

Kinetic of adsorption of water vapour on activated carbons

Yasmine Boutillara^{1,2*}, Peter Lodewyckx¹, Lucas Richelet¹, Angélique Léonard³ ¹ 1 Department of Chemistry, Royal Military Academy, Brussels, Belgium ² Thermodynamics department, Faculty of Engineering, University of Mons, Mons, Belgium ³ Department of Chemical Engineering, Faculty of Applied science, University of Liège, Liège, Belgium **e-mail: yasmine.boutillara@dymasec.be*

The World Conference on Carbon

Université de Mons

t =20 secondes

DRASSING ON NO NO MANY DALLASS (CA) RH = 10% = 4<mark>200 ppn</mark>

19 netree of 5 chiller ent paramet A in How Relative monidity particle size

Microtomography

t0 (virgin carbon)

Water vapor vapor active active pointe

<mark>Organic vapour adsorption ((</mark>)

At 3min, 6 min and 9 min of adsorptioon

Activated carbons used

contrary to organic vapour adsorption, there is no adsorption front in the case of water vapour adsorption = immediate breakthrough = Consequently, gravimetry is used to follow the adsorption of water vapour.

Experimental tests and modeling

A linear driving force model is used for the correlation of the experimental results

Sample	Sample designation	Shape	particle size (mm)	S _{BET} (m²/g)	V _{microporous} (cm ³ /g)	V _{total} (cm ³ /g)	[O] ² (%)
Norit CGranular1	CG1	Granular	1-2	1427	0.51	1.13	18.9
Norit CGranular2	CG2	Granular	0.5-0.8	1409	0.46	1.13	18.9
Novit D1	NID 1	avtrudad	0.5.5 longth	1259	0 47	0.64	12.0

Particle	a (min ⁻¹)	Max uptake	Carbon	a (min ⁻¹)	Max uptake	
size		(%)	type		(%)	
CG1	0.0215	32.35	CG1	0.0215	32.35	
CG2	0.0195	34.56	NR1	0.0067	25.90	58
Server contraction and server contractions						

20 min exposition	46.86
40 min exposition	49.22
Saturated carbon (100 min)	49.41

- Conclusions Water vapour breakthrough is instantaneous
- Adsorption of water vapour shows a flat profile and a very slow kinetics contrary to organic vapours characterised by an adsorption front.
- The parameters affecting the kinetic of water vapour adsorption are, Air flow, Relative humidity, Carbon type (carbon properties) and temperature. Particle size does not seem to have a relevant influence.
- The kinetic of water vapour adsorption may be correlated by a Linear Driving Force model.
- The three steps of water vapour adsorption may be correlated by this model by using a different kinetic constant ¹ P. Lodewyckx, E. Raymundo-Pinero, M.Vaclavikova, I. Berezovska, M. Thommes, et al. Carbon, 60. 556-558 (2013)/² P. Lodewyckx, S. Blacher, A. Léonard. Adsorption 12. 19-26 (2006)