related one-dimensional approximation. The convective heat transfer coef-
ficient has been studied in more details using a surrounding airflow model coupled with
the fiber. Finally, the convective heat transfer coefficient has been studied in more details
using a surrounding airflow model coupled with the fiber. In this context, some results
were compared with experimental data and the impact of numerous approximations and
simplifications has been analyzed with a focus on velocity, temperature, cooling and stress.

The main key findings are:
e The radius attenuation is well predicted by the opaque two-dimensional model.

e The maximum uncertainties due to material property measurements amount to

about 3%.

e The error introduced by neglecting the temperature dependence of material prop-
erties (except for the viscosity) is in general smaller than the uncertainties due to
measurement errors. Conductivity, surface tension and density can thus be approx-

imated as constant over the range of temperature considered.

e The use of the more physical MYEGA viscosity law does not improve the results

obtained with the empirical Fulcher relation.

e Cooling is critical and strongly impacts the value of the final stress because of the

large changes in viscosity with temperature.

e Cooling is dominated by radiation in the vicinity of the tip and by convection further

downstream.

e Radial variations are small compared to axial gradients so that the problem is mostly

one-dimensional.
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e Viscous effects, and to some extent surface tension, are much more important than

inertia and gravity.

e Therefore, the one-dimensional model, which only accounts for the viscous force,
represents a good approximation of the more complex two-dimensional problem.
Moreover, the effect of surface tension on the stress can potentially be added a

posteriori.

e The use of an effective emissivity within a grey opaque radiation model provides a
good approximation and is computationally much cheaper compared to a complex

model that includes internal radiation.

e The empirical correlation of Kase-Matsuo for the convective heat transfer coefficient
does not seem to be adequate. A better correlation or a more complex model that

includes the flow of the ambient air is required.

It is important to keep in mind that these conclusions are valid within the context of this
study. In particular, only the upper part, before glass transition, of a single fiber has been
considered. Moreover, the radiative heat transfer between the fiber and the bushing plate
and fin shields has been ignored.

While some of these findings have already been discussed in the literature, the present
work represents a much more rigorous analysis of the model predictions on numerous pa-
rameters. The other important contributions include the development of a semi-analytical
one-dimensional model, the extension of the two-dimensional model for internal radiation,

and an in-depth assessment of the empirical correlation for convective cooling.






Chapter 6

[CONFIDENTIAL] Application of
the single fiber model

The previous chapter focused on assessing the different numerical models and on better
understanding the physical phenomena at play in the drawing process of a single fiber.
The next step towards characterizing the fiber break is to leverage these physical models
in order to identify the key process parameters and the optimal operating window. In
particular, the physical models are applied to specific problems related to the industrial
production of fibers. The aim of the overall chapter is to define the range of control
parameters that lead to an efficient process. More specifically, the operating window is first
analyzed, whose objective is to assess the influence of the process parameters on the stress
and identify strategies that can be followed to improve the fiber drawing. The stress is
again chosen as a key indicator since it is a measure of the robustness of the process. Then,
the semi-analytical one-dimensional model is used to quantify the variability of the axial
stress across multiple fibers that is caused by temperature inhomogeneities of the bushing
plate. Finally, the last part of this chapter is dedicated to the draw resonance, which is an
instability that can occur in the process. This instability represents a major limitation to
the process efficiency because it constrains the operating window, particularly in terms of

temperature. The key results of this chapter can be found in Chapter 8 in Section 8.1.2.






Chapter 7

[CONFIDENTIAL]| Break rate

prediction

During the drawing, a disturbance or an impurity in the melt can cause a single fiber
to break, which generally leads to the failure of all fibers of the bushing position. The
objective of this chapter is to develop a preliminary model to predict the failure rate. In
the previous chapters, the axial stress was considered as the key performance indicator.
Although observations in the production give support to this choice, the stress provides
only a partial measure of the process robustness. The aim of this chapter is thus to
link this stress to the break rate. More specifically, the proposed break model relates
this stress to the probability distribution of the fiber strength. Because the stress is
obtained from the physical model derived previously, it would be thereby possible to
directly predict the break rate as a function of the process conditions and parameters.
Nonetheless, the strength distribution cannot be determined theoretically, so that the
distribution parameters must be obtained from experimental measurements. Therefore,
an experimental methodology to measure them is proposed and then illustrated for a

specific case. The key results of this chapter can be found in Chapter 8 in Section 8.1.3.






Chapter 8
Conclusion

The manufacturing of glass fibers is a complex energy-intensive industrial process that
involves fluid and solid dynamics, heat transfer, rheology, chemistry, material science,
fracture mechanics... Despite a long practical experience in producing glass fibers, the
underlying physics of fiber drawing is still poorly understood. This partly explains why
the industrial process has not evolved much during the past decades. There is thus a large
potential for improving its efficiency. In particular, reducing the rate of fiber breaks during
the drawing process represents one of the main lever for decreasing costs and increasing
production throughput.

The overall goal of this research was thus to provide a quantitative understanding of
the detailed physics at play, which can then be leveraged for improving the fiber drawing
process. As the problem is extremely complex, the scope of this thesis was restricted to
a single fiber and to the ”"liquid” region between the bushing plate and glass transition.
Specifically, the main objectives were 7) to extend the current understanding of the physics
involved in the glass fiber drawing process and the fiber break, i) to provide a physical
model for the drawing of a single fiber that includes all relevant physics, i) to leverage
numerical solutions of this model to suggest strategies for improving the process, and iv)
to derive a probabilistic model of the break rate that uses inputs from the physical model.
The methodology has relied on a combined theoretical, computational and experimental
approach. This has included the development of mathematical models, the numerical
resolution of these models, and experimental measurements on a dedicated fiberization
unit. Simulation results were analyzed to assess the impact of different levels of modeling
fidelity and of model parameters and material properties on predictions. The analysis was
then extended to assessing the influence of the operating conditions in order to identify
new strategies for improving the process efficiency. Finally, a first probabilistic break rate
model that exploits these physical models has been proposed.

This chapter first summarizes the key results and discusses their limitations and their
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implications for the industrial manufacturing process of glass fibers. It then highlights

the main contributions of this thesis, before suggesting several avenues for future work.

8.1 Key results and conclusions

Despite several assumptions and simplifications, this work has provided important results
and new findings. The use of different levels of modeling fidelity has allowed to evaluate
the relative importance of different physical processes and to isolate the most relevant
ones. This knowledge could then be used to analyze the process operating window and
identify the corresponding implications for the industrial process. Finally, the physical

models have been exploited to obtain a probabilistic description of the break rate.

8.1.1 Physics and modeling of the process

A two-dimensional axisymmetric model that attempts to integrate all relevant physics has
been developed in Chapter 2 and measurements for a single fiber have been performed
on a dedicated experimental facility as described in Chapter 3. Comparison between the
model predictions and these experimental measurements and other measurements from
the literature has shown that the radius attenuation is well predicted by the opaque
two-dimensional model (Chapter 5). It is however important to emphasize that this
result provides only a partial validation, as the measurement uncertainties are relatively
large and radius attenuation represents only an indirect quantity. A full validation would
require temperature and stress measurements, but such measurements would be extremely
difficult to perform, if at all possible.

In Chapter 5, the relative contribution of different forces has been analyzed by in-
dividually turning them off in the two-dimensional model. It has been found that the
viscous effects, and to some extent surface tension, are much more important than iner-
tia, gravity and air drag. On the other hand, the radial variations are small compared to
axial gradients so that the problem is mostly one-dimensional. This provides support to
the one-dimensional semi-analytical model derived in Chapter 2. Although this simplified
model only accounts for viscous forces and neglects surface tension, inertia, gravity and
air drag, it represents a good approximation to the more complex two-dimensional model
with a much lower computational cost. It also leads to a more intuitive interpretation of
the physics as it explicitly reveals the links between several physical quantities.

Because of the high temperature of the melt and the strong dependence of the viscosity
on temperature, heat transfer by conduction, convection and radiation is critical. Overall,

it was found that the axial stress and velocity grow first slowly and then rapidly increase
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before reaching a plateau upstream of the transition point. On the other hand, the
temperature decreases continuously along the fiber. The cooling rate, through the changes
in viscosity with temperature, is the most important quantity that controls the axial stress
profile and its final value, as explicitly highlighted by the one-dimensional model. The
fiber cooling is dominated by radiation in the vicinity of the tip while convection becomes
the main heat transfer mode further downstream (see Chapter 5). The one-dimensional
model has also highlighted that the region of lower viscosity, i.e., of higher temperature,
close to the tip is the most critical in regards to the final axial stress, as it contributes most
to the fluidity. Additionally, a more rapid cooling in this region was found to increase the
final axial stress and conversely (see Chapter 6). This implies that the region close to the

tip is key to control the process.

As the melt is a semi-transparent medium, not only conduction but also internal
radiation contributes to heat transfer within the fiber. A semi-transparent model has thus
been developed considering only the absorption and emission mechanisms (i.e. neglecting
the scattering) in Chapter 2 and then compared to a grey opaque radiative model in
Chapter 5. The results have shown that the spectral dependence of the radiative properties
is negligible and thus, the grey approximation is still valid. On the other hand, the
main impact of internal radiation is to modify the cooling rate. Consequently, the effect
of internal radiation could be approximated using an opaque radiative model with an
effective emissivity that takes into account the diameter and the temperature of the fiber.
Such a model provides good results and allows a large reduction in model complexity and
computational cost because it does not require solving the radiation transport equations
within the fiber. However, it is important to recall that external radiation assumed a
blackbody surrounding at uniform temperature and did not account for the presence of

the bushing plate, potential finshields or other fibers in the case of a multi-fiber bushing.

Following the literature, convective heat transfer at the fiber surface was modeled with
an empirical correlation (see Chapter 2). However, the use of this correlation is question-
able, especially in regards to the non-uniform temperature distribution of the entrained
surrounding air observed in practice. The comparison of the cooling rate predicted by this
correlation using several constant and an axially-varying surrounding air temperatures has
shown that this non-uniformity is important. This result was further emphasized by simu-
lations of the ambient air flow coupled to the fiber physical model that have demonstrated
a large discrepancy compared to results obtained with the empirical correlation (Chapter
5). This strongly suggests that a better representation of convective cooling is critical
to accurately predict the axial stress. Nonetheless, despite its higher fidelity the coupled
air flow model suffers several limitations. First, the assumption of a fully turbulent flow

everywhere is questionable. Then, it does not account for the potential presence of an
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air conditioning system (HVAC), which is used in production and known to have a major
impact on the process. Finally, in the case of a multi-fiber bushing, the presence of other
fibers would significantly modify the airflow and should therefore be considered.

Because of the high temperatures, material properties are generally challenging to
measure. Moreover, they usually depend on the temperature. Therefore, they represent a
major source of uncertainty. The impact of these uncertainties has been assessed in Chap-
ter 6 through sensitivity analysis and was found to amount to less than a few percent.
Moreover, the error made by neglecting the temperature dependence of these material
properties (except for the viscosity) was shown to be in general smaller than the mea-
surement uncertainties themselves (Chapter 5). Conductivity, surface tension and density
could thus be approximated as constant over the range of temperature considered. Fur-
thermore, the use of the physically more accurate MYEGA viscosity law did not improve

the results compared to those obtained with the empirical Fulcher law (Chapter 5).

8.1.2 Implications for the industrial manufacturing process

The one-dimensional model has been leveraged in Chapter 6 to investigate the operating
window of the process, using the axial stress as an indicator of its robustness. Although
this simplified model does not provide fully accurate quantitative predictions, it yields
the correct trends. First, the impact of the cooling rate variability, process parameters
and glass composition on the stress has been studied for a single fiber, highlighting the
importance of the radiative cooling close to the tip and the larger final stress induced by a
rapid cooling. In a second step, the impact of temperature inhomogeneity at the bushing
plate has been evaluated. It has been found that even a rather narrow distribution of tip
temperatures leads to a large distribution of stress, which emphasizes the importance of
upstream processes at the bushing. Overall, this analysis has shown that the stress can

be minimized through several levers:

Glass composition The temperature-dependence of the viscosity, the surface tension
and radiative properties have been demonstrated as the most critical properties.
Their impact could potentially be controlled by modifying the chemical composition

of the glass.

Bushing process For a given target fiber radius, one could increase the tip temperature
while increasing the drawing velocity and flow rate at constant tip radius. The
radiative cooling could also be reduced through radiative interaction with the process

equipment (e.g., finshields).

Bushing design For a given target fiber radius and flow rate, the tip diameter could
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be decreased in conjunction with an increase of the tip temperature during the
process manufacturing. In addition, the bushing design could be optimized to reduce

temperature inhomogeneities at the bushing plate.

Some of these strategies are however limited by several constraints, such as, for in-
stance, the drawing instability that occurs when the tip temperature becomes too high.
The drawing instability has been studied in Chapter 6. A simplified stability map has
been constructed by analyzing the time response of the fiber radius to initial temperature
perturbations using simulations of the unsteady two-dimensional axisymmetric model.
The drawing instability represents a major limit to operating at higher tip temperature.
A possible strategy to avoid it could be to decrease the surface tension and/or to increase
the convective cooling.

Finally, these conclusions should be taken with great care as Chapter 7 has shown that
the strength possibly increases with increasing drawing stress. If the strength is indeed
directly and explicitly dependent on the stress, then reducing the stress would not neces-
sarily be the best strategy for improving the drawing process. A better understanding of

the break is thus required before defining an optimal strategy.

8.1.3 Probabilistic modeling of the break rate

The aforementioned results have suggested different avenues for reducing the axial stress
within the fiber. However, as just mentioned, seeking a lower stress level, although in-
tuitively sensible, might not be the best strategy for reducing the break rate. The final
contribution of this thesis, discussed in Chapter 7, is thus a first attempt to quantify the
link between stress and strength. In particular, a probabilistic model has been derived to
relate the stress to the break rate for endogenous breaks. Based on the weakest-link the-
ory, it models the strength as a random property that follows a Weibull distribution, while
the stress itself is deterministic and obtained from the physical model. The main model
assumption is that the strength does not depend on the drawing conditions that only enter
the model through the stress. The model requires the calibration of two constants related
to the Weibull distribution. An experimental methodology has then been proposed for
calibrating these model constants. It consists in break tests performed on the fiberization
unit. In order to shorten the experiments, the drawing velocity has been linearly increased
until a break occurs. Preliminary results support the assumption that the strength follows
a Weibull distribution for fixed drawing conditions, despite some outliers observed at low
drawing velocity, i.e., at low stress level. Although a definite explanation for these out-
liers still lacks, it is believed that external factors could be the origin of these breaks, i.e.,

they were exogenous breaks. On the other hand, additional measurements at a different
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tip temperature have demonstrated that the measured strength distribution depends on
the drawing conditions, possibly reflecting the known dependence of the strength of solid
glass fibers on the drawing stress. This result contradicts the main assumption of the
model. As a consequence, the model parameters cannot be considered as constant and
universal. A possible approach to integrate into the model this strength dependence on
drawing conditions would be to consider Weibull parameters that explicitly depend on
these conditions. Nonetheless, this could potentially significantly reduce the generality of
the break model. The main challenge in modeling this dependence stems from the limited
fundamental physical understanding of the fiber strength and on which parameters it ex-
plicitly depends. It is important to emphasize that this model and its calibration is only
a very preliminary attempt at predicting the break rate and much more work remains
to do. However, a major consequence of these results, if they are definitely confirmed, is
that a strategy aiming at simply reducing the drawing stress within the fiber might not

be the best approach to optimize the process.

8.2 Summary of the main contributions

Although many questions remain open, this work has confirmed several results from the
literature and provided important new findings towards a better understanding of the
overall fiber drawing process and the fiber break. In particular, the main contributions of

this thesis are:

e the development of a full axisymmetric viscous model that integrates most of the
important physics of the fiber drawing process between the tip at the bushing plate

and the glass transition point,

e the derivation of a semi-analytical model that has a low computational cost while
retaining the important features of the physics, and that provides an intuitive in-

terpretation of the results,

e the quantitative evaluation of the impact of numerous parameters and an exhaustive

discussion of the limits of the models,

e the implementation and the quantitative assessment of a full semi-transparent in-

ternal radiation model,

e the simulations of the surrounding air flow coupled with the fiber simulations, and
the quantitative assessment of the empirical correlation traditionally used to model

the convective cooling,
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the numerical study of the unsteady response of the fiber and drawing instability,

a set of measurement data for validation,

an overall more detailed description of the physics of the process,

guidelines for improving the efficiency of the industrial process,

the derivation of a preliminary probabilistic model for predicting the break and a

set of break measurements.

This improved detailed understanding of the drawing process and the tools developed
within the frame of this work should serve as basis for assessing new optimization strategies

either directly in the design phase of new bushing positions, or in operating existing ones.

8.3 Future work

The project has provided major advances with respect to the state-of-the-art in under-
standing and modeling the fiber drawing process. Nevertheless, the results presented
suffer several limitations, as already highlighted, and additional effort could be devoted
to further improve the proposed models. Moreover, the manufacturing of glass fibers
involves many other aspects that have not been considered in this thesis but can have a

significant impact on the efficiency of the overall process and the fiber break.

8.3.1 Possible further improvements of the proposed models

and analysis

The current models could be further improved by including a more detailed description
of several key physical processes and more extensive experimental measurements, as de-

scribed below.

Radiative heat transfer

The assumption of a blackbody surrounding at uniform temperature could be relaxed. In
particular, the temperature of the bushing plate is high and its radiation directly impacts
the heat transfer at the fiber surface close to the tip, which is the most sensitive region
for the stress. Similarly, the purpose of water-cooled finshieds is to modify the cooling of
the fiber in this region. As sole mean of precise process control in production, they have
a direct impact on the stress and the break. The contribution of the bushing plate and

finshields to the radiative heat transfer could be included for instance through the use of
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view factors in the definition of the boundary conditions at the fiber surface. Additionally,
the spectral properties of their surface should be further investigated. Finally, the spectral
model for the internal radiation could be refined, but at the expense of more complex and

costly simulations.

Convective heat transfer and surrounding air flow

The coupled air flow simulations could be further improved by considering more geomet-
rical elements that impact the air flow around the fiber. For instance, the airflow around
the tips or finshields could lead to some vortex shedding. Additionally, the HVAC could
also be included in such simulations as it directly controls the flow and properties (tem-
perature, humidity, etc.) of the surrounding air. These simulations could also be used
to investigate the heat transfer at the bushing plate, tip and finshields. However, such
coupled iterative simulations are computationally very costly and the use of a correlation
for convection could be in many cases beneficial. As the correlations traditionally used
are not sufficiently accurate, a better correlation could be developed based on simulations
of the ambient air flow for the specific case of fiber drawing. The new correlation should
be able to account for the air preheating below the bushing plate, the change in radius of

the fiber and the change in temperature of the surrounding air.

Material properties

Material properties represent one of the major sources of uncertainty in the models, as
they are often very difficult to measure for liquid glass at high temperature. Obtaining
more accurate measurements of these properties and their dependence on temperature
and possibly geometry and cooling rate for different melt compositions would reduce the

overall uncertainty in the model predictions.

Viscoelastic effects around transition

An important simplification of the model is the assumption that the glass melt behaves
like a Newtonian fluid. While this assumption is valid at high temperature, i.e., in the
initial region close to the tip, viscoelastic effects can be expected when the temperature
decreases and the liquid glass approaches its transition point. In particular, it might
impact the overall structure of the glass, and thus, the glass properties and the range of
temperature of transition. Unfortunately, the only viscoelastic model for glass has been
derived for a low cooling rate and slow deformations, which significantly differs from the

typical conditions in the fiber drawing process. The main impact of this simplification is
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supposed to be weak as viscoelastic effects would only be seen far downstream from the

tip, but could also impact the fiber strength.

Unsteady effects

The unsteady dynamics of the process and the drawing instability have only been su-
perficially investigated. A much more detailed analysis should consider different types
of perturbations. First, different forms of temperature perturbations in terms of time
evolution could be used. Then, perturbations of other quantities (e.g., flow rate, heat
transfer, drawing velocity, etc.) should be considered. Additionally, possible vibrations
induced by the winder or the HVAC-induced air flow should be studied. On the other
hand, the one-dimensional model should be extended to account for surface tension ef-
fects and to treat unsteady cases. The unsteady analysis done with the two-dimensional
problem could then be repeated with this simpler one-dimensional model. It could also
serve as basis for a formal linear stability analysis in the same spirit as the analysis of the
Plateau-Rayleigh instability, but incorporating heat transfer and the impact of cooling.
This would provide a much better understanding of the key parameters that control the

drawing instability and a more accurate estimate of their corresponding critical value.

Non-axisymmetric effects

As only a single fiber was considered, it has been intuitively assumed that this fiber is
perfectly aligned along the tip axis. An axisymmetric assumption could thus be made for
the model. However, a realistic bushing includes several thousand fibers that all converge
towards the winder. As such, most of the fibers are aligned at an angle with respect to the
vertical and to their corresponding tip. On the other hand, the presence of many other
fibers alters the heat transfer. There is a radiative interaction between fibers, and the
entrained air flow, and thus the convective cooling, is strongly modified. Furthermore,
the air flow is in many cases not directly aligned along the fiber, especially close to the
tip. A normal air velocity component can lead to a pressure and shear stress distribution
that deforms the fiber. The problem is then clearly non-axisymmetric and the impact on

the stress of variations around and/or of the contour of the fibers should be analyzed.

Probabilistic break model

As discussed in the previous chapter, the proposed probabilistic break model is only very
preliminary and much work remains to do, not only with respect to modeling, but also and
foremost in the understanding of the fundamental physics involved. First, the characteri-

zation of the strength should be more detailed. In particular, its dependence on external
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factors such as the melting conditions, the process parameters including environmental
conditions, the glass composition, and many others should be investigated. Then, the
break rate model should be further improved to take into account these aspects. A first
approach is to have calibration parameters that depend on these external factors. The
question is then whether the model retains sufficient generality to be useful: if experiment-
based calibration is required for each case of interest, the model looses most of its interest.
The model should also be extended to account for external factors and include exogenous
breaks. Additionally, one could also consider uncertainties in the stress predictions and
represent the stress as another random quantity. Another avenue for future work could
model the break from a different point of view, abandoning the underlying weakest-link
assumption of the present model. A possible approach is to describe the phenomenon as
a stochastic process and represent the break based on a first-hitting-time concept. This
process could then be numerically simulated and compared to statistical measurements.
Depending on the complexity of the model, an analytical description of the break rate

could be derived.

Experimental validation data and break measurements

One of the main challenges of this research is the lack of experimental data to validate
the models. This includes measurements of more significant quantities such as the stress
and the temperature along the fiber. Such new experiments should also provide a precise
characterization of the boundary conditions (e.g., surrounding air flow, geometry, tem-
perature of the bushing plate, winder pulling force, etc.). Considering also different glass
compositions and different process conditions, optimally closer to the actual conditions in
production, would also be important to validate the models over a larger range of parame-
ters. The characterization of the fiber strength also requires more experiments to identify
the extrinsic strength dependence on the process conditions. On the other hand, addi-
tional data on the break itself is needed to calibrate and validate the break model. In this
respect, preliminary measurements could be greatly improved. This includes among oth-
ers identifying the vertical position of the break, accurately characterizing the conditions
to isolate the effect of the winder speed on the stress, assessing and improving the repeata-
bility of the experiments and quantifying the measurement errors. Finally, a dedicated
research effort should focus on improving the precise methodology for both experimental

break measurements and the inference of model parameters from these experiments.
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8.3.2 Other research directions beyond the scope of this thesis

Several other topics have been left out of the scope of this thesis, but are expected to play

an important role with respect to the efficiency of the process and the fiber break.

Wetting effects

A non-negligible wetting of the glass melt on the tip surface is typically observed. This
wetting changes depending on the glass composition, the air conditions and the bushing
surface material. Its impact on the stress and the break is however unknown and further

research is required to better understand the underlying physics and model it.

Glass transition

The current model focuses on the region upstream of the glass transition point, but it is
still not clear whether breaks occur mainly before the transition point or also during or
after transition. The main challenge in modeling transition is its strong dependence on
the material history in terms of deformations and temperature. As already mentioned, the
fiber drawing process is characterized by a very rapid cooling and large deformations that
both strongly impact the material structure and therefore the material properties after
transition. A better understanding of the relation between glass structure and process
conditions could help developing a more adapted viscoelastic model and shed light on the
extrinsic strength. More specifically, the understanding of the break phenomenon could
be further advanced by analyzing this structure using for instance fracture mechanics

concepts.

Multi-fibers

This work has focused on a single fiber, but the real process involves several thousands
of them, which can all interact with each other. A future research direction should
thus consider the extension of the present thesis to multi-filament bushing by including
aforementioned elements as non-axisymmetric effects, inter-fiber radiation heat transfer,
the impact on the air flow, inhomogeneity of conditions across fibers, etc. As the current
model is already computationally expensive, this extension should initially focus on the
main trends by only considering a few fibers. The simulation of an entire bushing with

thousand tips will probably require lower-order one-dimensional fiber models.
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Entire bushing

The proposed physical model covers only the region from the tip to the transition point,
and represents the entire bushing above it through an inlet boundary condition. This
inlet condition has been shown to have a strong impact on the final stress. On the other
hand, temperature inhomogeneity across the bushing plate induces a large distribution of
stresses. It would therefore be useful to include the entire bushing into the model, i.e.,
to also represent the melt in the bushing upstream of the tip. Such simulations should
evidently include the heat transfer processes between the bushing and the environment.
A more practical approach could be to keep the two models separate, but link them

explicitly through appropriate and potentially coupled boundary conditions.

Backend processes

Finally, glass fiber manufacturing also includes backend processes. These processes in-
directly impact the fiber drawing process through the melt properties arriving at the
bushing. As some breaks can be caused by melt inhomogeneity, a quantitative character-
ization of the melt would be useful. However, this opens an entire new research direction,
that includes modeling the mixing and melting of the batch, and the melt flow through
the furnace and the channels up to the frontend, with all corresponding heat transfer and

other physical phenomena.
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