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ABSTRACT

Coefficients for (co)variance functions were obtained via random regression models using the
expectation-maximization REML algorithm. Data included milk, fat, and protein yields from
176,495 test days of 22,943 first |actation Holstein cows that calved in Pennsylvania and
Wisconsin from 1990 through 1996. Three approximately equal-sized data sets were created: one
for Pennsylvania and two for Wisconsin. Random regressions were on third order Legendre
polynomials. Genetic and permanent environmental (co)variances each were described by three
coefficients. The model contained a fixed effect for age, season, and lactation stage rather than a
fixed regression on days in milk. Fixed contemporary groups were based on herd, test day, and
milking frequency. The coefficient matrices were dense and included approximately 70,000
eguations. Estimated (co)variance function coefficients, as well as the heritabilities and
correlations computed from them, were quite variable across data sets. Heritabilitieswere at a
minimum (0.14 for milk and fat and 0.13 for protein) around peak yield, increased to a maximum
(0.24 for milk and protein and 0.21 for fat) around the eighth month in milk, and declined
dlightly afterwards. Genetic correlations between early and late lactation were low (values of
<0.10), especially for protein. Phenotypic correlations among test day yields were between 0.21
and 0.99.
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INTRODUCTION



A (co)variance function can be defined as a continuous function that represents the variance and
(co)variance of traits measured at different points on atrajectory (9, 10, 13). (Co)variance
functions are particularly useful when spatial or temporal data are modeled, and a trgjectory can
be linked to phenomena that are space, age, or time dependent, such as growth or lactation. (Co)
variance structures at any point along a continuous (time) scale can be predicted with (co)
variance functions, and greater flexibility is possible in using measurements at any point along
the trajectory. These functions allow information from all observations to contribute to each (co)
variance.

For several years, the direct use of test day yields instead of computed or estimated 305-d
lactation yields has been considered the next step in the evolution of genetic evaluation systems
for dairy animals (e.g., 18, 28). Two types of test day models have been suggested: multitrait
analysis proposed by Wiggans and Goddard (28) and random regression methods similar to those
presented by Jamrozik et al. (5, 6). A challenge for both types of methodsis to obtain correct

17, 21, 26, 27), but in most cases few data or simplified models were used.

Full multitrait and random regression models are related. A full multitrait model might have each
test day yield within alactation as a distinct trait. In this case, (co)variance functions can be used
to describe the full parameter space with a reduced number of parameters and to calculate (co)
variances between any two traits. (Co)variance functions are equivalent to aregular multitrait
(co)variance matrix of infinite dimension for which different traits are defined as points on the
given trgjectory (10). Random regression models, as proposed for test day models, devel oped
historically from fixed regression repeatability models (18). These fixed regression models are
still considered useful (19, 20) because of their relative simplicity. Random animal regression
(23) was introduced next, and random permanent environmental regressions (22) were added
later. Recently, the equival ence between random regression and multitrait models was shown
(13, 25). This equivalence permits computation of (co)variance function coefficients directly as
(co)variance components are estimated for the equivalent random regression model (11). The
estimation of (co)variance components for random regression models has been described in
several studies (4, 8, 22). Those studies show some potentia difficulties, including wide
variation in heritabilities and low correlations between early and late lactation.

The purpose of this study was to use expectation-maximization REML and random regression on
polynomials to estimate (co)variance function coefficients for milk, fat, and protein test-day
yields over thefirst 305 d of first lactation. A secondary objective was to compare the results
with those reported earlier (3, 24) on similar data but using a multivariate method.

MATERIALSAND METHODS

Data

First lactation records of 22,943 Holstein cows were analyzed. Calvings occurred from 1990
through 1996 in 37 large herds in Pennsylvania and Wisconsin. Those two states were chosen
because complete test day data were available and also because they represent two important
dairy regionsin the US. Initial datafor test days consisted of milk yields as well asfat and
protein percentages. Fat and protein yields were computed from milk yields and component



percentages. A total of 176,495 test day records of first lactation cows between 7 and 305 DIM
were used. The data were first subdivided by state. However, computation limitations made it
necessary to subdivide further the Wisconsin data set. Herd identification numbers were used to
create two approximately equal-sized files. Pedigree information was retrieved from the Animal
Improvement Programs L aboratory database starting with cows with records. Ancestors born
before 1981 were considered the base population. Eight genetic groups were assigned to
unknown parents according to birth year (<1981, 1981 to 1982, 1983 to 1984, 1985 to 1986,
1987 to 1988, 1989 to 1990, 1991 to 1992, >1992). Tables 1 and 2 give additional information
on the three subsets.

M odéel

The model was designed to provide flexibility for the fixed portion and a minimum number of
parameters for the random portion through the use of polynomials. To avoid imposing a
particular form on the lactation curve, the curve was estimated as a series of fixed effects rather
than as coefficients for a particular function. Random regression effects (genetic and permanent
environment) and, therefore, (co)variances across test-days were modeled using Legendre
polynomials to reduce correlations among regression coefficients. Third order polynomials
(constant, linear, and quadratic) were used because preliminary research on (co)variance
functions based on results of Tijani et a. (24) and Veerkamp and Goddard (27) showed that third
order polynomials were sufficient for asingle yield trait to describe the random variation around

the fixed lactation curve. The polynomials were multiplied by 205 and, through this scaling, the
constant regression coefficients became equivalent to the usual constant additive genetic effect.
The three modified Legendre polynomials were

|, = 35, and

|, = (5/4)°5(3%° - 1),

wherex =-1+ 2[(DIM - 1)/(305 - 1)].
The model was
y=Hh+Xb+Z*a+Zp +e,

where y = vector of test day milk, fat, or protein yields; h = vector of effects of classes for herd,
test day, and milking frequency (two or three times daily); b = vector of effects of classesfor
age, season, and lactation stage; a = vector of genetic random regression coefficients (three per
animal); p = vector of regression coefficients for permanent environment (three per cow with
records); e = vector of residual effects; and H, X, Z, and Z* are incidence and covariate matrices
where Z* isthe covariate matrix Z augmented with columns for animals without records. Those
matrices contained three columns per animal.

The following (co)variance structures were assumed:
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where G = (co)variance matrix for the genetic random regressions [i.e., coefficients of the

genetic (co)variance function], P = (co)variance matrix for the permanent environmental random
regressions [i.e., coefficients of the permanent environment (co)variance function], A = additive
genetic relationship matrix among animals, | _ = identity matrix of dimension ¢ (number of cows

or lactations), & = Kronecker product function, | = identity matrix of dimension n (number of
test day yields), and - # = residual variance.

Classes for age, season, and lactation stage were defined to avoid small classes. When using this
model for routine genetic evaluation purposes, smaller classes would better account for these
effects, but this precision was not deemed necessary for estimation of (co)variance functions.
Classes for calving age were defined as 20 to 24, 25 to 26, 27 to 28, and 29 to 35 mo. Starting
with January, six 2-mo calving seasons were defined. Twenty-two classes of |actation stage were
defined: 7 to 13, 14 to 20, 21 to 27, 28 to 34, 35t0 41, 42 to 48, 49 to 55, 56 to 62, 63 to 76, 77
to 90, 91 to 104, 105 to 118, 119 to 132, 133 to 146, 147 to 167, 168 to 188, 189 to 209, 210 to
230, 231 to 251, 252 to 272, 273 to 293, and 294 to 305 DIM.

Estimation of (Co)variance Components with Expectation-M aximization REM L

(Co)variance components were obtained using REMLF90 (14), which uses an expectation-
maximization REML algorithm accelerated by the univariate Aitken extrapolation and sparse
matrix modules in Fortran 90 including FSPAK90 (15). The modules make sparse matrix
programming as efficient asif the functions were built into the programming language, and they
are almost as easy to use as a matrix language. Additionally, the REMLF90 program was
relatively ssmple compared with other REML programs and could be modified more easily.
Computations were performed on a Digital Equipment Corporation (Marlboro, MA) Personal
Workstation 433au (433 Mhz) with 512 MB of random access memory at the Gembloux
Agricultural University computing center.

Study of Residuals

To test the goodness of fit of the proposed model, the residuals of the three data files were
studied. Solutions for al effects in the model were obtained separately for all three datafiles
using the (co)variance components estimated earlier. Computations were done on the same
workstation as used for (co)variance components using a sparse matrix solver and Gauss-Seidel

iterations to a convergence of relative squared solution below 10 or a maximum 300 iterations.
Residuals were computed as the difference between the observed and the estimated values for a
test day yield. Means and variances of residuals were computed by week of lactation.

RESULTSAND DISCUSSION

Descriptive Statistics



Means and standard deviations of milk, fat, and protein yields arein Table 1. Milk, fat, and
protein yields were lower in Pennsylvaniathan in Wisconsin, but yields generally were high in
both states. Table 2 shows the numbers of animals included in the analyses. The three data sets
included between 7173 and 8091 cows, and pedigree data included between 14,174 and 16,785
animals. The amount of data used in this study exceeded that of most other studies that have
estimated variance components for random regression models (e.g., 4, 8), especially when
models as complex as in this study were used.

TABLE 1. Numbers of test day records and means and standard deviations for test day milk,
fat, and protein yields for the three data sets.

Data set? Records Milk Fat Protein
(no.) (ka) (9)
X SD X SD X SD
Pennsylvania 57,034 26.5 6.5 957 253 836 192
Wisconsin 1 61,031 29.2 6.9 1039 280 921 205
Wisconsin 2 58,430 28.3 6.9 1033 263 895 202
All 176,495 28.1 6.8 1010 268 885 203

Wisconsin data were subdivided according to herd identification numbers into two
approximately equal-sized data sets.

TABLE 2. Numbers of cows with records, animals included in the relationship matrix, and
equations used in estimation of variance components.

Animalsin

Data set! Cows Herds relationship Equations

matrix

(no.)

Pennsylvania 7173 13 15,378 69,353
Wisconsin 1 8091 11 16,785 76,245
Wisconsin 2 7679 13 14,174 67,312
All 22,943 37 43,342

Wisconsin data were subdivided according to herd identification numbers into two
approximately equal-sized data sets.

Figures 1, 2, and 3 show mean weekly milk, fat, and protein yields, respectively, over the
lactation. For milk and protein, the curves were approximately parallel for the three data sets. For
fat, the shape of the curve clearly differed between Pennsylvania and the two Wisconsin data



sets. For Pennsylvania, fat yield tended to increase until around 65 DIM and then declined.
However, for the Wisconsin data sets, fat yield decreased over the entire lactation. Milk yield
peaked in both states around 65 DIM, whereas protein yield peaked later (between 100 and 150
DIM). These findings justified the use of DIM classes to model the mean of the lactation instead
of imposing a particular function to represent alactation curve.
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Figure 1. Mean weekly test day milk yields for Pennsylvania (®), Wisconsin 1 (M), and Wiscon:s
2 (X); Wisconsin data were subdivided according to herd identification numbersinto two
approximately equal-sized data sets.
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Figure 2. Mean weekly test day fat yields for Pennsylvania (®), Wisconsin 1 (l), and Wisconsir
(X); Wisconsin data were subdivided according to herd identification numbers into two
approximately equal-sized data sets.
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Figure 3. Mean weekly test day protein yields for Pennsylvania (), Wisconsin 1 (), and
Wisconsin 2 (X); Wisconsin data were subdivided according to herd identification numbersinto
two approximately equal-sized data sets.

The numbers of equations for each data set also are in Table 2. The magnitude of the required
computer processing is indicated by approximately 70,000 equations and inclusion of three
genetic and three permanent environmental regressions in the models, which contribute to the
density of the coefficient matrix. Variance component analysis of each data set required about 4
d of central processing unit time and required about 200 MB of memory. Estimation of solutions
always required 300 Gauss-Seidel iterations and achieved convergences below 108,

Estimation of (Co)variance Components and (Co)variance Function Coefficients

Coefficients for genetic and permanent environmental (co)variance functions are in Tables 3 and
4, and estimates of residual variances are in Table 5. An interesting feature of the results was the
variation in estimates for the same trait among data sets, which was found not only between but
within region. Tables 3 and 4 also include the correlations among random regression
coefficients. The genetic correlations (Table 3) showed asimilar pattern across trait and sample.
Constant genetic effect (I ) showed low to moderately high positive correlations with the linear




(1) and low to moderate negative correlations with the quadratic (1) regression effect.
Correlations between the linear (1,) and the quadratic (1) regression effects were all moderately

to strongly negative. Some differences existed among traits that could not be due only to
sampling errors. Correlations (Table 4) among permanent environment effects showed, in
general, values that were much closer to zero than for genetic effects. Also, patterns across
samples and across traits were less similar; for example, some negative and positive values were
obtained for the same correlations. But overall differences among samples by trait were rather
small and probably due to sampling errors. Differences among traits were observed, especially
between fat and protein in which two out of three correlations were in opposite directions. This
study was unable to determine whether these differences were systematic.

TABLE 3. Estimates of genetic (co)variance function coefficients (diagonal and above) and
correlations among random regression coefficients (below diagonal).

Yield trait Data set! Parameters? ly l, l,
Milk (kg? x 100) Pennsylvania ly 510.58 104.24 -53.02
l, 0.34 180.41 -44.35

1, -0.42 -0.59 3121

Wisconsin 1 I 446.39 88.56 -36.96

I 0.47 81.17 -14.33

L, -0.33 -0.30 28.75

Wisconsin 2 I 503.69 90.94 -36.45

I 0.44 84.13 -32.30

1, -0.29 -0.64 30.47

X 1 486.89 94.58 -42.15

I 0.40 115.08 -30.33

1, -0.35 -0.52 30.14

Fat (99 Pennsylvania I 6549.3 483.2 -105.9
1, 0.14 1749.6 -539.4

1, -0.09 -0.87 218.5

Wisconsin 1 I 7497.4 1264.6 -301.2

I 0.32 2074.7 -590.1

L, -0.24 -0.88 217.9

Wisconsin 2 I 8190.1 1045.1 -234.3

I 0.39 870.8 -193.4



I -0.30 -0.77 72.6

X I 7412.3 931.0 -213.8
) 0.27 1565.0 -441.0

L, -0.19 -0.86 169.7

Protein (¢?) Pennsylvania I 4485.0 1432.5 -435.5
I 0.48 1999.9 -502.4

L, -0.52 -0.90 157.0

Wisconsin 1 I 3354.5 983.8 -202.9
I 0.61 786.4 -165.6

I, -0.45 -0.76 60.6

Wisconsin 2 l, 4332.5 920.2 -275.6
I 0.44 1024.5 -289.1

1, -0.39 -0.85 114.3

X I 4057.3 1097.6 -304.7
I, 0.49 1270.3 -319.0

I -0.45 -0.85 110.6

Wisconsin data were subdivided according to herd identification numbers into two
approximately equal-sized data sets.

2,=1,1,= 3%, and 1, = (5/4)°%(3x* - 1), where x = -1 + 2[(DIM - 1)/(305 - 1)].

TABLE 4. Estimates of (co)variance function coefficients for permanent environment (diagonal
and above) and correlations among random regression coefficients (below diagonal).

Yield trait Data set? Parameters2 l, I l,
Milk (kg? * 100) Pennsylvania l 1351.3 -33.9 -40.7
1, -0.07 172.7 9.7

l, -0.11 -0.08 96.4

Wisconsin 1 l, 1582.6 28.6 -88.7

1, 0.04 271.7 -0.3

| -0.21 -0.00 114.4

Wisconsin 2 12295 -4.3 -48.6



Fat (9°)

Protein (g7

#

Pennsylvania

Wisconsin 1

Wisconsin 2

#

Pennsylvania

Wisconsin 1

Wisconsin 2

#

-0.01
-0.14
1387.8
-0.01
-0.16
15,208
-0.11
-0.07
17,267
-0.14
-0.06
14,245
-0.08
-0.03
15,573
-0.11
-0.05
10,826
0.06
-0.11
12,417
0.16
-0.15
9620
0.11
-0.10
10,954
0.11
-0.12

240.8
-0.06
-3.2
227.8
-0.04
-753
3093
-0.23
-1066
3290
-0.25
-578
4097
-0.24
-792
3493
-0.24
258
1659
0.02
892
2666
0.03
520
2212
-0.03
557
2167
0.01




'Wisconsin data were subdivided according to herd identification numbersinto two
approximately equal-sized data sets.

2 =1,1,=3%x,and |, = (5/4)°%(3x’ - 1), wherex = -1 + 2[(DIM - 1)/(305 - 1)].

TABLE 5. Estimates of residual variances.

Yield trait Data set! Residual variance
Milk (kg? * 100) Pennsylvania 841
Wisconsin 1 871
Wisconsin 2 827
X 846
Fat (g% Pennsylvania 22,043
Wisconsin 1 24,927
Wisconsin 2 23,295
X 23,422
Protein (g?) Pennsylvania 9382
Wisconsin 1 9871
Wisconsin 2 9109
X 9454

'Wisconsin data were subdivided according to herd identification numbersinto two
approximately equal-sized data sets.

Heritabilities computed from (co)variance functions are in Table 6. The DIM are the midpoints
of 12 25-d periods across lactation. Similar to the coefficients for (co)variance functions,
heritability estimates were highly variable across subsets with extreme differences of up to 0.11.
Genetic and total variances were computed from (co)variance functions at every DIM.
Heritabilities were estimated as the ratio of genetic to total variance at every DIM. Mean
heritability was obtained using mean coefficients for (co)variance functions (Figure 4). The
heritability curvesfor all three yield traits showed an unexpected pattern. Heritabilities decreased
to aminimum around 68 DIM, which corresponded to peak milk yield, then increased to a
maximum around 243 DIM, and finally declined somewhat for the remainder of |actation.
Results for the three data sets and yield traits (Table 6) showed similar patterns. A similar
finding has been reported in at least two other studies (8, 22), which reported higher heritabilities
for earliest stages than for peak yield. Thisresult was difficult to explain even if different parts of
the lactation curve were partly controlled by different genes. Peak production could have been
less heritable because at peak some differences (e.g., the last additional kilograms produced)
were more random and unpredictable than at lower levels of production.




TABLE 6. Heritabilities for test day yields during lactation.

Data set*

Yieldtrat DIM Pennsylvania  Wisconsin 1 Wisconsin 2 X
Milk 18 0.21 0.11 0.16 0.16
43 0.18 0.11 0.15 0.15
68 0.17 0.12 0.15 0.14
93 0.17 0.13 0.16 0.15
118 0.19 0.15 0.19 0.17
143 0.21 0.16 0.21 0.19
168 0.23 0.18 0.22 0.21
193 0.25 0.19 0.24 0.23
218 0.27 0.20 0.25 0.24
243 0.28 0.20 0.25 0.24
268 0.28 0.20 0.24 0.24
293 0.27 0.20 0.22 0.23
Fat 18 0.18 0.15 0.11 0.15
43 0.16 0.14 0.13 0.14
68 0.15 0.13 0.14 0.14
93 0.14 0.13 0.15 0.14
118 0.14 0.13 0.16 0.14
143 0.14 0.15 0.17 0.15
168 0.16 0.17 0.19 0.17
193 0.17 0.19 0.20 0.18
218 0.18 0.20 0.21 0.20
243 0.19 0.22 0.22 0.21
268 0.19 0.22 0.21 0.21
293 0.18 0.21 0.20 0.20
Protein 18 0.20 0.09 0.16 0.15
43 0.16 0.08 0.15 0.13
68 0.14 0.09 0.15 0.13
93 0.14 0.10 0.16 0.13
118 0.16 0.11 0.17 0.15
143 0.19 0.13 0.19 0.17
168 0.22 0.14 0.21 0.19
193 0.25 0.16 0.23 0.21
218 0.28 0.18 0.24 0.23



243 0.30 0.19 0.25 0.24
268 0.30 0.19 0.24 0.24
293 0.28 0.17 0.22 0.22

"Wisconsin data were subdivided according to herd identification numbers into two
approximately equal-sized data sets.

“Heritabilities computed from mean coefficients for (co)variance functions.
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Figure 4. Weekly estimates of heritability computed from mean coefficients of (co)variance
functions for milk (@), fat (W), and protein (X) yields during the lactation.

The heritability findings could be an artifact of the type of model. However, Tijani et a. (24),
who studied a similar data set using a slightly different approach, reported a similar pattern for
milk and protein heritabilities except for the beginning of lactation. Tijani et a. (24) fit (co)
variance functions on results from Gengler et a. (3), who estimated (co)variance components for
amultitrait model similar to the one proposed by Wiggans and Goddard (28). The heritabilities
estimated in this study were generally approximately 20% greater than those reported by Tijani
et a. (24) but were still low compared with the estimates obtained with a similar model using
Canadian data (20). The estimates from this study were similar to results of most other studies on
heritability of test day yield (e.g., 8) that used random regression models. Results also were



similar to those of Keown and Van Vleck (7) who found heritabilities of similar magnitude with
maximum values about 2 mo earlier. This shift may reflect changesin production levelsin the
intervening 30 yr or could result from use of covariance functions.

Genetic and phenotypic correlations obtained from mean (co)variances among 12 evenly spaced
test days between 18 and 293 DIM are in Table 7. Results for the three data sets (not shown)
indicated some differencesin correlations, especially between test days during early and late
lactation for which genetic correlations were negative for some subsets. Mean phenotypic
correlations were close to estimates from Tijani et al. (24). However, mean genetic correlations
were different from those in that study (24) and were low, especially for correlations between
test days during early and late lactation. Low correlations between early and late | actation were
similar to those reported by Schaeffer (22) from a study using random regression models. The
general tendency could have been that random regression models produced lower genetic
correlations than did multitrait methods. In asimilar comparison of random regression and
multitrait models, Kettunen et al. (8) found correlations to be more similar but still lower for
random regression.

TABLE 7. Genetic correlations (above diagonal) and phenotypic correlations (below diagonal)
from mean (co)variance functions for milk, fat, and protein yields.

DIM

Yield

rait DIM 18 43 68 93 118 143 168 193 218 243 268 293

Milk 18 ... 096 083 067 053 041 033 028 024 022 022 023
43 072 ... 096 08 075 0.66 058 053 049 046 044 0.42
68 065 069 ... 097 091 084 079 074 070 0.67 063 059
93 058 065 069 ... 098 095 091 088 084 0.80 076 0.70
118 051 060 067 070 ... 099 097 095 092 0.89 084 0.77
143 045 056 064 069 0.72 ... 099 098 096 093 0.89 0.82
168 040 052 061 067 071 072 ... 100 098 096 092 0.86
193 037 048 058 064 069 071 073 ... 100 098 095 0.89
218 034 045 054 061 066 069 071 073 ... 099 097 093
243 032 042 051 057 061 065 0.68 071 073 ... 099 096
268 031 039 045 051 055 059 063 066 070 0.73 ... 099
203 030 035 039 043 046 050 054 059 0.65 070 0.75 ...

Fat 18 ... 098 091 081 069 058 048 041 036 033 032 0.32
43 060 ... 098 091 082 073 065 059 054 051 050 0.49
68 053 054 ... 098 092 086 080 0.75 071 0.68 0.67 0.66
93 044 049 052 ... 098 095 091 087 084 081 0.80 0.79
118 037 044 049 052 ... 099 097 094 092 090 0.89 0.88
143 030 039 045 050 052 ... 099 098 097 095 094 0.93
168 026 035 043 048 051 053 100 099 098 097 0.96



193
218
243
268
293
Protein 18

68

93
118
143
168
193
218
243
268
293

0.23
0.21
0.21
0.23
0.25
0.63
0.56
0.48
0.41
0.35
0.30
0.27
0.25
0.24
0.23
0.23

0.32
0.30
0.29
0.28
0.27
0.96
0.60
0.56
0.51
0.46
0.42
0.39
0.36
0.34
0.31
0.28

0.40
0.38
0.35
0.33
0.29
0.85
0.96
0.60
0.58
0.55
0.52
0.49
0.46
0.42
0.38
0.32

0.46
0.43
0.40
0.36
0.31
0.67
0.85
0.96
0.62
0.61
0.59
0.56
0.53
0.49
0.44
0.37

0.50
0.48
0.44
0.40
0.33
0.50
0.72
0.89
0.98
0.64
0.63
0.61
0.59
0.54
0.48
0.41

0.52
051
0.47
0.43
0.36
0.36
0.60
0.80
0.93
0.99
0.66
0.65
0.63
0.59
0.53
0.45

0.54
0.53
0.50
0.45
0.39
0.26
0.51
0.73
0.89
0.96
0.99
0.67
0.65
0.62
0.57
0.50

0.54
0.52
0.48
0.43
0.18
0.44
0.67
0.84
0.94
0.98
1.00
0.68
0.66
0.62
0.56

1.00
0.54
0.52
0.47
0.13
0.38
0.63
0.81
0.91
0.97
0.99
1.00
0.68
0.66
0.61

0.99
1.00
0.54
0.52
0.09
0.35
0.60
0.78
0.90
0.95
0.98
0.99
1.00
0.70
0.67

0.99
0.99
1.00
0.57
0.07
0.32
0.58
0.76
0.88
0.94
0.97
0.99

0.99
1.00

0.72

0.98
0.99
0.99
1.00
0.06
0.31
0.56
0.75
0.86
0.92
0.96
0.98
0.99
0.99
1.00

Random regression models have the theoretical power to describe the (co)variance structurein a
multivariate space in an infinite dimensional manner, which means that (co)variance estimates
must fit into regression functions. However, (co)variances estimated through multitrait models
can assume all values as long as the entire (co)variance matrix is positive definite and, therefore,
have greater flexibility. A theoretical method to improve random regression models could be to
identify other than genetic and permanent environmental sources of (co)variances between test

day records of acow and across cows such as autoregressive residuals or effects within and

across lactation (e.g., 1), common calving seasons, and herd yield levels. Only Veerkamp and
Goddard (27) have investigated the influence of herd yield levels using a (co)variance function
approach. They found that heritabilities differed by herd yield level and that genetic correlations

across herd yield levels and lactation stages could be rather small.

Analysisof Residuals

To determine the distribution of residuals (Table 8), means, standard deviations, minimum, and
maximum were computed for milk, fat, and protein yield residuals. Compared with resultsin

Table 1, standard deviations of residuals represented approximately 40 to 50% of standard
deviations of original records.

TABLE 8. Mean, standard deviation, minimum, and maximum of residuals for milk, fat, and

protein yields.

Yield trait

Data set!

#

SD

Minimum

Maximum




Milk (kg) Pennsylvania 0.00 2.47 -22.8 38.3

Wisconsin 1 0.00 2.49 -27.2 29.7
Wisconsin 2 0.00 243 -23.2 254
Fat (g) Pennsylvania 0.00 129.2 -917 1883
Wisconsin 1 0.00 136.6 -1143 2021
Wisconsin 2 0.00 1320 -918 1798
Protein (g) Pennsylvania 0.00 82.9 -711 1402
Wisconsin 1 0.00 84.5 -908 1287
Wisconsin 2 0.00 81.2 -742 1153

Wisconsin data were subdivided according to herd identification numbers into two
approximately equal-sized data sets.

Weekly means were computed but were not very informative. Most mean deviations by week of
lactation were zero because of the definition of lactation stages on aweekly basis. They were,
therefore, not reported. For all yield traits and data sets, weekly variances of residuals tended to
increase slightly at the beginning of lactation and to decrease slightly at the end (Figure 5 for
milk yield, Figure 6 for fat yield, and Figure 7 for protein yield). However, definition of error
variance as constant over the lactation still appeared to be justified. Therefore, variable error
variances defined as linear and quadratic functions of DIM by Jamrozik et al. (6) would not be
necessary. For asimilar model, Schaeffer (22) reported aratio of nearly 1 to 3 between the
lowest and highest estimates of residual variance for milk yield. In this study, however, the
residual variance displayed a nearly constant ratio (1:1.5) between lowest and highest variances
after smoothing the residual variances for outliers that resulted from the limited number of
records.
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Figure 5. Weekly residual variances for milk yield for Pennsylvania (®), Wisconsin 1 (H), and
Wisconsin 2 (X); Wisconsin data were subdivided according to herd identification numbersinto
two approximately equal-sized data sets.
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Figure 6. Weekly residual variances for fat yield for Pennsylvania (®), Wisconsin 1 (H), and
Wisconsin 2 (X); Wisconsin data were subdivided according to herd identification numbersinto
two approximately equal-sized data sets.
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Figure 7. Weekly residual variances for protein yield for Pennsylvania (®), Wisconsin 1 (l), anc
Wisconsin 2 (X); Wisconsin data were subdivided according to herd identification numbersinto
two approximately equal-sized data sets.

Analysis of residuals showed that the model chosen for this study fit the mean if lactation stages
were short enough to adequately represent variations of yields over short periods. The model also
accommodated the variance over the entire lactation. Use of this model instead of the model
proposed by Jamrozik et a. (6) would avoid the necessity of adjusting residuals, thereby
simplifying setting up the equations.

CONCLUSIONS

Coefficients for (co)variance functions can be obtained from random regression models with
general expectation-maximization REML using a sparse matrix solver for models exceeding
70,000 relatively dense equations.

Estimates of (co)variance function coefficients showed large differences between data sets,
which indicated substantial sampling errors. Those errors might be a major obstacle in the
estimation of random regression (co)variance components and could explain the resultsin this
study for heritabilities and (co)variances. Heritabilities declined to a minimum around peak



yield, increased to a maximum around 245 DIM, and then declined dlightly afterward. Genetic
correlations were less than those estimated with nearly the same data using a multitrait model (3,
24), confirming afinding that was reported recently by other authors. Heritabilities were
generally around 20% greater (estimates up to 0.25) than those reported in the studies involving
similar data (3, 24).

The results show that further research on general comparison of models is needed as well as on
alternative ways of modeling the mean and the (co)variances between test days. (Co)variance
components estimated with random regression models may be seriously affected by numerical
instability problems and by problems at the limits, especially the beginning of lactation (22). For
multitrait models, the traditional way to improve numerical stability for highly correlated traitsis
through the use of canonical transformation. For random regression models, an internal canonical
transformation could transform correlated regressions to uncorrelated regressions (25) and be
used to stabilize estimation. The use of uncorrelated regressions would aso eliminate the off-
diagonal blocks linked to the (co)variances between regressions and would eliminate a part of the
density of the coefficient matrix. An indirect benefit is that the amount of data that could be
analyzed would increase, and, therefore, the sampling variance of the estimates would be
reduced.
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