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Abstract

We consider simple-pole descriptions of soft elastic scattering for pp, p̄p, π±p and
K±p. We work at t and s small enough for rescatterings to be neglected, and allow
for the presence of a hard pomeron. After building and discussing an exhaustive
dataset, we show that simple poles provide an excellent description of the data in
the region −0.5 GeV2 ≤ t ≤ −0.1 GeV2, 6 GeV≤ √

s ≤ 63 GeV. We show that new
form factors have to be used, and get information on the trajectories of the soft and
hard pomerons.

Keywords: Hadron elastic scattering
PACS: 13.85.-t,13.85.Dz, 11.55.-m, 12.40.Na, 13.60.Hb

Introduction

In recent papers [1], we have shown that a model which includes a hard pomeron reproduces
very well the total cross sections and the ratios ρ of the real to imaginary parts of the
forward scattering amplitude, while the description obtained from a soft pomeron only is
much less convincing [2]. We considered the full set of forward data [3] for pp, p̄p, Kp, πp,
γp and γγ, and showed that the description extends down to

√
s = 5 GeV.
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However, if one uses a simple pole for the hard pomeron and a fit to all data for√
s ≥ 5 GeV, the coupling of this new trajectory is almost zero in pp scattering, while it is

non negligible in Kp and πp. The reason is simple: a hard pole, with an intercept of about
1.45, needs to be unitarised at high energy. Hence the high-energy p̄p data almost decouple
any fast-rising pole1. To see the hard singularity, one thus needs to limit the energy range
of the fit, and we found that for centre-of-mass energies 5 GeV≤ √

s ≤ 100 GeV the data
were well described by a sum of four simple poles: a charge-conjugation-odd (C = −1)
exchange (corresponding to the ρ and ω exchanges and denoted R−) with intercept 0.47,
and three C = +1 exchanges, with intercepts 0.61 (f and a2 trajectories denoted R+),
1.073 (soft pomeron S) and 1.45 (hard pomeron H).

We then showed that it is possible to extend the fit to high energies, provided that
one unitarises the hard pomeron. The low-energy description remains dominated by the
pole term, whereas the multiple scatterings tame the growth at high energy. However,
despite the fact that the hard pomeron intercept is very close to what is observed in deeply
inelastic scattering [6] and in photoproduction [7], it is not entirely sure that it is present
in soft scattering. Indeed, its couplings are small and its contribution is less than 10% for√

s < 100 GeV. Hence it is important to look for confirmation of its presence in other soft
processes, and the obvious place to start from is elastic scattering.

Although elastic scattering has been studied for a long time, its description within
Regge theory poses several problems:

• There is no standard dataset: the data are present in the HEPDATA system [8], but
they have not been gathered into a common format, some of the included datasets are
not published, and several are superseded. Furthermore, the treatment of systematic
errors is often obscure. This may explain why many authors neglect the quality of
their fits: most existing models do not reproduce the data in a statistically acceptable
manner.

• Maybe because of the absence of a standard dataset, most theoretical works concen-
trate on pp and p̄p data, and neglect πp and Kp elastic scattering. As we showed
in [1], this may however be the place to look for a hard pomeron.

• On the theoretical side, the situation is also more difficult: whereas at t = 0 one had
to introduce coefficients in front of the Regge exchanges, one now has to use form
factors. These are a priori unknown. Also, there is no reference fit with an acceptable
χ2 per degree of freedom (χ2/d.o.f.).

• For the purpose of this paper, one has to implement several cutoffs: first of all,
the energy has to be sufficient to use leading exchanges, and small enough to be
able to neglect rescatterings2 (especially when we consider contributions from a hard
pomeron). Similar cut-offs need to be implemented in the off-forward case: first of
all, many datasets have inconsistencies in the first few bins, so that |t| needs to be

1This explains the very small coupling obtained in [4] and the bound of [5].
2or to absorb them in the parameters describing the simple-pole exchanges.
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large enough3. At the same time, one needs to be far from the dip region, where
rescatterings are notoriously important. Thus there must also be an upper cutoff in
|t|.

Our strategy in this paper will be to fix the parameters entering the description of the
data at t = 0 [1], and to compare a model containing only a soft pomeron with a model
where we add a hard pomeron. After a theoretical summary fixing the conventions, we
shall recall the parametrisation of forward data in section 2. In section 3, we will present
the dataset which we are using, discuss the problem of systematic errors, and use a general
method [9] to determine the functions describing the form factors of the various Regge
exchanges. As an output, we shall also be able to determine the position of the first cone
in t, i.e. the region where the rescatterings can be neglected. In section 4, we shall then
produce a fit using only a soft pomeron, and show that it describes very well the elastic
data. In section 5, we shall give our results for the hard pomeron case, and give constraints
on its form factors and slope.

1 Theoretical framework

We shall parametrise all exchanges by simple poles, and limit ourselves to a region in s and
t where these are dominant. The amplitude Aab(s, t) that describes the elastic scattering
of hadrons a and b is normalised so that the total and the differential elastic cross sections
are given by

σab
tot(s) =

1

2qab

√
s
ℑmAab(s, 0), (1)

dσab
el (s, t)

dt
=

1

64πsq2
ab

|Aab(s, t)|2, (2)

where qab =
√

[(s − m2
a − m2

b)
2 − 4m2

am
2
b ]/4s is the momentum of particles a and b in the

centre-of-mass system.
Regge theory implies that one can write A(s, t) ≡ A(zt, t) where the Regge variable, zt,

is the cosine of the scattering angle in the crossed channel:

zt =
t + 2sab

√

(4m2
a − t)(4m2

b − t)
(3)

with sab = s − m2
a − m2

b .
A simple-pole singularity (reggeon) in the complex j plane at j = α(t) then leads to a

term in the amplitude given by

Aab
R (zt, t) = 16π2[2α(t) + 1]

Γ(α(t) + 1/2)√
πΓ(α(t) + 1)

βa(t)βb(t)η(α(t))Pα(t)(zt), (4)

3Besides, one needs to be away from the Coulomb interference region.
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where α(t) is the trajectory of the reggeon, βi(t) is the coupling of the reggeon with particle
i: t-channel unitarity implies that the couplings factorise, and that the dependence on the
beam a and target b enters through the product βa(t)βb(t). The signature factor η(α(t))
can be written4

ηξ(α(t)) =



















−exp(−iπα(t)/2)

sin(πα(0)/2))
(crossing even, C = +1),

−i
exp(−iπα(t)/2)

cos(πα(0)/2))
(crossing odd, C = −1).

(5)

At high energy s ≫ −t, zt is large. This allows, taking into account the asymptotics of
the Legendre polynomials and using the variable

s̃ab =
t + 2sab

s0

, with s0 = 1 GeV2 (6)

instead of zt, to re-absorb many of the factors of Eq.(4) into the definition of the couplings5

so that, for the scattering of a on protons, the simple-pole contribution to the amplitude
becomes

Aap
R (s̃ap, t) =

ga
R

2αR(0)
F a

R(t)F p
R(t) ηξ(αR(t)) s̃αR(t)

ap . (7)

with F a
R(0) = 1, a = p, π, K.

1.1 Trajectories

At high enough energies (
√

s ≥ 5 GeV [1]), the amplitude is dominated by a few exchanged
trajectories.

For the C = −1 part, we shall restrict ourselves to a region in t where it is enough to
consider meson trajectories: one of the reasons to limit ourselves to the first cone is that
we can forget the odderon contribution, which is known to be negligible at t = 0.

For the C = +1 part, we shall first consider meson exchanges, as well as a soft pomeron
and a hard pomeron.

We shall consider here scattering of p, p̄, π± and K± on protons, and we summarise
the possible exchanged trajectories in Table 1.

Generally, the ω, ρ, f and a2 trajectories are different: they do not have coinciding
intercepts or slopes [10]. However, as each trajectory comes with three form factors, we
shall have to assume degeneracy for the C = +1 and for the C = −1 trajectories [11], in
order to limit the number of parameters.

Hence the model that we are considering can be written:

Aap(s, t) = Aap
+ (s̃ap, t) + Aap

S (s̃ap, t) + Aap
H (s̃ap, t) ∓ Aap

− (s̃ap) (8)

with the − sign for the (positively charged) particles.
4We chose the denominators to obtain Eqs. (1, 2) automatically, and absorbed their t dependence in

βi(t).
5This is in fact necessary if one considers γp and γγ total cross sections for which t = 0 and ma,b = 0

in Eq. (3). We also included a factor 2−αR(0) so that the definition of the couplings coincides with that
used in [1].
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a C = +1 C = −1 Aap(sap, t)
p P, f, a2 ω, ρ App = P + f + a2 − ω − ρ,
p̄ Ap̄p = P + f + a2 + ω + ρ,

π+ P, f ρ Aπ+p = P + f − ρ,

π− Aπ−p = P + f + ρ,

K+ P, f, a2 ω, ρ AK+p = P + f + a2 − ω − ρ,

K− AK−p = P + f + a2 + ω + ρ,

Table 1: The trajectories entering the amplitudes considered in this paper.

2 Description of the forward data

We have shown in [1] that the data for pp, p̄p, π±p, K±p, γp and γγ can be well described
from

√
s = 5 GeV to6 100 GeV by either a soft pomeron, or a mixture of a soft pomeron

and a hard pomeron, the latter case being significantly better. We have also shown that the
inclusion of the subtraction constants that enter the dispersion relations lead to a better
description of the real part of the amplitude. The formula for the ρ parameter is then
given by

ρ± σ± =
Rap

p
+

E

πp
P

∫ ∞

ma

[

σ±

E ′(E ′ − E)
− σ∓

E ′(E ′ + E)

]

p′ dE ′ (9)

where the + sign refers to the process ap → ap and the − sign to āp → āp, E and p are
the energy and the momentum of a in the proton rest frame, P indicates a principal-part
integral, Rap is the subtraction constant, and σ are the total cross sections. They are given
by Eqs. (1, 8) for

√
s ≥ 5 GeV, and fitted directly to the data at lower energy [1].

We give in Table 2 the values of the parameters resulting for a fit to all data for σtot

and ρ for p̄p, pp, π±p and K±p, and for σtot for γp and7 γγ. We quote the values obtained
in [1] (for a model with both a soft and a hard pomeron), and follow the same procedure
for a model with a soft pomeron only. Table 3 shows the quality of the fits. Clearly, even
in this modest energy range, the inclusion of a hard pomeron makes the fits much better,
particularly those to the ρ parameter for pions and kaons. Converting the χ2/d.o.f. into
a confidence level (CL), one gets for the overall soft pomeron CL=6%, whereas the fit
including a hard pomeron achieves CL=93%. Nevertheless, as the existence of the hard
pomeron is not totally settled, we shall keep both models in the following, and see how
well they fare in the description of the elastic data.

6The hadron-hadron data extend to 62.4 GeV.
7We have used the factorisation of the simple-pole residues to obtain the amplitude for γγ [1].
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Parameter soft pomeron soft & hard pomerons
αS(0) 1.0927 1.0728
αH(0) - 1.45
α+(0) 0.61 0.61
α−(0) 0.47 0.47
gp

H - 0.10
gπ

H - 0.28
gK

H - 0.30
gp

S 49.5 56.2
gπ

S 31.4 32.7
gK

S 27.7 28.3
gp
+ 177 158

gπ
+ 78 78

gK
+ 43 46

gp
− 81 79

gπ
− 13.9 14.2

gK
− 32 32

Table 2: Values of the intercepts and couplings (t = 0).

Quantity Number soft soft and hard
of points N χ2/N χ2/N

σpp
tot 104 1.2 0.86

σp̄p
tot 59 0.78 0.88

σπ+p
tot 50 1.2 0.78

σπ−p
tot 95 0.90 0.90

σK+p
tot 40 0.93 0.72

σK−p
tot 63 0.72 0.62
σγp

tot 38 0.61 0.57
σγγ

tot 34 0.87 0.74
ρpp 64 1.59 1.62
ρp̄p 9 0.49 0.43

ρπ+p 8 2.8 1.52

ρπ−p 30 1.8 1.09

ρK+p 10 0.72 0.70

ρK−p 8 1.7 0.90
Total 603 1.07 0.95

Table 3: Partial χ2 for the total cross sections σtot and the ratios ρ.
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3 The elastic dataset

Throughout the last 40 years, there have been many measurements of the differential elastic
cross sections [12-71]. In the present paper, we shall use not only pp and p̄p data, but also
K±p and π±p data as the hard pomeron seems to couple more to mesons [1]. Fortunately,
most of these measurements have been communicated to the HEPDATA group [8], so that
one does not need to re-encode all the data. However, some basic work still needs to
be done, as there are 80 papers, with different conventions, and various units. Once the
translation into a common format has been achieved, there are still a number of issues to
be dealt with:

• Some of the data are preliminary or redundant. We chose to include only final
published data in the set that we are building;

• The main systematic error usually comes from a poor knowledge of the beam lumi-
nosity. This means that all the data of one run taken in a given experiment at a given
energy can be shifted up or down by a certain amount. Although we shall mostly
treat these errors as random (and add them quadratically to the statistical error),
we have encoded this information in the dataset. Hence we have split the data into
subsets, to which correspond data in a given paper with the same systematic error.
This defines 263 different subsets of the data, shown in Appendix 1. We shall also
use this information to exclude subsets which blatantly contradict the rest of the
dataset.

• Several experiments have not spelled out their systematic errors in the published
work, and these have to be reconstructed. Indeed, many measurements are not
absolute, but rather normalised by extrapolating to the optical point dσel/dt(t = 0),
which is known from measurements of the total cross section. In that case, we have
assigned the error on the optical point (ı.e. twice that on the total cross section used)
as a systematic error on the subset.

• In the case of bubble chamber experiments, such as [38], the luminosity was moni-
tored, but it was included in the systematic uncertainty added to the statistical one.
We have thus subtracted it so that these data can be shifted in the same way as the
others.

• In the case of [71], we have added the t-dependent systematics to the statistical error,
and allowed 4% in the global normalisation.

• As we shall see in the subsequent sections of this paper, some of the subsets [14, 22,
34,39] are in strong disagreement with the other sets considered. We shall eventually
exclude them from our analysis.

The global dataset [72] contains 10188 points (we have restricted it to data at
√

s ≥ 4
GeV). We show some of its details in the tables of the Appendix. The present analysis,

7



observable Npp Np̄p Nπ+p Nπ−p NK+p NK−p Ntot

σtot (full set, all
√

s) 261 444 412 606 208 416 2347
this analysis 104 50 50 95 40 63 402

ρ (full set, all
√

s) 116 90 9 39 22 15 291
this analysis 64 9 8 30 10 8 129

dσel/dt (full set,
√

s ≥ 4 GeV) 4639 1252 802 2169 595 731 10188
this analysis 818 281 290 483 166 169 2207

after exclusion 795 226 281 478 166 169 2115

Table 4: The statistics of the full dataset and of the present analysis.

which concentrates on the first cone, will include about a fourth of these data, as explained
in the next section, and shown in Table 4.

The forward fit of section 1 gave us the intercepts and the couplings g±, gS and gH. To
extend it to non-zero t, we need to find the form factors. These are a priori unknown, so
that one has to deal with arbitrary functions.

3.1 Form factors and local fits

In order to obtain the possible form factors, we shall scan the dataset at fixed t, i.e. we
shall fit a complex amplitude with constant form factors to the data in small bins of t (and
refer to these fits as local fits)8. The constants that we get will then depend on t and give
us a picture of the form factor. The value of the χ2 will also tell us in which region of t we
should work.

This strategy however will not work for the general case considered here: each bin does
not contain enough points to have a unique minimum. We can take advantage of the fact
that both models considered here give the same values for the intercept of the crossing-odd
Reggeon contribution, and for the crossing-even ones as well (see Table 2). We can also
read off the slopes from a Chew-Frautschi plot. This gives the following f/a2 and ρ/ω
trajectories:

α+ = 0.61 + 0.82 t,

α− = 0.47 + 0.91 t. (10)

Furthermore, we shall not be able to include a hard pomeron in the local fits as its contri-
bution is too small to be stable.

We fit all the data from 6 GeV≤ √
s ≤ 63 GeV, and we choose small bins of width

0.02 GeV2. We restrict ourselves to independent bins where we have more than four points
for each process.

8Note that we shall neglect the subtraction constants of the real part in the following. We checked that
their inclusion does not significantly improve the description of non-forward data.
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Figure 1: The results of the local fits for the χ2 per number of points (left) and for the
pomeron trajectory (right). The dashed curve is from [73] and the plain curve results from
the global fit given in the next section.

Each of these fits gives us a values of the χ2 per number of points, the coefficients
gap

R F p
R(t)F a

R(t), as well as αS(t) for each t. We show these results in Figs. 1 and 2. The
χ2 curve of Fig. 1 shows two things: first of all, the fit is never perfect, and this can
be traced back to incompatibilities in the data9. We shall come back to this in the next
section, when we perform a global fit to all data. The second lesson is that the simple-
pole description of the data has a chance to succeed in a limited region: the χ2 grows
fast both at low |t| (partly because the Coulomb interaction begins to matter) and for
|t| > 0.6 (where multiple exchanges come into play). To be conservative, we shall consider
in the following10 the region 0.1 ≤ |t| ≤ 0.5. The right-hand graph in Fig. 1 shows the
soft pomeron trajectory. It is very linear as a function of t. Its intercept and slope are
somewhat different from the standard ones [73].

Figure 2 shows the results for the residues of the poles gaF a
R(t)F p

R(t). In all cases, it is
obvious that form factors must be different for different trajectories. There is in fact no
reason why the hadrons should respond in the same way to different exchanges, as these
have different quantum numbers and different ranges, and couple differently to quarks and
gluons.

For the soft pomeron, we find that we can get a good description in the pp and p̄p cases
if we take

F p
S(t) =

1

1 − t/t
(1)
S +

(

t/t
(2)
S

)2 . (11)

For π and K mesons, an adequate fit is provided by the monopole form factors11

F a
S (t) =

1

1 − t/taS
, a = π, K. (12)

9The inclusion of data for
√

s ≤ 6 GeV would only make this problem worse.
10We have tried several possibilities for the meson trajectories, and also added a hard pomeron to the

local fits. The range of validity of the fit is not affected by these details.
11although in this limited range of t it is also possible to use dipoles.
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results of a global fit explained in the next section.
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The local fits for both the C = +1 and the C = −1 reggeons indicate that the form
factors have a zero at some t value. In the crossing-odd case, this is the well-known cross-
over phenomenon [74]: the curves for dσ/dt for pa and pā cross each other at some value
of t. In the crossing-even case, the zero is close to the upper value of |t|, so that we have
evidence for a sharp decrease but not necessarily for a zero.

In each case, we have tried to obtain such zeroes through rescatterings. However, it is
hard then to cancel both the real and the imaginary parts, and the zero moves with energy,
or disappears when energy changes. We thus assume here, in a way which is consistent
with the simple-pole hypothesis, that these zeroes are the same for pp, p̄p, π±p and K±p
scattering, and that they are fixed with energy: they can be thought of as a property of
the form factors, or of the exchange itself, and are consistent with Regge factorisation.

We thus parametrise the R− and R+ contributions as

Aap
± (s̃ap, t) = Za

±(t)ga
±F a

±(t)F p
±(t) ηξ(α±(t)) s̃α±(t)

ap . (13)

For the form factors F a
±(t), we take the form

F p
±(t) =

1

(1 − t/tp±)2 . (14)

in the proton case, whereas we find that

F π,K
± (t) = F π,K

S (t) (15)

gives us a good fit for π and K.
The factor Za

±(t) has a common zero ζ±, independent of s, for p, π, K, but a different
one for the C = +1 and the C = −1 trajectories:

Za
±(t) =

tanh(1 + t/ζ±)

tanh(1)
, a = p, π, K. (16)

We choose this simple form to restrict the growth of Za
± with t.

Finally, when we shall introduce a hard pomeron, we shall find that a dipole form factor
describes the proton data well

F p
H(t) =

1

(1 − t/tpH)
2 , (17)

whereas we can use the same form factor as for the soft pomeron to describe pions and
kaons:

F π,K
H (t) = F π,K

S (t). (18)

We summarise in Table 3.1 our choice of form factors. Of course, these are the simplest
functions that reproduce the data at the values of t considered here. Consideration of
different t ranges will probably call for more complicated parametrisations.

11



p π K

S
1

1 − t/t
(1)
S + (t/t

(2)
S )2

1

1 − t/tπ
1

1 − t/tK

C = +1
1

(1 − t/t+)2

1

1 − t/tπ
1

1 − t/tK

C = −1
1

(1 − t/t−)2

1

1 − t/tπ
1

1 − t/tK

H
1

(1 − t/tH)2

1

1 − t/tπ
1

1 − t/tK

Table 5: Parametrisation of the form factors.

4 Soft pomeron fit

Equipped with the information from the local fits, we can now perform a global fit to the
elastic data for 0.1 GeV2 ≤ |t| ≤ 0.5 GeV2, for 6 GeV≤ √

s ≤ 63 GeV, and for a soft
pomeron only. We fix the trajectories of the C = +1 and C = −1 exchanges according to
Eq. (10).

The χ2/d.o.f. reaches the value 1.45, which is unacceptable for the number of points
fitted (2207). Such a high value of the χ2 is largely due to contradictions between sets of
data. We thus excluded the following data, which all have a CL less than 10−8: Bruneton
[39] (sets 1050, 1204 and 1313, 25 points), Armitage [22] (set 1038, 12 points), Akerlof [14]
p̄p for

√
s = 9.78 GeV (set 1101, 20 points) and Bogolyubsky [34] (set 1114, 35 points).

The removal of these 92 points (less than 5% of the data) brings the χ2/d.o.f. to 1.03, i.e.
a confidence level of 20%.

The parameters of the fit are given in Table 6, and the partial χ2 in Table 7. We also
show the form factors resulting from the global fit in Fig. 2. We see that there is good
agreement with the local fits.

The main result is that the slope of the soft pomeron is higher than usually believed:
α′

S ≈ 0.3 GeV−2. Also, the fit to near-forward data is remarkably good12.
We also show in Figs. 3, 4, 5 and 6 some of the fits to the data. We see in Fig. 4

that our description extends very well to Spp̄S energies. Also, the top-left of Fig. 4 shows
the kind of disagreement that we had to remove: the points of Akerlof are in definite
disagreement with those of Ayres. Similar graphs can be plotted for all the data that we
removed. Furthermore, one can see e.g. in the data of Brick [38] in Fig. 6 that the first

12The fact that the soft pomeron reproduces elastic scattering well while it fails to reproduce data at
t = 0 is due to the very different systematic errors, which are typically of a few percents in forward data,
and of order 10% in elastic near-forward data.
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Parameter soft pomeron soft and hard pomerons
α ′

S (GeV−2) 0.332 ± 0.007 0.297 ± 0.010
α ′

H (GeV−2) - 0.10 ± 0.21
α ′

+ (GeV−2) 0.82 (fixed) 0.82 (fixed)
α ′

− (GeV−2) 0.91 (fixed) 0.91 (fixed)

t
(1)
S (GeV2) 0.56 ± 0.01 0.56 ± 0.02

t
(2)
S (GeV2) 2.33 ± 0.34 1.16 ± 0.06
tH (GeV2) - 0.20 ± 0.05
t+ (GeV2) 2.96 ± 0.25 2.34 ± 0.22
t− (GeV2) 7.97 ± 1.41 9.0 ± 1.8
tπ (GeV2) 2.53 ± 0.14 2.89 ± 0.23
tK (GeV2) 3.92 ± 0.28 6.33 ± 0.94
ζ− (GeV2) 0.148 ± 0.003 0.153 ± 0.003
ζ+ (GeV2) 0.47 ± 0.02 0.47 ± 0.03

Table 6: Values of the parameters (fit at t 6= 0).

few points are in strong disagreement with other sets. Such problems explain the rather
high value of |t|min that we had to use.

Finally, let us mention that we also considered a fit where one allows the data of one
given set at one given energy to be shifted by a common factor within one systematic error
while treating the statistical error through the usual χ2 minimisation. Such a procedure
leads to a higher χ2/d.o.f., of the order of 1.15 [7], without affecting the parameters sig-
nificantly. As the datasets do not have compatible slopes within the statistical errors, we
preferred to present here the results based on errors added quadratically.

Quantity Number χ2/N χ2/N
of points (soft) (soft+hard)

dσpp/dt 795 0.90 0.86
dσp̄p/dt 226 1.01 0.99

dσπ+p/dt 281 0.90 0.89

dσπ−p/dt 478 1.18 1.18

dσK+p/dt 166 1.02 1.11

dσK−p/dt 169 1.18 1.12
Total 2115 1.022 0.997

Table 7: Partial values of χ2, differential cross sections.
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Figure 3: pp differential cross sections. The plain curve shows the soft pomeron fit, and
the dashed one the fit that includes a hard pomeron.
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Figure 4: pp̄ differential cross sections. The plain curve shows the soft pomeron fit, and
the dashed one the fit that includes a hard pomeron.

15



1E-1

1E+0

1E+1

1E+2

1E-1

1E+0

1E+1

1E+2

dσ
/d

t (
m

b/
G

eV
2 )

0 0.1 0.2 0.3 0.4 0.5

|t| (GeV2)

0 0.1 0.2 0.3 0.4 0.5

|t| (GeV2)

9.73 GeV 13.73 GeV

16.63 GeV 19.39 GeV

Ayres 76
Akerlof 76

Ayres 76
Akerlof 76

Ayres 76

π+p π+p

π+p π+p

Brick 82

Akerlof 76

Schiz 81

s =

0 0.1 0.2 0.3 0.4 0.5

|t| (GeV2)

0 0.1 0.2 0.3 0.4 0.5

|t| (GeV2)

9.73 GeV 13.73 GeV

16.63 GeV 19.39 GeV

Ayres 76

Akerlof 76

Derevshchekov 74

Ayres 76

Akerlof 76

Akerlof 76

Rubinstein 84

π-p π-p

π-p π-p

Schiz 81

Ayres 76

Figure 5: π+p and π−p differential cross sections.
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5 Hard pomeron

One of the motivations of this paper was to confirm the presence of a small hard component
in soft cross sections. The problem however is that the fit with only one soft pomeron is
so good that a hard component is really not needed here. Following the philosophy of the
previous section, we can nevertheless investigate the effect of its contribution in elastic data
by fixing the parameters from the t = 0 fit of Table 2 and constrain the form factors and
trajectories. As can be seen from Table 7, the introduction of a hard pomeron makes the
fit slightly better (the CL rises to about 48%) if we allow a different form factor from that
of the soft pomeron in the pp and p̄p cases. We obtain the parameters of the third column
of Table 6. The hard pomeron slope is confirmed to be of the order of 0.1 GeV−1, although
the errors are large. We show in Fig. 7 the form factors of the various trajectories in this
case. Note in the pp and p̄p cases that the hard contribution is suppressed at higher t by
the form factor. Forcing it to be identical to the form factor of the soft pomeron results in
a trajectory with a very large slope α′

H ≈ 1GeV −2.
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Figure 7: Form factors as function of |t|, in the model that includes a hard pomeron.

6 Conclusion

This paper has presented a few advances in the study of elastic cross sections:

• We have elaborated a complete dataset, including an evaluation of the systematic
errors for all data. We have shown that statistical and systematic errors should
be added in quadrature (i.e. the slopes of the data from different subsets are not
consistent if one uses only statistical errors).

• We have shown that rescattering effects can be neglected in the region 0.1 GeV2 ≤
|t| ≤ 0.5 GeV2, 6 GeV≤ √

s ≤ 63 GeV. This of course does not necessarily mean that
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the pomeron cuts are small, but rather that they can be re-absorbed in a simple-pole
parametrisation [73].

• We showed that different trajectories must have different form factors. We confirm
that the crossing-odd meson exchange has a zero. We also found evidence for a sharp
suppression of the crossing-even form factor around |t| = 0.5 GeV2.

• The soft pomeron has a remarkably linear trajectory, and leads to a very good fit
that extends well to Spp̄S energies.

• Because of the quality of the soft pomeron fit, the elastic data do not confirm strongly
the need for a hard pomeron. It is remarkable however that the hard pomeron fit
gives 0.1 GeV−2 for the central value of the slope, in agreement with [7].

It is our hope that this dataset, and this study, will serve as a starting point for precise
studies of the whole range of elastic scattering, and especially for studies of unitarisation
effects at higher s or higher t, and for the comparison of several models.
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Appendix: experimental data

pp → pp

set ref.
√

s |t|min |t|max syst. number
(GeV) (GeV2) (GeV2) of points

1001 [14] 9.8 13.8 19.4 0.075 1.03 2.8 3.3 7% 50 61 55

1002 [15] 23.4 26.9 30.6 0.15 0.15 0.25 1.1 0.55 0.95 15% 19 8 15
32.4 35.2 38.3 0.20 0.20 0.20 0.35 0.75 0.7 4 9 9

1014 [16] 4.5 4.9 5.3 0.14 0.10 0.27 2.1 2.7 3.5 15% 24 25 22
1015 6.2 6.4 0.058 0.070 6.0 1.9 8% 37 17
1037 4.6 4.8 5.0 2.0 2.2 2.5 8.6 9.6 10.5 7% 18 15 15

5.3 5.8 6.2 7.6 9.1 9.7 13 15 17 4 9 4
6.5 11 18 4

1039 6.8 0.083 6.7 10% 35

1020 [17] 23.5 30.7 0.042 0.016 0.24 0.11 1.2% 50 48
1021 30.7 44.7 0.11 0.05 0.46 0.29 2% 58 95
1030 23.5 0.25 0.79 3% 28
1022 23.5 30.7 0.83 0.90 3.0 5.8 5% 34 55
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44.7 62.5 0.62 0.27 7.3 6.3 65 74
1023 23.5 3.1 5.8 10% 21
1024 30.7 0.0011 0.008 0.40% 9
1025 62.5 0.0017 0.009 0.25% 16
1026 30.7 0.46 0.86 3.5% 11
1027 44.7 0.001 0.009 0.2% 24
1028 44.7 62.5 0.0092 0.0095 0.052 0.099 1% 46 49

1003 [18] 52.8 0.011 0.048 0.4%13 36

1009 [19] 23.5 30.6 0.0004 0.0005 0.010 0.018 1% 31 32
52.8 62.3 0.0011 0.0054 0.055 0.051 34 22

1004 [21] 9.0 10.0 0.0019 0.043 0.05 1.1% 20 18

1038 [22] 53.0 0.13 0.46 5% 12

1052 [23] 9.8 0.825 3.8 15% 17

1005 [25] 9.8 11.5 13.8 0.038 0.75 0.70 0.75 3% 16 17 18
16.3 18.2 0.0375 0.075 0.80 0.75 19 15

1006 [32] 4.4 5.1 5.6 0.0008 0.0092 0.0089 0.013 0.10 0.11 2%14 34 22 27
6.1 6.2 6.5 0.0009 0.0011 0.015 0.11 0.014 0.11 67 35 30
6.9 7.3 9.8 0.011 0.0093 0.0010 0.11 0.11 0.12 26 33 66
7.7 8.0 8.3 0.011 0.0171 0.0093 0.11 0.11 0.11 29 24 28
8.6 8.7 8.8 0.0009 0.0011 0.0009 0.11 0.015 0.11 65 47 65

9.3 10.0 10.2 0.0114 0.0109 0.0108 0.12 29 34 29
10.3 10.4 10.6 0.0008 0.013 .0008 0.015 0.12 0.015 37 35 44
10.7 11.0 11.2 0.0108 0.013 0.011 0.12 0.12 0.12 33 33 30

11.5 0.011 0.0010 0.12 0.11 26 156

1013 [36] 4.6 0.023 1.5 2% 97

1031 [37] 31.0 53.0 62.0 0.050 0.11 0.13 0.85 10% 24 24 23
1064 53.0 0.62 3.4 20% 31

1055 [38] 16.7 0.01 0.62 2%15 26

1007 [40] 13.8 16.8 0.0022 0.039 1% 73 68
21.7 23.8 64 60

1054 [43] 13.8 19.4 0.035 0.095 0.8% 7 7

1058 [44] 19.5 27.4 5.0 2.3 12 16 20% 31 87

1017 [46] 4.7 0.0028 0.14 1.6%14 13

1053 [48] 9.8 0.012 0.12 3%14 10

1042 [49] 5.0 0.011 0.34 15% 5
1044 5.6 0.019 0.56 13% 5
1045 6.1 7.1 0.036 0.064 0.79 1.0 20% 5 4
1046 6.5 0.032 1.1 17% 5

1019 [53] 4.5 5.5 0.016 0.027 5.1 4.9 15% 31 32
6.3 7.6 0.032 0.079 3.8 2.8 30 29

13 From the luminosity measurement by the experiment.
14 From the uncertainty on the optical point used to normalise the data.
15 This uncertainty in the luminosity, originally included in the statistical error, has been removed from

it.
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1029 [54] 53.0 0.64 2.05 10% 15

1057 [55] 19.5 27.4 5.0 5.5 12 14 15% 34 30

1056 [56] 19.4 0.61 3.9 15%16 33

1016 [57] 4.7 5.1 5.4 0.058 0.049 0.066 0.82 0.86 0.78 5% 13 13 12
5.8 6.2 0.042 0.12 0.70 0.81 12 11

1018 4.7 5.5 6.2 0.2 0.22 0.23 0.89 0.74 0.79 5% 9 7 7
6.5 6.9 0.24 0.25 0.81 0.75 7 6

1048 [58] 7.6 9.8 11.5 0.0027 0.0026 0.0028 0.119 0.12 0.12 2%14 21 23 21

1049 [59] 8.2 10.2 11.1 0.29 0.34 0.34 1.93 1.98 1.98 15% 21 20 20
12.3 13.8 15.7 0.35 0.70 2.0 0.99 8 19 11
16.8 17.9 18.9 0.35 0.35 0.29 2.1 32 29 30
19.9 20.8 21.7 0.29 2.1 2.0 2.0 29 19 17

1043 [60] 5.0 6.0 0.13 0.19 2.0 3.6 7% 22 20

1040 [62] 4.5 0.0018 0.097 1% 55

1050 [39] 9.2 0.16 2.0 2%14 27

1036 [63] 10.0 0.0006 0.031 0.9% 72
1035 12.3 0.0007 0.029 0.69% 58
1034 19.4 0.0007 0.032 0.56% 69
1033 22.2 0.0005 0.030 0.57% 63
1032 23.9 0.0007 0.032 0.5% 66
1008 27.4 0.0005 0.026 0.52% 60

1010 [66] 52.8 0.83 9.8 5% 63

1041 [67] 4.9 1.2 2.5 10% 5

1011 [69] 13.8 19.4 0.55 0.95 2.5 10.3 15% 20 35

1012 [71] 19.4 0.021 0.66 4%17 134

p̄p → p̄p

set ref.
√

s |t|min |t|max syst. number
(GeV) (GeV2) (GeV2) of points

1130 [12] 546.0 0.026 0.078 0.52%18 14

1132 1800.0 0.035 0.285 0.48%18 26

1101 [14] 9.8 13.8 19.4 0.075 1.0 0.95 0.75 7% 31 30 13

1102 [18] 52.8 0.011 0.048 1.54 %13 48

1103 [19] 30.4 52.6 0.0007 0.001 0.016 0.039 2.5% 29 28
62.3 0.0063 0.038 17

1104 1800.0 0.034 0.63 9% 17 51

1105 [20] 6.9 7.0 8.8 0.19 0.83 0.075 0.58 3.8 0.58 5% 22 17 33

1106 [24] 540.0 0.045 0.43 8% 36

1107 [23] 7.6 9.8 0.53 0.83 5.4 3.8 15% 30 17

16This uncertainty is the same as in [59].
17The t-dependent systematics have been included in the statistical error.
18From Table VI of [12].
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1108 [25] 9.8 11.5 13.8 0.038 0.75 0.5 0.75 3% 17 13 15
16.3 18.2 0.075 0.038 0.6 11 13

1109 [29] 6.6 0.055 0.88 2.1 %14 43

1110 [30] 4.6 0.19 3.0 5% 35

1111 [31] 546.0 0.0022 0.035 2.5% 66
1112 630.0 0.73 2.1 15% 19

1126 [33] 5.6 0.11 1.3 10%19 23

1114 [34] 7.9 0.055 1.0 0.8%14 52

1113 [35] 546.0 0.032 0.50 5% 87
1117 546.0 0.46 1.5 10% 34

1118 [36] 4.6 0.023 1.5 2% 97

1115 [37] 53.0 0.52 3.5 30% 27
1116 31.0 53.0 62.0 0.05 0.11 0.13 0.85 15% 22 24 23

1128 [43] 13.8 19.4 0.035 0.095 0.8% 7 7

1129 [54] 53.0 0.64 1.9 10% 8

1124 [57] 4.5 4.9 0.03 0.043 0.18 0.52 5% 6 10
1125 4.9 5.6 0.20 0.22 0.49 0.45 5% 5 4

1123 [62] 4.5 0.0018 0.097 1% 55

1127 [39] 8.7 0.17 1.24 2%14 11

1119 [64] 7.9 0.07 0.62 2%14 23

1131 [68] 4.5 0.76 5.5 5% 10

1121 [70] 5.6 0.085 1.2 5% 34

1120 [69] 13.8 0.55 2.5 15% 15
1122 19.4 0.95 3.8 35% 7

π+p → π+p

set ref.
√

s |t|min |t|max syst. number
(GeV) (GeV2) (GeV2) of points

1212 [13] 21.7 0.08 0.94 2%14 18

1205 [14] 9.7 13.7 19.4 0.075 1.7 1.7 1.8 7% 70 63 53

1203 [21] 9.0 9.9 0.002 0.0019 0.043 0.05 1.1% 20 18

1214 [26] 7.8 0.075 0.68 1.4%14 13

1206 [23] 9.7 0.75 3.9 15% 22

1207 [25] 9.7 11.5 0.038 0.8 0.7 3% 19 17
13.7 16.2 18.1 0.11 0.038 0.075 0.8 17 19 18

1215 [27] 4.4 0.46 17.3 15% 84

1201 [36] 4.5 0.023 1.5 2% 97

1210 [38] 16.6 0.01 0.58 2%15 25

1209 [43] 13.7 19.4 0.035 0.095 0.8% 7 7

1204 [39] 9.2 0.16 1.92 2%14 18

19From [33].
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1202 [69] 5.2 0.65 3.8 10% 24
1208 13.7 19.4 0.55 0.95 2.5 3.4 15% 20 20

1211 [71] 19.4 0.022 0.66 4%17 133

π−p → π−p

set ref.
√

s |t|min |t|max syst. number
(GeV) (GeV2) (GeV2) of points

1302 [14] 9.7 13.7 19.4 0.075 1.60 1.83 2.38 7% 64 60 61

1310 6.9 8.7 0.075 0.78 0.70 5% 38 38
1324 8.7 0.19 1.3 10% 28

1301 [21] 8.7 0.002 0.008 1.5% 21
1312 8.0 8.4 8.7 0.0012 0.0015 0.0016 0.025 0.03 0.034 1.5% 19 19 36

9.3 9.8 0.0022 0.0028 0.05 0.056 17 18
10.4 10.6 0.0035 0.0014 0.077 0.085 18 19

1314 8.7 9.7 0.0016 0.0022 0.021 0.035 1%14 20 34

1309 [23] 6.2 9.7 0.65 0.73 6.0 7.8 15% 22 46

1315 [25] 9.7 11.5 0.038 0.75 0.50 3% 18 13
13.7 16.2 18.1 0.038 0.80 0.75 0.80 19 18 19

1304 [27] 6.2 7.6 7.4 10. 17 25 15% 6 4

1305 [36] 4.5 0.023 1.5 2% 97

1318 [40] 13.7 16.8 19.4 0.0022 0.0022 0.0023 0.039 1% 73 68 64
21.7 23.7 24.7 0.0022 116 59 56

25.5 0.038 57

1317 [42] 13.7 0.028 0.092 10%20 5

1303 [43] 13.7 19.4 0.035 0.095 0.8% 7 7

1308 [45] 5.2 0.75 4.5 9% 25
1325 6.6 0.3 5.2 12% 44

1311 [50] 7.9 8.2 8.9 0.057 0.16 0.066 0.20 0.49 0.37 5% 14 18 25
9.3 9.6 9.8 0.068 0.04 0.082 0.42 0.37 0.55 18 25 27
10.2 10.2 0.054 0.055 0.53 0.46 19 17

1306 9.7 0.035 0.40 2.5% 37

1326 [52] 5.2 0.015 0.77 6% 41

1307 [60] 4.1 4.9 6.0 0.05 0.09 0.19 1.1 2.0 3.6 7% 23 24 20

1320 [61] 4.02 4.06 4.11 4.5 9.3 9.9 9.9 3% 25 28 28
4.14 4.18 4.21 4.9 9.9 10.1 10.9 26 27 30
4.26 4.30 4.33 5.3 10.7 10.5 10.7 26 22 21

1313 [39] 8.6 0.17 2.1 2%14 20

1321 [67] 4.8 1.2 2.4 10% 4

1322 [70] 5.6 0.15 1.8 5% 38

1316 [69] 13.7 19.4 0.55 0.95 2.5 10 15% 20 31

1319 [71] 19.4 0.021 0.66 4% 134

20From [42].
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K−p → K−p

set ref.
√

s |t|min |t|max syst. number
(GeV) (GeV2) (GeV2) of points

1414 [13] 21.7 0.12 0.94 2%14 17

1406 [14] 9.7 13.7 19.4 0.075 0.075 0.07 1.5 1.9 1.9 7% 21 35 35

1404 [21] 9.0 10.0 0.0019 0.043 0.050 1.1% 20 18

1408 [23] 9.7 0.75 7.0 15% 23

1407 [25] 9.7 11.5 0.038 0.70 0.65 3% 16 16
13.7 16.2 18.2 0.075 0.075 0.038 0.75 0.70 0.75 13 16 17

1415 [28] 11.5 0.090 0.98 2.6%21 36

1411 [38] 16.6 0.02 0.56 2%15 10

1402 [36] 4.5 5.2 0.023 1.5 2% 97 97

1409 [43] 13.7 0.045 0.095 0.8%14 6

1405 [39] 9.2 0.16 1.25 2%14 13

1401 [64] 7.8 0.09 1.4 2%14 48

1410 [69] 13.7 19.4 0.55 0.95 2.1 2.4 15% 16 12
1403 5.2 0.75 2.2 10% 12

K−p → K−p

set ref.
√

s |t|min |t|max syst. number
(GeV) (GeV2) (GeV2) of points

1508 [20] 7.0 8.7 0.075 0.78 5% 38 38
1513 8.7 0.19 1.3 10% 28

1507 [23] 6.2 0.65 4.25 15% 16

1511 [25] 9.7 11.5 13.7 0.075 0.0375 0.0375 0.75 0.45 0.75 3% 14 12 16
16.2 18.2 0.075 0.6 0.75 13 15

1510 [14] 9.7 13.7 19.4 0.070 1.4 1.7 1.0 7% 26 42 17

1501 [30] 4.5 0.19 2.3 5% 49

1503 [36] 4.5 5.2 0.023 1.5 2% 97 97

1502 [41] 4.5 0.0070 2.1 1.8%14 42

1505 [47] 5.3 0.010 2.4 2%14 27

1506 [51] 5.3 0.045 1.9 2%14 62

1509 [39] 8.6 0.17 2.0 2%14 13

1504 [65] 5.3 0.035 1.3 3% 41

1512 [69] 13.7 19.4 0.55 0.95 2.5 2.2 15% 20 8

21From the error on the topological cross section used to normalise the data.
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