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ABSTRACT 

Coefficients for (co)variance functions were obtained via random regression models using the 
expectation-maximization REML algorithm. Data included milk, fat, and protein yields from 
176,495 test days of 22,943 first lactation Holstein cows that calved in Pennsylvania and 
Wisconsin from 1990 through 1996. Three approximately equal-sized data sets were created: one 
for Pennsylvania and two for Wisconsin. Random regressions were on third order Legendre 
polynomials. Genetic and permanent environmental (co)variances each were described by three 
coefficients. The model contained a fixed effect for age, season, and lactation stage rather than a 
fixed regression on days in milk. Fixed contemporary groups were based on herd, test day, and 
milking frequency. The coefficient matrices were dense and included approximately 70,000 
equations. Estimated (co)variance function coefficients, as well as the heritabilities and 
correlations computed from them, were quite variable across data sets. Heritabilities were at a 
minimum (0.14 for milk and fat and 0.13 for protein) around peak yield, increased to a maximum 
(0.24 for milk and protein and 0.21 for fat) around the eighth month in milk, and declined 
slightly afterwards. Genetic correlations between early and late lactation were low (values of 
<0.10), especially for protein. Phenotypic correlations among test day yields were between 0.21 
and 0.99. 
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INTRODUCTION



A (co)variance function can be defined as a continuous function that represents the variance and 
(co)variance of traits measured at different points on a trajectory (9, 10, 13). (Co)variance 
functions are particularly useful when spatial or temporal data are modeled, and a trajectory can 
be linked to phenomena that are space, age, or time dependent, such as growth or lactation. (Co)
variance structures at any point along a continuous (time) scale can be predicted with (co)
variance functions, and greater flexibility is possible in using measurements at any point along 
the trajectory. These functions allow information from all observations to contribute to each (co)
variance. 

For several years, the direct use of test day yields instead of computed or estimated 305-d 
lactation yields has been considered the next step in the evolution of genetic evaluation systems 
for dairy animals (e.g., 18, 28). Two types of test day models have been suggested: multitrait 
analysis proposed by Wiggans and Goddard (28) and random regression methods similar to those 
presented by Jamrozik et al. (5, 6). A challenge for both types of methods is to obtain correct 
variance components. Various studies have estimated those components (e.g., 2, 3, 4, 8, 12, 16, 
17, 21, 26, 27), but in most cases few data or simplified models were used. 

Full multitrait and random regression models are related. A full multitrait model might have each 
test day yield within a lactation as a distinct trait. In this case, (co)variance functions can be used 
to describe the full parameter space with a reduced number of parameters and to calculate (co)
variances between any two traits. (Co)variance functions are equivalent to a regular multitrait 
(co)variance matrix of infinite dimension for which different traits are defined as points on the 
given trajectory (10). Random regression models, as proposed for test day models, developed 
historically from fixed regression repeatability models (18). These fixed regression models are 
still considered useful (19, 20) because of their relative simplicity. Random animal regression 
(23) was introduced next, and random permanent environmental regressions (22) were added 
later. Recently, the equivalence between random regression and multitrait models was shown 
(13, 25). This equivalence permits computation of (co)variance function coefficients directly as 
(co)variance components are estimated for the equivalent random regression model (11). The 
estimation of (co)variance components for random regression models has been described in 
several studies (4, 8, 22). Those studies show some potential difficulties, including wide 
variation in heritabilities and low correlations between early and late lactation. 

The purpose of this study was to use expectation-maximization REML and random regression on 
polynomials to estimate (co)variance function coefficients for milk, fat, and protein test-day 
yields over the first 305 d of first lactation. A secondary objective was to compare the results 
with those reported earlier (3, 24) on similar data but using a multivariate method. 

MATERIALS AND METHODS 

Data 

First lactation records of 22,943 Holstein cows were analyzed. Calvings occurred from 1990 
through 1996 in 37 large herds in Pennsylvania and Wisconsin. Those two states were chosen 
because complete test day data were available and also because they represent two important 
dairy regions in the US. Initial data for test days consisted of milk yields as well as fat and 
protein percentages. Fat and protein yields were computed from milk yields and component 



percentages. A total of 176,495 test day records of first lactation cows between 7 and 305 DIM 
were used. The data were first subdivided by state. However, computation limitations made it 
necessary to subdivide further the Wisconsin data set. Herd identification numbers were used to 
create two approximately equal-sized files. Pedigree information was retrieved from the Animal 
Improvement Programs Laboratory database starting with cows with records. Ancestors born 
before 1981 were considered the base population. Eight genetic groups were assigned to 
unknown parents according to birth year (<1981, 1981 to 1982, 1983 to 1984, 1985 to 1986, 
1987 to 1988, 1989 to 1990, 1991 to 1992, >1992). Tables 1 and 2 give additional information 
on the three subsets. 

Model 

The model was designed to provide flexibility for the fixed portion and a minimum number of 
parameters for the random portion through the use of polynomials. To avoid imposing a 
particular form on the lactation curve, the curve was estimated as a series of fixed effects rather 
than as coefficients for a particular function. Random regression effects (genetic and permanent 
environment) and, therefore, (co)variances across test-days were modeled using Legendre 
polynomials to reduce correlations among regression coefficients. Third order polynomials 
(constant, linear, and quadratic) were used because preliminary research on (co)variance 
functions based on results of Tijani et al. (24) and Veerkamp and Goddard (27) showed that third 
order polynomials were sufficient for a single yield trait to describe the random variation around 
the fixed lactation curve. The polynomials were multiplied by 20.5, and, through this scaling, the 
constant regression coefficients became equivalent to the usual constant additive genetic effect. 
The three modified Legendre polynomials were 

where x = -1 + 2[(DIM - 1)/(305 - 1)]. 

The model was 

y = Hh + Xb + Z*a + Zp + e, 

where y = vector of test day milk, fat, or protein yields; h = vector of effects of classes for herd, 
test day, and milking frequency (two or three times daily); b = vector of effects of classes for 
age, season, and lactation stage; a = vector of genetic random regression coefficients (three per 
animal); p = vector of regression coefficients for permanent environment (three per cow with 
records); e = vector of residual effects; and H, X, Z, and Z* are incidence and covariate matrices 
where Z* is the covariate matrix Z augmented with columns for animals without records. Those 
matrices contained three columns per animal. 

The following (co)variance structures were assumed:

I0 = 1, 

I1 = 30.5x, and 

I2 = (5/4)0.5(3x2 - 1), 



  

where G = (co)variance matrix for the genetic random regressions [i.e., coefficients of the 
genetic (co)variance function], P = (co)variance matrix for the permanent environmental random 
regressions [i.e., coefficients of the permanent environment (co)variance function], A = additive 
genetic relationship matrix among animals, Ic = identity matrix of dimension c (number of cows 
or lactations),  = Kronecker product function, In = identity matrix of dimension n (number of 
test day yields), and  = residual variance. 

Classes for age, season, and lactation stage were defined to avoid small classes. When using this 
model for routine genetic evaluation purposes, smaller classes would better account for these 
effects, but this precision was not deemed necessary for estimation of (co)variance functions. 
Classes for calving age were defined as 20 to 24, 25 to 26, 27 to 28, and 29 to 35 mo. Starting 
with January, six 2-mo calving seasons were defined. Twenty-two classes of lactation stage were 
defined: 7 to 13, 14 to 20, 21 to 27, 28 to 34, 35 to 41, 42 to 48, 49 to 55, 56 to 62, 63 to 76, 77 
to 90, 91 to 104, 105 to 118, 119 to 132, 133 to 146, 147 to 167, 168 to 188, 189 to 209, 210 to 
230, 231 to 251, 252 to 272, 273 to 293, and 294 to 305 DIM. 

Estimation of (Co)variance Components with Expectation-Maximization REML 

(Co)variance components were obtained using REMLF90 (14), which uses an expectation-
maximization REML algorithm accelerated by the univariate Aitken extrapolation and sparse 
matrix modules in Fortran 90 including FSPAK90 (15). The modules make sparse matrix 
programming as efficient as if the functions were built into the programming language, and they 
are almost as easy to use as a matrix language. Additionally, the REMLF90 program was 
relatively simple compared with other REML programs and could be modified more easily. 
Computations were performed on a Digital Equipment Corporation (Marlboro, MA) Personal 
Workstation 433au (433 Mhz) with 512 MB of random access memory at the Gembloux 
Agricultural University computing center. 

Study of Residuals 

To test the goodness of fit of the proposed model, the residuals of the three data files were 
studied. Solutions for all effects in the model were obtained separately for all three data files 
using the (co)variance components estimated earlier. Computations were done on the same 
workstation as used for (co)variance components using a sparse matrix solver and Gauss-Seidel 
iterations to a convergence of relative squared solution below 10-10 or a maximum 300 iterations. 
Residuals were computed as the difference between the observed and the estimated values for a 
test day yield. Means and variances of residuals were computed by week of lactation.  

RESULTS AND DISCUSSION 

Descriptive Statistics 



Means and standard deviations of milk, fat, and protein yields are in Table 1. Milk, fat, and 
protein yields were lower in Pennsylvania than in Wisconsin, but yields generally were high in 
both states. Table 2 shows the numbers of animals included in the analyses. The three data sets 
included between 7173 and 8091 cows, and pedigree data included between 14,174 and 16,785 
animals. The amount of data used in this study exceeded that of most other studies that have 
estimated variance components for random regression models (e.g., 4, 8), especially when 
models as complex as in this study were used.  

Figures 1, 2, and 3 show mean weekly milk, fat, and protein yields, respectively, over the 
lactation. For milk and protein, the curves were approximately parallel for the three data sets. For 
fat, the shape of the curve clearly differed between Pennsylvania and the two Wisconsin data 

TABLE 1. Numbers of test day records and means and standard deviations for test day milk, 
fat, and protein yields for the three data sets.

Data set1 Records Milk Fat Protein

(no.) (kg) (g)
SD SD SD

Pennsylvania 57,034 26.5 6.5 957 253 836 192
Wisconsin 1 61,031 29.2 6.9 1039 280 921 205
Wisconsin 2 58,430 28.3 6.9 1033 263 895 202
All 176,495 28.1 6.8 1010 268 885 203

1Wisconsin data were subdivided according to herd identification numbers into two 
approximately equal-sized data sets. 

  
TABLE 2. Numbers of cows with records, animals included in the relationship matrix, and 
equations used in estimation of variance components. 

Data set1 Cows Herds 
Animals in 
relationship 

matrix  
Equations

(no.)  
Pennsylvania 7173 13 15,378 69,353
Wisconsin 1 8091 11 16,785 76,245
Wisconsin 2 7679 13 14,174 67,312
All 22,943 37 43,342

1Wisconsin data were subdivided according to herd identification numbers into two 
approximately equal-sized data sets.



sets. For Pennsylvania, fat yield tended to increase until around 65 DIM and then declined. 
However, for the Wisconsin data sets, fat yield decreased over the entire lactation. Milk yield 
peaked in both states around 65 DIM, whereas protein yield peaked later (between 100 and 150 
DIM). These findings justified the use of DIM classes to model the mean of the lactation instead 
of imposing a particular function to represent a lactation curve. 

Figure 1. Mean weekly test day milk yields for Pennsylvania ( ), Wisconsin 1 ( ), and Wiscons
2 (X); Wisconsin data were subdivided according to herd identification numbers into two 
approximately equal-sized data sets.  



Figure 2. Mean weekly test day fat yields for Pennsylvania ( ), Wisconsin 1 ( ), and Wisconsin
(X); Wisconsin data were subdivided according to herd identification numbers into two 
approximately equal-sized data sets.  



The numbers of equations for each data set also are in Table 2. The magnitude of the required 
computer processing is indicated by approximately 70,000 equations and inclusion of three 
genetic and three permanent environmental regressions in the models, which contribute to the 
density of the coefficient matrix. Variance component analysis of each data set required about 4 
d of central processing unit time and required about 200 MB of memory. Estimation of solutions 
always required 300 Gauss-Seidel iterations and achieved convergences below 10-8. 

Estimation of (Co)variance Components and (Co)variance Function Coefficients 

Coefficients for genetic and permanent environmental (co)variance functions are in Tables 3 and 
4, and estimates of residual variances are in Table 5. An interesting feature of the results was the 
variation in estimates for the same trait among data sets, which was found not only between but 
within region. Tables 3 and 4 also include the correlations among random regression 
coefficients. The genetic correlations (Table 3) showed a similar pattern across trait and sample. 
Constant genetic effect (I0) showed low to moderately high positive correlations with the linear 

Figure 3. Mean weekly test day protein yields for Pennsylvania ( ), Wisconsin 1 ( ), and 
Wisconsin 2 (X); Wisconsin data were subdivided according to herd identification numbers into 
two approximately equal-sized data sets.  



(I1) and low to moderate negative correlations with the quadratic (I2) regression effect. 
Correlations between the linear (I1) and the quadratic (I2) regression effects were all moderately 
to strongly negative. Some differences existed among traits that could not be due only to 
sampling errors. Correlations (Table 4) among permanent environment effects showed, in 
general, values that were much closer to zero than for genetic effects. Also, patterns across 
samples and across traits were less similar; for example, some negative and positive values were 
obtained for the same correlations. But overall differences among samples by trait were rather 
small and probably due to sampling errors. Differences among traits were observed, especially 
between fat and protein in which two out of  three correlations were in opposite directions. This 
study was unable to determine whether these differences were systematic. 

TABLE 3. Estimates of genetic (co)variance function coefficients (diagonal and above) and 
correlations among random regression coefficients (below diagonal). 

Yield trait Data set1 Parameters2 I0 I1 I2

Milk (kg2 100) Pennsylvania I0 510.58 104.24 -53.02

I1 0.34 180.41 -44.35

I2 -0.42 -0.59 31.21

Wisconsin 1 I0 446.39 88.56 -36.96

I1 0.47 81.17 -14.33

I2 -0.33 -0.30 28.75

Wisconsin 2 I0 503.69 90.94 -36.45

I1 0.44 84.13 -32.30

I2 -0.29 -0.64 30.47

I0 486.89 94.58 -42.15

I1 0.40 115.08 -30.33

I2 -0.35 -0.52 30.14

Fat (g2) Pennsylvania I0 6549.3 483.2 -105.9

I1 0.14 1749.6 -539.4

I2 -0.09 -0.87 218.5

Wisconsin 1 I0 7497.4 1264.6 -301.2

I1 0.32 2074.7 -590.1

I2 -0.24 -0.88 217.9

Wisconsin 2 I0 8190.1 1045.1 -234.3

I1 0.39 870.8 -193.4



I2 -0.30 -0.77 72.6

I0 7412.3 931.0 -213.8

I1 0.27 1565.0 -441.0

I2 -0.19 -0.86 169.7

Protein (g2) Pennsylvania I0 4485.0 1432.5 -435.5

I1 0.48 1999.9 -502.4

I2 -0.52 -0.90 157.0

Wisconsin 1 I0 3354.5 983.8 -202.9

I1 0.61 786.4 -165.6

I2 -0.45 -0.76 60.6

Wisconsin 2 I0 4332.5 920.2 -275.6

I1 0.44 1024.5 -289.1

I2 -0.39 -0.85 114.3

I0 4057.3 1097.6 -304.7

I1 0.49 1270.3 -319.0

I2 -0.45 -0.85 110.6

1Wisconsin data were subdivided according to herd identification numbers into two 
approximately equal-sized data sets. 
2I0 = 1, I1 = 30.5x, and I2 = (5/4)0.5(3x2 - 1), where x = -1 + 2[(DIM - 1)/(305 - 1)]. 

  
TABLE 4. Estimates of (co)variance function coefficients for permanent environment (diagonal 
and above) and correlations among random regression coefficients (below diagonal).  

Yield trait Data set1 Parameters2 I0 I1 I2

Milk (kg2 100) Pennsylvania I0 1351.3 -33.9 -40.7

I1 -0.07 172.7 -9.7

I2 -0.11 -0.08 96.4

Wisconsin 1 I0 1582.6 28.6 -88.7

I1 0.04 271.7 -0.3

I2 -0.21 -0.00 114.4

Wisconsin 2 1229.5 -4.3 -48.6



I0

I1 -0.01 240.8 -9.6

I2 -0.14 -0.06 100.9

I0 1387.8 -3.2 -59.3

I1 -0.01 227.8 -6.5

I2 -0.16 -0.04 103.9

Fat (g2) Pennsylvania I0 15,208 -753 -387

I1 -0.11 3093 -572

I2 -0.07 -0.23 1939

Wisconsin 1 I0 17,267 -1066 -379

I1 -0.14 3290 -729

I2 -0.06 -0.25 2517

Wisconsin 2 I0 14,245 -578 -158

I1 -0.08 4097 -730

I2 -0.03 -0.24 2309

I0 15,573 -792 -308

I1 -0.11 3493 -677

I2 -0.05 -0.24 2255

Protein (g2) Pennsylvania I0 10,826 258 -386

I1 0.06 1659 29

I2 -0.11 0.02 1080

Wisconsin 1 I0 12,417 892 -615

I1 0.16 2666 65

I2 -0.15 0.03 1304

Wisconsin 2 I0 9620 520 -318

I1 0.11 2212 -54

I2 -0.10 -0.03 1126

I0 10,954 557 -440

I1 0.11 2167 14

I2 -0.12 0.01 1170



Heritabilities computed from (co)variance functions are in Table 6. The DIM are the midpoints 
of 12 25-d periods across lactation. Similar to the coefficients for (co)variance functions, 
heritability estimates were highly variable across subsets with extreme differences of up to 0.11. 
Genetic and total variances were computed from (co)variance functions at every DIM. 
Heritabilities were estimated as the ratio of genetic to total variance at every DIM. Mean 
heritability was obtained using mean coefficients for (co)variance functions (Figure 4). The 
heritability curves for all three yield traits showed an unexpected pattern. Heritabilities decreased 
to a minimum around 68 DIM, which corresponded to peak milk yield, then increased to a 
maximum around 243 DIM, and finally declined somewhat for the remainder of lactation. 
Results for the three data sets and yield traits (Table 6) showed similar patterns. A similar 
finding has been reported in at least two other studies (8, 22), which reported higher heritabilities 
for earliest stages than for peak yield. This result was difficult to explain even if different parts of 
the lactation curve were partly controlled by different genes. Peak production could have been 
less heritable because at peak some differences (e.g., the last additional kilograms produced) 
were more random and unpredictable than at lower levels of production.  

1Wisconsin data were subdivided according to herd identification numbers into two 
approximately equal-sized data sets. 
2I0 = 1, I1 = 30.5x, and I2 = (5/4)0.5(3x2 - 1), where x = -1 + 2[(DIM - 1)/(305 - 1)]. 

  
TABLE 5. Estimates of residual variances.  

Yield trait Data set1 Residual variance

Milk (kg2  100) Pennsylvania 841 
Wisconsin 1 871 
Wisconsin 2 827 

846 
Fat (g2) Pennsylvania 22,043 

Wisconsin 1 24,927 
Wisconsin 2 23,295 

23,422 
Protein (g2) Pennsylvania 9382 

Wisconsin 1 9871 
Wisconsin 2 9109 

9454 

1Wisconsin data were subdivided according to herd identification numbers into two 
approximately equal-sized data sets. 



TABLE 6. Heritabilities for test day yields during lactation. 

Data set1 

Yield trait DIM Pennsylvania Wisconsin 1 Wisconsin 2  

Milk 18 0.21 0.11 0.16 0.16
43 0.18 0.11 0.15 0.15
68 0.17 0.12 0.15 0.14
93 0.17 0.13 0.16 0.15

118 0.19 0.15 0.19 0.17
143 0.21 0.16 0.21 0.19
168 0.23 0.18 0.22 0.21
193 0.25 0.19 0.24 0.23
218 0.27 0.20 0.25 0.24
243 0.28 0.20 0.25 0.24
268 0.28 0.20 0.24 0.24
293 0.27 0.20 0.22 0.23

Fat 18 0.18 0.15 0.11 0.15
43 0.16 0.14 0.13 0.14
68 0.15 0.13 0.14 0.14
93 0.14 0.13 0.15 0.14

118 0.14 0.13 0.16 0.14
143 0.14 0.15 0.17 0.15
168 0.16 0.17 0.19 0.17
193 0.17 0.19 0.20 0.18
218 0.18 0.20 0.21 0.20
243 0.19 0.22 0.22 0.21
268 0.19 0.22 0.21 0.21
293 0.18 0.21 0.20 0.20

Protein 18 0.20 0.09 0.16 0.15
43 0.16 0.08 0.15 0.13
68 0.14 0.09 0.15 0.13
93 0.14 0.10 0.16 0.13

118 0.16 0.11 0.17 0.15
143 0.19 0.13 0.19 0.17
168 0.22 0.14 0.21 0.19
193 0.25 0.16 0.23 0.21
218 0.28 0.18 0.24 0.23



The heritability findings could be an artifact of the type of model. However, Tijani et al. (24), 
who studied a similar data set using a slightly different approach, reported a similar pattern for 
milk and protein heritabilities except for the beginning of lactation. Tijani et al. (24) fit (co)
variance functions on results from Gengler et al. (3), who estimated (co)variance components for 
a multitrait model similar to the one proposed by Wiggans and Goddard (28). The heritabilities 
estimated in this study were generally approximately 20% greater than those reported by Tijani 
et al. (24) but were still low compared with the estimates obtained with a similar model using 
Canadian data (20). The estimates from this study were similar to results of most other studies on 
heritability of test day yield (e.g., 8) that used random regression models. Results also were 

243 0.30 0.19 0.25 0.24
268 0.30 0.19 0.24 0.24
293 0.28 0.17 0.22 0.22

1Wisconsin data were subdivided according to herd identification numbers into two 
approximately equal-sized data sets.
2Heritabilities computed from mean coefficients for (co)variance functions.

Figure 4. Weekly estimates of heritability computed from mean coefficients of (co)variance 
functions for milk ( ), fat ( ), and protein (X) yields during the lactation.  



similar to those of Keown and Van Vleck (7) who found heritabilities of similar magnitude with 
maximum values about 2 mo earlier. This shift may reflect changes in production levels in the 
intervening 30 yr or could result from use of covariance functions. 

Genetic and phenotypic correlations obtained from mean (co)variances among 12 evenly spaced 
test days between 18 and 293 DIM are in Table 7. Results for the three data sets (not shown) 
indicated some differences in correlations, especially between test days during early and late 
lactation for which genetic correlations were negative for some subsets. Mean phenotypic 
correlations were close to estimates from Tijani et al. (24). However, mean genetic correlations 
were different from those in that study (24) and were low, especially for correlations between 
test days during early and late lactation. Low correlations between early and late lactation were 
similar to those reported by Schaeffer (22) from a study using random regression models. The 
general tendency could have been that random regression models produced lower genetic 
correlations than did multitrait methods. In a similar comparison of random regression and 
multitrait models, Kettunen et al. (8) found correlations to be more similar but still lower for 
random regression. 

TABLE 7. Genetic correlations (above diagonal) and phenotypic correlations (below diagonal) 
from mean (co)variance functions for milk, fat, and protein yields. 

Yield 
trait

DIM 

DIM 18 43 68 93 118 143 168 193 218 243 268 293

Milk 18 . . . 0.96 0.83 0.67 0.53 0.41 0.33 0.28 0.24 0.22 0.22 0.23
43 0.72 . . . 0.96 0.86 0.75 0.66 0.58 0.53 0.49 0.46 0.44 0.42
68 0.65 0.69 . . . 0.97 0.91 0.84 0.79 0.74 0.70 0.67 0.63 0.59
93 0.58 0.65 0.69 . . . 0.98 0.95 0.91 0.88 0.84 0.80 0.76 0.70

118 0.51 0.60 0.67 0.70 . . . 0.99 0.97 0.95 0.92 0.89 0.84 0.77
143 0.45 0.56 0.64 0.69 0.72 . . . 0.99 0.98 0.96 0.93 0.89 0.82
168 0.40 0.52 0.61 0.67 0.71 0.72 . . . 1.00 0.98 0.96 0.92 0.86
193 0.37 0.48 0.58 0.64 0.69 0.71 0.73 . . . 1.00 0.98 0.95 0.89
218 0.34 0.45 0.54 0.61 0.66 0.69 0.71 0.73 . . . 0.99 0.97 0.93
243 0.32 0.42 0.51 0.57 0.61 0.65 0.68 0.71 0.73 . . . 0.99 0.96
268 0.31 0.39 0.45 0.51 0.55 0.59 0.63 0.66 0.70 0.73 . . . 0.99
293 0.30 0.35 0.39 0.43 0.46 0.50 0.54 0.59 0.65 0.70 0.75 . . .

Fat 18 . . . 0.98 0.91 0.81 0.69 0.58 0.48 0.41 0.36 0.33 0.32 0.32
43 0.60 . . . 0.98 0.91 0.82 0.73 0.65 0.59 0.54 0.51 0.50 0.49
68 0.53 0.54 . . . 0.98 0.92 0.86 0.80 0.75 0.71 0.68 0.67 0.66
93 0.44 0.49 0.52 . . . 0.98 0.95 0.91 0.87 0.84 0.81 0.80 0.79

118 0.37 0.44 0.49 0.52 . . . 0.99 0.97 0.94 0.92 0.90 0.89 0.88
143 0.30 0.39 0.45 0.50 0.52 . . . 0.99 0.98 0.97 0.95 0.94 0.93
168 0.26 0.35 0.43 0.48 0.51 0.53 . . . 1.00 0.99 0.98 0.97 0.96



Random regression models have the theoretical power to describe the (co)variance structure in a 
multivariate space in an infinite dimensional manner, which means that (co)variance estimates 
must fit into regression functions. However, (co)variances estimated through multitrait models 
can assume all values as long as the entire (co)variance matrix is positive definite and, therefore, 
have greater flexibility. A theoretical method to improve random regression models could be to 
identify other than genetic and permanent environmental sources of (co)variances between test 
day records of a cow and across cows such as autoregressive residuals or effects within and 
across lactation (e.g., 1), common calving seasons, and herd yield levels. Only Veerkamp and 
Goddard (27) have investigated the influence of herd yield levels using a (co)variance function 
approach. They found that heritabilities differed by herd yield level and that genetic correlations 
across herd yield levels and lactation stages could be rather small. 

Analysis of Residuals 

To determine the distribution of residuals (Table 8), means, standard deviations, minimum, and 
maximum were computed for milk, fat, and protein yield residuals. Compared with results in 
Table 1, standard deviations of residuals represented approximately 40 to 50% of standard 
deviations of original records. 

193 0.23 0.32 0.40 0.46 0.50 0.52 0.54 . . . 1.00 0.99 0.99 0.98
218 0.21 0.30 0.38 0.43 0.48 0.51 0.53 0.54 . . . 1.00 0.99 0.99
243 0.21 0.29 0.35 0.40 0.44 0.47 0.50 0.52 0.54 . . . 1.00 0.99
268 0.23 0.28 0.33 0.36 0.40 0.43 0.45 0.48 0.52 0.54 . . . 1.00
293 0.25 0.27 0.29 0.31 0.33 0.36 0.39 0.43 0.47 0.52 0.57 . . .

Protein 18 . . . 0.96 0.85 0.67 0.50 0.36 0.26 0.18 0.13 0.09 0.07 0.06
43 0.63 . . . 0.96 0.85 0.72 0.60 0.51 0.44 0.38 0.35 0.32 0.31
68 0.56 0.60 . . . 0.96 0.89 0.80 0.73 0.67 0.63 0.60 0.58 0.56
93 0.48 0.56 0.60 . . . 0.98 0.93 0.89 0.84 0.81 0.78 0.76 0.75

118 0.41 0.51 0.58 0.62 . . . 0.99 0.96 0.94 0.91 0.90 0.88 0.86
143 0.35 0.46 0.55 0.61 0.64 . . . 0.99 0.98 0.97 0.95 0.94 0.92
168 0.30 0.42 0.52 0.59 0.63 0.66 . . . 1.00 0.99 0.98 0.97 0.96
193 0.27 0.39 0.49 0.56 0.61 0.65 0.67 . . . 1.00 0.99 0.99 0.98
218 0.25 0.36 0.46 0.53 0.59 0.63 0.65 0.68 . . . 1.00 0.99 0.99
243 0.24 0.34 0.42 0.49 0.54 0.59 0.62 0.66 0.68 . . . 1.00 0.99
268 0.23 0.31 0.38 0.44 0.48 0.53 0.57 0.62 0.66 0.70 . . . 1.00
293 0.23 0.28 0.32 0.37 0.41 0.45 0.50 0.56 0.61 0.67 0.72 . . .

TABLE 8. Mean, standard deviation, minimum, and maximum of residuals for milk, fat, and 
protein yields. 

Yield trait Data set1 SD Minimum Maximum



Weekly means were computed but were not very informative. Most mean deviations by week of 
lactation were zero because of the definition of lactation stages on a weekly basis. They were, 
therefore, not reported. For all yield traits and data sets, weekly variances of residuals tended to 
increase slightly at the beginning of lactation and to decrease slightly at the end (Figure 5 for 
milk yield, Figure 6 for fat yield, and Figure 7 for protein yield). However, definition of error 
variance as constant over the lactation still appeared to be justified. Therefore, variable error 
variances defined as linear and quadratic functions of DIM by Jamrozik et al. (6) would not be 
necessary. For a similar model, Schaeffer (22) reported a ratio of nearly 1 to 3 between the 
lowest and highest estimates of residual variance for milk yield. In this study, however, the 
residual variance displayed a nearly constant ratio (1:1.5) between lowest and highest variances 
after smoothing the residual variances for outliers  that resulted from the limited number of 
records. 

Milk (kg) Pennsylvania 0.00 2.47 -22.8 38.3
Wisconsin 1 0.00 2.49 -27.2 29.7
Wisconsin 2 0.00 2.43 -23.2 25.4

Fat (g) Pennsylvania 0.00 129.2 -917 1883
Wisconsin 1 0.00 136.6 -1143 2021
Wisconsin 2 0.00 132.0 -918 1798

Protein (g) Pennsylvania 0.00 82.9 -711 1402
Wisconsin 1 0.00 84.5 -908 1287
Wisconsin 2 0.00 81.2 -742 1153

1Wisconsin data were subdivided according to herd identification numbers into two 
approximately equal-sized data sets. 



Figure 5. Weekly residual variances for milk yield for Pennsylvania ( ), Wisconsin 1 ( ), and 
Wisconsin 2 (X); Wisconsin data were subdivided according to herd identification numbers into 
two approximately equal-sized data sets.  



Figure 6. Weekly residual variances for fat yield for Pennsylvania ( ), Wisconsin 1 ( ), and 
Wisconsin 2 (X); Wisconsin data were subdivided according to herd identification numbers into 
two approximately equal-sized data sets.  



Analysis of residuals showed that the model chosen for this study fit the mean if lactation stages 
were short enough to adequately represent variations of yields over short periods. The model also 
accommodated the variance over the entire lactation. Use of this model instead of the model 
proposed by Jamrozik et al. (6) would avoid the necessity of adjusting residuals, thereby 
simplifying setting up the equations. 

CONCLUSIONS 

Coefficients for (co)variance functions can be obtained from random regression models with 
general expectation-maximization REML using a sparse matrix solver for models exceeding 
70,000 relatively dense equations. 

Estimates of (co)variance function coefficients showed large differences between data sets, 
which indicated substantial sampling errors. Those errors might be a major obstacle in the 
estimation of random regression (co)variance components and could explain the results in this 
study for heritabilities and (co)variances. Heritabilities declined to a minimum around peak 

Figure 7. Weekly residual variances for protein yield for Pennsylvania ( ), Wisconsin 1 ( ), and
Wisconsin 2 (X); Wisconsin data were subdivided according to herd identification numbers into 
two approximately equal-sized data sets.  



yield, increased to a maximum around 245 DIM, and then declined slightly afterward. Genetic 
correlations were less than those estimated with nearly the same data using a multitrait model (3, 
24), confirming a finding that was reported recently by other authors. Heritabilities were 
generally around 20% greater (estimates up to 0.25) than those reported in the studies involving 
similar data (3, 24). 

The results show that further research on general comparison of models is needed as well as on 
alternative ways of modeling the mean and the (co)variances between test days. (Co)variance 
components estimated with random regression models may be seriously affected by numerical 
instability problems and by problems at the limits, especially the beginning of lactation (22). For 
multitrait models, the traditional way to improve numerical stability for highly correlated traits is 
through the use of canonical transformation. For random regression models, an internal canonical 
transformation could transform correlated regressions to uncorrelated regressions (25) and be 
used to stabilize estimation. The use of uncorrelated regressions would also eliminate the off-
diagonal blocks linked to the (co)variances between regressions and would eliminate a part of the 
density of the coefficient matrix. An indirect benefit is that the amount of data that could be 
analyzed would increase, and, therefore, the sampling variance of the estimates would be 
reduced. 
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