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Abstract: The use of regional climate models (RCMs) can partly reduce the biases in global radiative
flux (Eg↓) that are found in reanalysis products and global models, as they allow for a finer spatial
resolution and a finer parametrisation of surface and atmospheric processes. In this study, we assess
the ability of the MAR («Modèle Atmosphérique Régional») RCM to reproduce observed changes
in Eg↓, and we investigate the added value of MAR with respect to reanalyses. Simulations were
performed at a horizontal resolution of 5 km for the period 1959–2010 by forcing MAR with different
reanalysis products: ERA40/ERA-interim, NCEP/NCAR-v1, ERA-20C, and 20CRV2C. Measurements
of Eg↓ from the Global Energy Balance Archive (GEBA) and from the Royal Meteorological Institute
of Belgium (RMIB), as well as cloud cover observations from Belgocontrol and RMIB, were used
for the evaluation of the MAR model and the forcing reanalyses. Results show that MAR enables
largely reducing the mean biases that are present in the reanalyses. The trend analysis shows that
only MAR forced by ERA40/ERA-interim shows historical trends, which is probably because the
ERA40/ERA-interim has a better horizontal resolution and assimilates more observations than the
other reanalyses that are used in this study. The results suggest that the solar brightening observed
since the 1980s in Belgium has mainly been due to decreasing cloud cover.
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1. Introduction

The amount of solar radiation reaching the Earth’s surface or global radiative flux (hereafter
referred to as Eg↓) governs a wide range of processes that support life on Earth. It generates changes
in the water cycle and carbon cycle, and causes droughts or heat waves [1]. Furthermore, renewable
energies, such as solar power, are a growing part of the energy sector. Thus, the supply system could
be more vulnerable to Eg↓ changes [2]. Given the impacts on our environment and our electricity
production, an accurate insight into changes in the Eg↓ and the causes of such changes is crucial.

Measurements provide the best estimate of Eg↓ variability where they are taken. Worldwide
monitoring of Eg↓ from ground-based stations began in the late 1950s. These ground-based
measurements suggest that the period 1950–1980 was marked by a decrease in Eg↓ that is better
known as “global dimming” [3–6]. This dimming was followed by a partial recovery (“brightening”)
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in some regions of the world, including Europe and North America [5,7,8]. Variations in total cloud
cover (hereafter referred to as TCC) and in the aerosol atmospheric load were identified as the most
likely causes of these decadal variations. On the one hand, low to medium clouds reflect solar
radiation towards space, which affects variations on monthly to decadal time scales (cloud–radiation
interactions) [9,10]. On the other hand, aerosols such as sulphate particles can directly modify Eg↓ by
scattering and/or absorbing solar radiation (aerosol–radiation interactions) [11–15]. In addition, these
two factors are not completely independent, since aerosols can modify cloud properties (aerosol–cloud
interactions) by changing the amount of cloud condensation nuclei, which also changes the albedo [16]
and the lifetime of clouds [17]. In addition, an early brightening over 1930–1950 is suggested by existing
data [5,18]. However, the early brightening is not a robust signal because of data scarcity. Finally,
it should be noted that ground stations have the disadvantage of being too sparse and heterogeneous
to extrapolate changes over the entire Earth [19,20].

Currently, a number of gridded global Eg↓ products exist from remote sensing [21] and
reanalyses [22–26]. Satellite remote sensing is one of the most practical ways to derive Eg↓ with
relatively high spatial resolution and accuracy, but with limited temporal coverage, because satellite
measurements began in the early 1980s. Moreover, the observation of polar-orbiting satellite can have
considerable errors due to limited measurement frequency (two times a day) [27]. For the period before
the satellite remote sensing era, estimates from reanalyses are a feasible way to produce long-term
global Eg↓ estimates. A reanalysis is a global analysis of the state of the atmosphere for an extended
period of time built using a global climate model (GCM) into which observations have been assimilated.
Although the Eg↓ products from these reanalyses are the best model-based approximations of Eg↓,
the various reanalysis Eg↓ products, despite being constrained by the same sets of observations, have
been proven to have systematic biases [28–31]. For instance, Babst et al. [28] compared the National
Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP/NCAR) Eg↓
products to satellite data from Meteosat second generation, and found biases ranging from +40 W m−2

to +80 W m−2 for Europe. Zhang et al. [31] compared six global reanalyses [the NCEP/NCAR-v1
reanalysis, the National Center for Environmental Prediction- Department of Energy reanalysis
(NCEP-DOE), Climate Forecast System Reanalysis (CFSR), the European reanalysis (ERA-Interim),
the Modern-Era Retrospective analysis for Research and Agriculture (MERRA), and the Japanese
55-year Reanalysis (JRA-55)] to surface measurements from different observation networks [the Global
Energy Balance Archive (GEBA); the Baseline Surface Radiation Network (BSRN); the Greenland
Climate Network (GC-NET); Buoy; and the Climate Data Center of the Chinese Meteorological
Administration (CDC/CMA)] (674 sites in total) for the period 2001–2009, and found global positive
mean biases ranging from +11.25 W m−2 to +49.80 W m−2. Zhang et al. [31] also found that
ERA-interim showed the best agreement with observations, whatever the observation network.
The large discrepancies found in the reanalyses of Eg↓ products mainly result from inaccuracies
in the cloud parametrisation [28–31].

Regional climate models (RCM) can partly reduce the biases found in the reanalysis-based
products. Compared to GCMs and global reanalyses, RCMs run over a limited area, so that
computation time is reduced. Therefore, for an identical computation time, the spatial resolution
of RCMs can be increased up to 2 km. For instance, it implies that the orography and other surface
characteristics are finer in RCMs than in GCMs, and reanalyses whose typical resolutions turn around
40–200 km. In addition, GCMs are made to provide a good representation of the global mean
climate, while RCMs can be calibrated for a specific region with a more detailed physics developed
for it. As coarse-resolution GCM or reanalysis fields are usually used as boundary conditions
for high-resolution RCM, RCMs provide downscaled and possibly improved GCM outputs over
a limited area [32]. International frameworks such as CORDEX (Coordinated Regional Climate
Downscaling Experiments) evaluate RCM performances and aim at producing regional climate
projections over various regions of the world such as Europe (EURO-CORDEX) [33]. The MAR
(“Modèle Atmosphérique Régional” in French) RCM has recently been chosen to be part of the
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EURO-CORDEX project, thanks to the Belgian CORDEX.be project, in which the model is involved [34].
CORDEX.be aims to provide a coherent scientific basis for future climate services in Belgium.

Given the importance of MAR in providing future climate projections over Belgium and the
potential impacts of long-term Eg↓ variability on our environment and our electricity production, it is
pertinent to assess the ability of MAR to simulate historical changes in Eg↓. It is also pertinent to
investigate the added value of MAR with respect to reanalyses.

After a brief description of MAR, the reanalysis products used to drive MAR and the observed
data set are described in Section 2. Section 3 presents and discusses the evaluation of MAR and
reanalyses by comparing their outputs to ground-based observations of Eg↓ and TCC. Section 3 details
the trend analysis performed for the dimming and brightening periods over Belgium to study the
evolution of (i) annual Eg↓ and TCC; and (ii) seasonal Eg↓, TCC, and low, medium, and high cloud cover
computed using the MAR data. The origin of changes in cloudiness are investigated in Section 3.4.
Conclusions and prospects are reported in Section 4.

2. Data and Methods

2.1. The MAR Model

The RCM used in this study is the MAR model coupled to the one-dimensional (1D) surface
transfer scheme SISVAT (Soil–Ice–Snow–Vegetation–Atmosphere–Transfer). A more complete
description of the atmospheric module of MAR can be found in Gallée and Schayes [35], Gallée [36],
and Gallée et al. [37], while the surface transfer scheme is detailed in De Ridder and Gallée [38].
MAR is a hydrostatic primitive equation model in which convection is parametrised according to
Bechtold et al. [39]. Cloud microphysical parametrisations are based on the studies of Kessler [40],
Lin et al. [41], Meyers et al. [42], and Levkov et al. [43]. The radiative transfer through the atmosphere
uses the radiation scheme from ERA-40 based on Morcrette [44]. It uses time-varying aerosols from
the monthly climatology of tropospheric aerosols (black carbon, organic, sea salt, sand, and sulphate
aerosols) by Tegen et al. [45] and the GISS (Goddard Institute for Space Studies) volcanic aerosols,
while the cloud microphysics module uses fixed aerosol concentration [42]. Therefore, we can assume
that only the aerosol–radiation interactions and the cloud–radiation interactions are taken into account
in MAR.

Although initially designed for polar regions [35,46], MARv3.6 was successfully calibrated to the
climate of Belgium [47]. However, by comparing the MAR results to observations from 20 weather
stations spread over the Belgian territory, Wyard et al. [45] showed that MARv3.6 is too warm (+1.5 ◦C)
and too dry (−10%) in summer, while it is too cold (−0.5 ◦C) and too wet (+20%) in winter, as a result
of an underestimation of the cloud cover in summer and overestimation in winter. Despite the
aforementioned biases in the simulated cloud cover, Hofer et al. [48] concluded that “cloud cover from
MAR shows good agreement in the spatial distribution and amplitude of the changes observed over Greenland
by both satellite platforms [the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and (ii) the
Advanced Very High Resolution Radiometer (AVHRR)]”.

In the present study, we use version 3.8 of MAR. Compared with MARv3.6, which was used
in Wyard et al. [47], MARv3.8 reduces temperature biases by 20% by correcting in large parts the
underestimation of cloud cover by delaying the onset of precipitation, and hence increasing cloud
cover. In addition, the convective scheme is called twice as often in MARv3.8 than in MARv3.6, so that
convective clouds reside longer in the atmosphere before precipitating [49]. Finally, in MARv3.8,
the vegetation seasonality is also better taken into account by using daily leaf area index (LAI) and
green leaf fraction (GLF) values from the MERRA-2 reanalysis [50] compared with MARv3.6, which
uses monthly values.

The integration domain (120 × 110 pixels, centred on (50.4◦ N; 4.3◦ W)), the space grid (5 km),
and the number of vertical levels (24 levels between 3–18 km above the surface) are the same as those
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used in Wyard et al. (2017) [47]. With the aim of evaluating the sensitivity of the MAR results on the
lateral boundary conditions, we have forced MAR using four different reanalyses.

2.2. Reanalyses

The lateral boundary conditions [temperature, wind, humidity, and pressure at each vertical level
of MAR, as well as the sea surface temperature (SST)] were provided every 6 h by nesting MAR in four
reanalysis products:

(1) ERA-Interim (horizontal resolution 0.75◦; 60 vertical levels from the surface to 0.01 hPa) from the
European Centre for Medium-Range Weather Forecasts (ECMWF), which is a third generation
reanalysis assimilating most of the available in situ and satellite data [23]. Wyard et al. [47] showed
that MAR forced by this reanalysis provides the best daily mean temperature and precipitation
amount estimates over Belgium. ERA-Interim data is available from 1979, but we extended this
time series by using ERA40 for the period 1958–1978 [26]. ERA40 (horizontal resolution 1.125◦;
60 vertical levels) is a second-generation reanalysis, and was the first to assimilate satellite data.
The MAR simulation using ERA-Interim/ERA40 as forcing is hereafter referred to as MAR-ERA.

(2) NCEP/NCAR-v1 (horizontal resolution 2.5◦; 28 vertical levels from the surface to 0.3 hPa) from
the NCEP-NCAR [24]. This first-generation reanalysis assimilates aircraft, rawinsonde, ship,
and station data, as well as satellite retrievals. NCEP/NCAR-v1 data are available from 1948.
The MAR simulation using NCEP/NCAR-v1 as forcing is hereafter referred to as MAR-NCEP1.

(3) ERA-20C (horizontal resolution 1.125◦; 91 vertical levels from the surface to 0.01 hPa) is the first
atmospheric reanalysis by ECMWF covering the entire 20th century [25]. This third-generation
reanalysis only assimilates surface observations such as pressure and marine winds. ERA-20C
is available for 1900–2010. The MAR simulation using this forcing is hereafter referred to
as MAR-ERA-20C.

(4) 20CRV2C (horizontal resolution 2◦; 28 vertical levels from the surface to 0.3 hPa), the 20th century
reanalysis of the National Oceanic and Atmospheric Administration (NOAA) [22]. It is based
on an ensemble mean of 56 members assimilating only surface pressure, monthly sea surface
temperature, and sea ice cover. 20CRV2C is available for 1900–2010. The MAR simulation using
it as forcing is hereafter referred to as MAR-20CRV2C.

MAR runs at 5 km were directly forced by these reanalyses at the boundaries. Finally,
the simulations were performed for the period 1959–2010, which is the longest period common
to all of the reanalyses considered in this study.

2.3. Evaluation Datasets

Measurements of Eg↓ and TCC from ground stations over Belgium are used as reference datasets
for the evaluation of MAR.

Eg↓ data were supplied by GEBA and by the Royal Meteorological Institute of Belgium (RMIB).
The GEBA Eg↓ dataset consists of monthly mean Eg↓, which was measured by well-calibrated
instruments and underwent rigorous quality checks [3,51]. The relative random error of GEBA
data was found to be approximately 2% of the annual mean values [3]. Four time series consisting
of at least 30 years are available for Belgium in the GEBA data set, as listed in Table 1. The RMIB
has a long-term experience with ground-based measurements of Eg↓ in Belgium with uninterrupted
measurements at Uccle since 1951 [52]. Uccle is one of the 22 Regional Radiation Centres established
within the World Meteorological Organisation (WMO) regions. In addition to Uccle, RMIB provided
Eg↓ data from three other stations (Table 1). These data consist of monthly mean Eg↓ calculated from
30 min-average measurements. The time-series from GEBA are the same as those from RMIB, with the
difference between them lower than 1%. Since the RMIB time-series are longer, we removed these
redundant GEBA time-series from our dataset, so that we finally used Eg↓ data from the four RMIB
stations shown in Figure 1: Melle, Middlekerk/Oostende, Saint-Hubert, and Uccle. Seasonal and
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annual mean Eg↓ were then computed using the monthly data. However, if more than one month was
missing within a year, the annual mean was not computed; otherwise, the mean Eg↓ for the year was
computed by filling the missing month by the climatic average of this month for the period covered by
the time series. The seasonal mean Eg↓ values are not computed if there are gaps in the monthly data.

Table 1. Available Eg↓ and total cloud cover (TCC) time series of more than 30 years for Belgium.
The percentage of gaps in the monthly data is also indicated. The time-series that were not selected
as reference datasets for the evaluation of the Modèle Atmosphérique Régional (MAR) outputs and
the reanalysis products have a grey background. GEBA: Global Energy Balance Archive; RMIB: Royal
Meteorological Institute of Belgium.

Station Coordinates Variable Length Percentage of Gaps Source

Bierset (50.65◦ N; 5.45◦ E) TCC 1966–2014 0.5% Belgocontrol
Melle (50.98◦ N; 3.83◦ E) Eg↓ 1968–2008 4.9% GEBA
Melle (50.98◦ N; 3.83◦ E) Eg↓ 1967–2014 5.9% RMIB

Middlekerk (51.20◦ N; 2.87◦ E) Eg↓ 1975–2014 3.7% RMIB
Oostende (51.20◦ N; 2.87◦ E) TCC 1966–2014 25.8% RMIB
Oostende (51.20◦ N; 2.87◦ E) Eg↓ 1975–2007 2.5% GEBA

Saint-Hubert (50.04◦ N; 5.40◦ E) Eg↓ 1968–2007 3.7% GEBA
Saint-Hubert (50.04◦ N; 5.40◦ E) Eg↓ 1962–2014 4.7% RMIB
Saint-Hubert (50.04◦ N; 5.40◦ E) TCC 1966–2014 0.8% RMIB

Uccle (50.80◦ N; 4.36◦ E) Eg↓ 1961–2011 0.6% GEBA
Uccle (50.80◦ N; 4.36◦ E) Eg↓ 1951–2014 0% RMIB
Uccle (50.80◦ N; 4.36◦ E) TCC 1966–2010 16% RMIB
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The TCC data for four stations were supplied by the RMIB and the Belgian agency managing the
national civil airspace (Belgocontrol) (Table 1 and Figure 1). Monthly, seasonal, and annual mean TCC
were calculated from hourly or three-hourly observations carried out by human eye inspection of the
sky during the day and at night. Missing values were not taken into account, and a maximum of 5% of
missing data is tolerated in our computations.

3. Results and Discussion

3.1. Comparison of Annual and Seasonal Eg↓ and TCC Observations with the MAR Outputs and Reanalyses

In this section, Eg↓ and TCC values computed by the different MAR simulations (MAR-ERA,
MAR-NCEP1, MAR-ERA20C, and MAR-20CRV2C) and the corresponding reanalyses forcing MAR
(ERA40/ERA-interim, NCEP/NCAR-v1, ERA-20C, and 20CRV2C) are compared to the Eg↓ and TCC
measurements obtained from various ground stations (Table 1 and Figure 1). As all of the stations
show similar results, we only display here the statistics computed from Eg↓ and TCC measured
at Saint-Hubert, because it has the most complete time-series for both investigated parameters.
The time series for Saint-Hubert of both annual mean Eg↓ and TCC are displayed in Figures 2 and 3
respectively. The statistics computed for the other stations are available in Figures S1–S6 in the
Supplementary Materials.
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Figure 2. Time series of the observed (at Saint-Hubert) and modelled Eg↓ (at the nearest grid point to
Saint-Hubert).

Over 1962–2010, regarding annual mean Eg↓ modelled by MAR, MAR-ERA shows the best
agreement with observed Eg↓ at Saint-Hubert, with a correlation coefficient (R) of 0.77. MAR-NCEP1
performs the worst, with R = 0.66 (Figures 2a and 4a). The centred root mean squared error
(CRMSE) is the smallest for MAR-ERA-20C (CRMSE = 6.2 W m−2), the largest for MAR-NCEP1
(CRMSE = 8.0 W m−2) (Figure 4c), and smaller than the interannual variability (the standard deviation
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(STD) of the observations) (Figure 4d). Furthermore, the comparison suggests that MAR slightly
overestimates Eg↓ with mean annual biases (MB) ranging from +7.7 W m−2 (MAR-NCEP1) to
+9.9 W m−2 (MAR-ERA) (Figure 4b). On a seasonal time-scale, we find the lowest values of R in
the summer (June–July–August, JJA) ranging from 0.62 (MAR-20CRV2C) to 0.70 (MAR-ERA), while
CRMSE was among the largest, with values above 13.8 W m−2. The other seasons exhibit values
of R of at least 0.72 (MAR-NCEP1 in autumn (September–October–November, SON)). The lowest
CRMSE was found in winter (December–January–February, DJF) with values below 3.9 W m−2

(MAR-NCEP1). MAR tends to overestimate Eg↓ for all of the seasons except winter. We find the
largest MB in the summer, with values ranging from +22.3 W m−2 (MAR-ERA-20C) to +29.2W m−2

(MAR-20CRV2C). In winter, MB is negative, and ranges from −3.9 W m−2 (MAR-NCEP1) to
−0.1 W m−2 (MAR-ERA-20C)-.
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Figure 3. Time-series of the observed (at Saint-Hubert) and modelled TCC (at the nearest grid point to
Saint-Hubert). TCC data from the National Centers for Environmental Prediction–National Center for
Atmospheric Research (NCEP/NCAR-v1) and 20CRV2C were not available.

Finally, we observe the same general behaviour for Eg↓ modelled by MAR compared to Eg↓
directly from the driving reanalyses. The values of R between reanalyses and measurements are as
high as between MAR and the measurements. MB, for its part, is largely reduced in MAR compared
to the reanalyses (Figures 2b and 4b). For instance, MAR-NCEP1 shows an annual MB of +7.7 W m−2

while this value reaches +64.3 W m−2 in NCEP/NCAR-v1, which is in agreement with the findings of
Zhang et al. [31]. We also find differences between ERA40 (1962–1978) and ERA-interim (1979–2010),
which are fortunately not observed in the associated MAR simulation (MAR-ERA) (Figure 2). Indeed,
ERA40 systematically underestimates Eg↓ (annual MB =−5.00 W m−2), while ERA-Interim overestimates
Eg↓ (annual MB = +15.6 W m−2) in agreement with Zhang et al. [31]. In addition, the forcing reanalyses
and MAR have generally comparable CRMSE values. This is because the interannual variability of MAR
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is fully driven by the forcings. However, the forcing reanalyses exhibit much larger RMSE than MAR
because of their larger biases.

Figure 4. Modelled Eg↓ vs. observed Eg↓ at Saint-Hubert for 1962–2010: (a) annual and
seasonal correlation (R); (b) mean annual bias (MB); (c) centred root mean squared error (CMRSE);
and (d) standard deviation (STD). It should be noted that ERA40 covers 1962–1978, while the
ERA-Interim covers 1979–2010.

Regarding annual mean TCC, models do not compare as well to observations (Figures 3 and 5).
For the period 1966–2010, TCC modelled by MAR at Saint-Hubert shows R values ranging from 0.18
(MAR-NCEP1) to 0.82 (MAR-ERA-20C) (Figure 5a). We find MB values for MAR ranging from −3.6%
(MAR-20CRV2C) to +3.0% (MAR-NCEP1) (Figure 5b). Values of CRMSE range from 2.2% (MAR-ERA-20C)
to 7.1% (MAR-NCEP1) (Figure 5c), and are smaller than the interannual variability (Figure 5d). As for
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Eg↓, the MAR performances also depend on the season. In the summer, R is the lowest, and does not
exceed 0.57 in MAR-ERA. Meanwhile, MB values are negative, and range from −5.2% (MAR-ERA-20C)
to −13.9% (MAR-20CRV2C), while the CRMSE of MAR-20CRV2C reaches 9.8% in summer. In winter,
the R values are among the largest, reaching 0.72 in MAR-ERA. Values of MB are positive, and range
from +3.0% (MAR-ERA-20C) to +8.4% (MAR-NCEP1) with the largest CRMSE in winter reaching 4.8% in
MAR-NCEP1. As for Eg↓, this comparison highlights that MAR-NCEP1 shows the worst results. In order
to explain this apparent artefact in TCC modelled by MAR-NCEP1, we have compared all three cloud
types computed by MAR: low cloud cover (LCC), which is defined as the cloud fraction below 680 hPa,
medium cloud cover (MCC), which is defined as the cloud fraction between 680–440 hPa, and high cloud
cover (HCC), which is defined as the cloud fraction above 440 hPa (Figure S7, Supplementary Materials).
The results suggest that this artefact likely results from an inaccurate simulation of HCC, and therefore
from biases in the forcing fields of MAR in the high troposphere (Figure S7c).
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correlation (R); (b) mean bias (MB); (c) centred root mean squared error (CMRSE); and (d) standard
deviation (STD). It should be noted that ERA40 covers 1966–1978, while ERA-Interim covers 1979–2010.
(TCC data from NCEP/NCAR-v1 and 20CRV2C were not available).
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The comparison with the statistics computed from the TCC modelled by the reanalyses was
uneasy, as TCC data from NCEP/NCAR-v1 and 20CRV2C were not available. However, the TCC
modelled by MAR shows comparable R, MB, and CRMSE, but MAR shows larger CRMSE values than
the corresponding reanalyses. The inhomogeneity between ERA40 and ERA-Interim between 1978 and
1979 is also present in TCC. Regardless of the season (except in the summer), the MB is systematically
positive in ERA40, while it is negative in ERA-Interim at Saint-Hubert (Figures 3b and 5a).

Biases in Eg↓ are in agreement with the biases found in TCC. For instance, the underestimation of
Eg↓ in winter is in agreement with the overestimation of TCC found in the models. It is the opposite
in summer. Winter exhibits the smallest CRMSE and the highest R for both variables, while summer
exhibits the largest CRMSE and the lowest R. More generally, several studies highlight the difficulties
encountered by all of the climate models to represent cloud physics. Markovic et al. [53] showed that
ERA40 has a tendency to underestimate very low values of Eg↓ during the winter, and suggested that
this might be due to an underestimation of the reflectivity of optically thick clouds during winter in
ERA40. Träger-Chatterjee et al. [30] showed that cloud physics and Eg↓ have not been improved in
ERA-Interim compared with ERA40, despite improvements in the water cycle representation, model
resolution, and data assimilation system. Zhang et al. [31] showed that reanalyses tend to overestimate
Eg↓ as a result of underestimation in cloud fraction. Alexandri et al. [54] showed that cloud fractional
cover, cloud optical thickness, and aerosol optical depth are the most important factors that explain the
biases in Eg↓ that are found in the RegCM4 RCM over the European domain. Finally, Wyard et al. [47]
showed that MAR underestimates convective clouds with consequences on summer temperature
(overestimation) and precipitation (underestimation). Given that MAR simulates smaller Eg↓ and
TCC values than the reanalyses, which overestimate both Eg↓, and TCC, we assume that the cloud
optical depth (COD) is larger in MAR than in the reanalyses. Furthermore, part of the biases in Eg↓
will also result from the exclusion of the aerosol–cloud interactions in MAR. Fan et al. [55] showed
that inaccuracies in the aerosol–cloud interactions contributed to the biases that were found in the
GCMs of CMIP5 (Coupled Model Intercomparison Project Phase 5). Finally, the reliability of cloudiness
observations is also questionable, given that synoptic observations are performed by human inspection
of the sky [56].

3.2. Trends in Annual Eg↓ and TCC during the Dimming and the Brightening Periods

A linear trend analysis is performed for 1959–1979 and 1980–2010, corresponding to the dimming
and the brightening periods reported in the literature [1]. As in Section 3.1, we use the observations
and simulations for Saint-Hubert that are shown in Figures 2 and 3. It should be noted that TCC
observations are only available from 1966 for Saint-Hubert. Therefore, trends in TCC and Eg↓
measured in Saint-Hubert are computed over 1966–1979 for the dimming period. As done by
Wyard et al. [47], trend significance is assessed by using the Snedecor uncertainty range for the 95%
confidence interval [57] (Appendix A). The uncertainty range represents the interannual variability of
the considered time series.

During the dimming period, we find a non-significant negative trend in Eg↓ measurements
for Saint-Hubert for the period 1966–1979 valued at −12.9 W m−2 decade−1 (Table 2). During the
brightening period, we find a significant positive trend at Saint-Hubert for the period 1980–2010 valued
at +6.2 W m−2 decade−1. The TCC observed in Saint-Hubert shows no significant trend, although
synoptic cloud observations are subject to large uncertainties [56]. This nonetheless suggests that
cloudiness changes are not the only factor affecting solar radiation variability. Indeed, the RMIB [58]
highlighted a significant decrease in Eg↓ at Uccle for the period 1951–1984 valued at −6.3%. They
attribute this trend to a sustained increase in anthropogenic aerosols. De Bock et al. [59] and the
RMIB [58] reported a significant increase in Eg↓ at Uccle valued at +5 ± 2 W m−2 decade−1 for
1985–2014. They also associated it to a non-significant decrease in aerosol optical depth at Uccle for
1985–2014 that is valued at −8 ± 5% per decade, which presents a stabilisation after 2002. This decline
in aerosol optical depth results from the enormous efforts to curb emissions and air pollution since the
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1980s [60]. The most important effort is probably the 1979 Convention on Long-range Transboundary
Air Pollution, which was later extended by eight protocols that identify specific measures to be taken
by parties to cut their emissions of air pollutants [60].

Regarding Eg↓ modelled by MAR, there are no significant trends for 1966–1979. However,
trends are negative during 1959–1979, but only MAR-ERA shows a significant trend valued at
−10.4 W m−2 decade−1 for this period (Table 2). This decreasing Eg↓ coincides with an increasing trend
in the simulated TCC, which is significant in MAR-ERA and valued at +7.1% decade−1. On the contrary,
for 1980–2010, the trends in Eg↓ are positive except in MAR-ERA-20C, and significant in MAR-ERA
(+3.8 W m−2 decade−1) and MAR-NCEP1 (+7.9 W m−2 decade−1) as in observations. This increasing
Eg↓ coincides with a decreasing trend in simulated TCC, except in MAR-ERA-20C. These trends are
significant in MAR-ERA and MAR-NCEP1, and are valued at −1.3% decade−1 and −5.9% decade−1,
respectively. The strong negative trend in MAR-NCEP1 seems to partly result from biases in the
forcing fields of MAR in the high troposphere before the 1990s as highlighted in Section 3.1 (Figure S7c).
It should be noted that MAR-ERA-20C and MAR-20CRV2C systematically show non-significant and
weaker trends than MAR-ERA, MAR-NCEP1, and observations. This suggests that these reanalysis
products covering the whole 20th century (ERA-20C and 20CRV2C) are less reliable, possibly because
they assimilate surface observations only.

Table 2. Trends and their Snedecor uncertainty range for the 95% confidence interval computed for
1959–1979 (dimming period) and 1980–2010 (brightening period) for Saint-Hubert. The values in
bold indicate that the trends are statistically significant at the 95% confidence level, namely that they
are larger than the associated uncertainty range. The values between brackets indicate that they are
computed for 1966–1979.

Eg↓ [W m−2] TCC [%]

1959–1979 1980–2010 1959–1979 1980–2010

Trend
[decade−1]

Range
[decade−1]

Trend
[decade−1]

Range
[decade−1]

Trend
[decade−1]

Range
[decade−1]

Trend
[decade−1]

Range
[decade−1]

OBS (−12.9) (15.0) +6.2 3.0 (−0.1) (5.3) +2.0 2.2

MAR-ERA −10.4
(+0.2)

6.3
(9.5) +3.8 2.7 +7.10

(−0.1)
3.0

(3.1) −1.3 1.2

MAR-NCEP1 −1.6
(−9.6)

5.5
(10.1) +7.9 2.8 −0.5

(+1.9)
2.3

(4.8) −5.9 1.4

MAR-ERA-20C −0.2
(−1.6)

5.0
(9.5) −1.6 2.9 −0.3

(+1.6)
2.5

(4.9) +0.2 1.3

MAR-20CRV2C −1.2
(−2.5)

5.3
(9.9) +0.2 2.7 +0.3

(+2.0)
3.1

(6.1) −0.7 1.5

ERA40/ERA-Interim −5.8
(+0.1)

5.3
(8.3) +1.7 2.2 +5.8

(+0.9)
3.2

(4.7) −1.3 1.5

NCEP1 −2.4
(+2.9)

4.2
(6.7) +2.1 1.9 n.a. n.a. n.a. n.a.

ERA20C −0.5
(−0.3)

3.9
(6.9) +0.001 2.0 +1.1

(+0.1)
2.7

(4.7) +0.5 1.3

20CRV2C −0.8
(+2.7)

4.5
(8.6) +1.7 2.3 n.a. n.a. n.a. n.a.

We also computed the trends from Eg↓ and TCC modelled by the reanalyses. As ERA40/ERA-
Interim is biased by the transition from ERA40 to ERA-Interim between 1978 and 1979, we removed
the MB of each part of the time-series (1959–1978 and 1979–2010) to homogenise the times series before
computing the trend. The signal of the trends in Eg↓ modelled by the reanalyses is of the same order
as the one modelled by MAR forced by the corresponding reanalyses (Table 2). This suggests that
the trends found in the MAR outputs are partially driven by the forcing reanalyses. However, MAR
amplifies the trends in Eg↓ compared with the observations and the forcing reanalyses. As highlighted
in Section 3.1, the cloud optical depth is likely larger in MAR than in the reanalyses. Therefore, changes
in TCC impact Eg↓ in MAR more than in the reanalyses.
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3.3. Trends in Seasonal Mean Eg↓ and TCC during the Dimming and Brightening Periods

A linear trend analysis is performed for 1959–1979 and 1980–2010 for each pixel of the MAR
domain in order to highlight spatial and seasonal variabilities. Trend significance is again assessed
by using the Snedecor uncertainty range for the 95% confidence interval. Only the trends from the
MAR-ERA outputs are computed, as they fit the best the observations, which is in agreement with
Zhang et al. [31] (Sections 3.1 and 3.2).

Over 1959–1979 (dimming period), the MAR-ERA outputs show an overall significant decrease
in Eg↓ for all of the seasons (Figure 6a–d). The decrease in Eg↓ is especially marked in spring
(March–April–May, MAM) and summer, and reaches values between−16 and−18 W m−2 decade−1 in
some regions of the country (Figure 6b,c). Chiacchio and Wild [9] and Sanchez-Lorenzo et al. [5] found
similar results over a larger European domain. MAR-ERA show a significant increase in TCC in all of
the seasons Figure 6e–h). This increase in TCC is the most marked in spring, summer, and autumn,
and can reach values between +8 and +10% decade−1 in some parts of the country (Figure 6f–h).

Figure 6. Seasonal trends in (a–d) Eg↓ and (e–h) TCC computed from the MAR-ERA outputs for
1959–1979 (dimming period) over the study region, as shown in Figure 1. Filled pixels indicate the
places where the trends are statistically significant at the 95% confidence level. Hashed pixels indicate
the places where the trends are statistically non-significant.
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The patterns of the trends in TCC and in Eg↓ are broadly similar, which confirms that changes
in cloud cover drive trends in surface solar radiation. To refine our analysis, we also compute trends
for all three MAR cloud types (LCC, MCC, and TCC) defined in Section 3.1. These trends show that
the increase in TCC for 1959–1979 is mainly caused by a significant increase in LCC (Figure 7a–e) and
HCC (Figure 7k–o). It should be noted that HCC is known to affect longwave radiation, mainly while
we are studying shortwave radiation changes [61]. MCC shows a significant increase in spring over
1959–1979, with values ranging from +2 and +10% decade−1 (Figure 7h).

Figure 7. Annual and seasonal trends in (a–e) low cloud cover (LCC), (f–j) medium cloud cover (MCC),
and (k–o) high cloud cover (HCC) computed from the MAR-ERA outputs for 1959–1979 (dimming
period). Filled pixels indicate the places where the trends are statistically significant at the 95%
confidence level. Hashed pixels indicate the places where the trends are statistically non-significant.
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Over 1980–2010 (brightening period), measurements at Saint-Hubert showed positive significant
trends in spring and summer valued at +10.7 W m−2 decade−1 and +12.0 W m−2 decade−1, respectively
(Table S1, Supplementary Materials). Seasonal trends computed from MAR-ERA outputs also show a
significant increase in Eg↓ in spring and summer, with values between +4 and +10 W m−2 decade−1

(Figure 8b,c). Regarding TCC, the observations show non-significant trends for all seasons (Table S1),
while the values modelled by MAR-ERA show a significant decrease in TCC, especially in summer
(Figure 8g) reaching −2 to −4% decade−1 over the entire country.

Figure 8. Seasonal trends in (a–d) Eg↓ and (e–h) TCC computed from the MAR-ERA outputs for
1980–2010 (brightening period). Filled pixels indicate the places where the trends are statistically
significant at the 95% confidence level. Hashed pixels indicate the places where the trends are
statistically non-significant.

Seasonal trends in cloud types computed in MAR-ERA show a significant decrease in LCC for
1980–2010, especially in spring, with values ranging between −2 and −6% decade−1, depending on
the location (Figure 9c). Our results are in agreement with Eastman and Warren [62], who also found a
decrease in observed cloudiness in Western Europe for 1971–2009. Previous studies also stated that the
brightening results from the combination of both decreasing aerosol emissions and decreasing LCC
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and MCC [59]. However, after the 1990s, the decrease in cloudiness might have become the dominant
factor, according to the results of Mateos et al. [63], who drew similar conclusions over Spain, and the
results of Sanchez-Lorenzo et al. [64] and Pfeifroth et al. [65] over Europe.

Figure 9. Seasonal trends in (a–e) LCC, (f–j) MCC, and (k–o) HCC computed from the MAR-ERA
outputs for 1980–2010 (brightening period). Filled pixels indicate the places where the trends are
statistically significant at the 95% confidence level. Hashed pixels indicate the places where the trends
are statistically non-significant.
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3.4. Origin of Cloudiness Changes

The analysis of the linear trends (Sections 3.2 and 3.3) has highlighted that Eg↓ changes are
driven by changes in low and medium cloud cover. In this section, we investigated the origin of such
changes. As output from MAR is dependent on the reanalysis product that is used to force the model
(Section 3.2), we analysed the forcing variables from all four reanalyses at two pressure levels (700 hPa
and 500 hPa), which are the characteristic levels of low and medium cloud cover. We especially paid
attention to the air temperature (TA), specific humidity (HUS), and relative humidity (HUR). We used
the data from the pixel containing Saint-Hubert (Figure S8, Supplementary Materials), and computed
the linear trends and their significance for the periods 1959–1979 and 1980–2010 (Table 3).

Table 3. Annual trends and their Snedecor uncertainty range for the 95% confidence interval computed
for 1959–1979 and 1980–2010. The values in bold indicate that the trends are statistically significant at
the 95% confidence level, namely that they are larger than the associated uncertainty range.

ERA40/ERA-Interim
1959–1979 1980–2010

Trends
[decade−1]

Range
[decade−1]

Trends
[decade−1]

Range
[decade−1]

TA700 [◦C] −0.2 0.4 0.1 0.2
TA500 [◦C] −0.3 0.3 0.2 0.2

HUS700 [g/kg] 0.1 0.1 −0.02 0.03
HUS500 [g/kg] 0.05 0.04 −0.005 0.01

HUR700 [%] 4.1 2.7 −1.3 1.1
HUR500 [%] 5.4 2.9 −1.1 0.9

NCEP/NCAR-v1 Trends
[decade−1]

Range
[decade−1]

Trends
[decade−1]

Range
[decade−1]

TA700 [◦C] −0.1 0.4 0.2 0.2
TA500 [◦C] −0.2 0.3 0.2 0.2

HUS700 [g/kg] 0.05 0.1 −0.03 0.04
HUS500 [g/kg] 0.01 0.02 −0.004 0.01

HUR700 [%] 1.6 2.1 −1.5 1.0
HUR500 [%] 2.8 2.1 −1.5 0.9

ERA20C Trends
[decade−1]

Range
[decade−1]

Trends
[decade−1]

Range
[decade−1]

TA700 [◦C] −0.2 0.4 0.3 0.2
TA500 [◦C] −0.1 0.3 0.3 0.2

HUS700 [g/kg] −0.02 0.1 0.05 0.03
HUS500 [g/kg] −0.02 0.1 0.02 0.01

HUR700 [%] 0.8 1.8 −0.1 0.9
HUR500 [%] 0.1 1.8 −0.1 0.8

20CRV2C Trends
[decade−1]

Range
[decade−1]

Trends
[decade−1]

Range
[decade−1]

TA700 [◦C] −0.2 0.45 0.2 0.2
TA500 [◦C] −0.2 0.3 0.3 0.2

HUS700 [g/kg] −0.01 0.1 0.03 0.04
HUS500 [g/kg] −0.02 0.03 0.015 0.02

HUR700 [%] 1.2 2.0 −0.4 0.9
HUR500 [%] 0.04 1.7 −0.3 0.9

For the period 1959–1979 (dimming period), both ERA40/ERA-Interim and NCEP/NCAR-v1
show a significant increase in HUR at 500 hPa valued at +5.4% decade−1 and +2.8% decade−1,
respectively (Table 3). ERA40/ERA-Interim also shows a significant increase in HUR at 700 hPa
that was valued at +4.1% decade−1. This coincides with a positive but non-significant trend in
TA at both pressure levels, but also with a negative but non-significant increase in HUS. Only



Atmosphere 2018, 9, 262 17 of 23

ERA40/ERA-interim shows a significant trend in HUS at 500 hPa valued at +0.05 g kg−1 decade−1.
Both ERA20C and 20CRV2C simulate changes in HUR and TA that are similar to ERA40/ERA-Interim
and NCEP/NCAR-v1, but these changes are weaker. In addition, ERA20C and 20CRV2C exhibit
positive (but non-significant) trends in HUS at 700 hPa and 500 hPa, while these trends are negative in
ERA40/ERA-Interim and NCEP/NCAR-v1 for 1959–1979. Given these trends, increasing LCC and
MCC during the dimming period could result from decreasing TA and increasing HUS generating an
increase in HUR, which could have therefore enhanced cloud development. The initial changes in TA
and HUS could be explained by changes in the atmospheric circulation. In addition, we know that
the dimming period was characterised by a high polluted atmosphere [60]. As aerosols suspended
in the troposphere could have served as condensation nuclei (aerosol–cloud interactions), they could
be responsible for the increase in LCC and MCC during the dimming period by enhancing cloud
development. Then, the increase in cloud cover could generate less Eg↓ and therefore decreasing TA,
which could generate an increase/decrease in HUR.

For the period 1980–2010 (brightening period), both ERA40/ERA-Interim and NCEP/NCAR-v1
show a significant decrease in HUR at both pressure levels ranging from −1.3% decade−1

(ERA40/ERA-interim) to −1.5% decade−1 (NCEP/NCAR-v1) at 700 hPa, and from −1.1% decade−1

(ERA40/ERA-interim) to−1.5% decade−1 (NCEP/NCAR-v1) at 500 hPa. This coincides with a positive
but non-significant trend in TA at both pressure levels, but also with a negative but non-significant
increase in HUS. ERA20C and 20CRV2C both exhibit weak non-significant decreasing trends in HUR.
These trends coincide with a significant increase in TA at both pressure levels, ranging from +0.2
(20CRV2C) to +0.3 ◦C decade−1 (ERA20C) at 700 hPa, and reaching +0.3 ◦C decade−1 (ERA20C
and 20CRV2C) at 500 hPa. However, ERA20C and 20CRV2C also show an increase in HUS, while
ERA40/ERA-Interim and NCEP/NCAR-v1 show a decrease. This increase in HUS is significant in
ERA20C at both pressure levels, and is valued at +0.054 g kg−1 decade−1 at 700 hPa and +0.022 g kg−1

decade−1 at 500 hPa. In addition, compared with ERA40/ERA-Interim and NCEP/NCAR-v1, ERA20C
is dryer and colder at both investigated pressure levels, whereas 20CRV2C is warmer and wetter
(Figure S8, Supplementary Materials). These trends suggest that decreasing LCC and MCC during the
brightening period could result from increasing TA and decreasing HUS generating a decrease in HUR,
which could have therefore inhibited cloud development. The initial changes in TA and HUS could be
explained by changes in the atmospheric circulation. Eastman and Warren [62] attribute the declining
cloud cover observed over Western Europe to a poleward shift of the polar jet stream since the 1970s.
Bender et al. [66] highlighted a poleward shift of extratropical storm tracks (which induces a poleward
shift of the polar jet stream) for 1983–2008 as a consequence of global warming. This poleward shift
of extratropical storm tracks is accompanied by a reduction in total cloud cover, leading to a positive
cloud feedback [66]. The conclusions of these studies are not in opposition with our hypothesis, since
increasing TA during the brightening period (1980–2010) could result from more frequent tropical air
advections over Western Europe. In addition, we know that the brightening period was characterised
by a strong decrease in the aerosol loading in the troposphere [59,60]. This decline in aerosol loading
could be responsible for the decrease in LCC and MCC during the brightening period by inhibiting
cloud development. Then, the decrease in cloud cover could have generated more Eg↓, and therefore
increasing TA, which could generate an decrease in HUR.

In summary, there are two hypotheses to explain the changes in cloud cover during the dimming
and the brightening periods: the “atmospheric circulation hypothesis” and the “aerosol cloud
interactions hypothesis”. On the one hand, atmospheric circulations changes could have modified TA
and HUS, and therefore HUR, with consequences on cloud development and later Eg↓ (atmospheric
circulation hypothesis). On the other hand, aerosol–cloud interactions could have modified cloud
development, and therefore Eg↓, with consequences on TA and HUR. We cannot settle on a single
hypothesis to explain LCC and MCC changes (especially since statistics are rarely significant), but they
are most probably due to the combination of several factors. There are indeed proofs for both
hypotheses, especially during the brightening period [59,62,66].
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It should be noted that the similar trend values found in ERA40/ERA-Interim and
NCEP/NCAR-v1 at 700 hPa and 500 hPa confirm that the apparent artefact found in the TCC
computed by MAR-NCEP1 was the result (Section 3.1) of biases in the forcing fields of MAR in
the high troposphere (above 440 hPa).

4. Conclusions

The main objective of this paper is to assess the ability of the MAR RCM to reproduce observed
changes in Eg↓ in Belgium with respect to reanalyses and observations. To this end, MAR was forced
by different reanalyses: ERA-Interim (1979–2010) completed by ERA40 (1958–1978), NCEP/NCAR-v1
(1958–2010), ERA20C (1958–2010), and 20CRV2C (1958–2010). This study focusses on the 1959–2010
period, which is the longest common period covered by all of the reanalyses used as MAR forcing.
In addition, we consider two distinct periods in our analysis: 1959–1979 (dimming) and 1980–2010
(brightening). Measurements of Eg↓ from GEBA and RMI, as well as cloud cover observations from
Belgocontrol and RMIB, were used for the evaluation of MAR and the forcing reanalyses.

The comparison of Eg↓ and TCC modelled by MAR and reanalyses with measurements performed
at several ground stations show that MAR allows us to largely reduce the mean biases present in
the reanalyses. However, MAR does not significantly improve R and CRMSE, as the interrannual
variability of RCMs is prescribed by their forcings. The comparison also shows that the biases are
the largest in summer for both Eg↓ and TCC, and that MAR generally overestimates Eg↓, while it
underestimates TCC. This suggests that the biases in Eg↓ result in large part from inaccuracies in
TCC. Improvements in cloud physics are still required, despite the modification performed in the new
version of MAR (MAR v3.8). The comparison with forcing reanalyses finally suggests that the cloud
optical depth is larger in MAR than in the reanalyses, as the reanalyses show larger biases in Eg↓, while
MAR and reanalyses exhibit similar biases in TCC.

The analysis of the linear trends in annual and seasonal Eg↓ and low, medium, and high clouds
brings to light that only MAR-ERA successfully simulates consistent trends in Eg↓, which is probably
because ERA40/ERA-interim has a better spatial resolution and assimilates more observations than
the other reanalyses used in this study. Neither MAR-ERA-20C nor MAR-20CRV2C shows any of these
trends, probably because both ERA-20C and 20CRV2C reanalyses assimilate surface observations only.
MAR-NCEP1, for its part, overestimates the trend computed for the brightening period because of
biases in the forcing fields in the high troposphere, especially before the 1990s. Our results show that
annual Eg↓ trends are mainly driven by Eg↓ changes in spring and summer. They also suggest that in
Belgium, the aerosol–radiation interactions cannot be neglected, especially for the dimming period,
because trends in observed TCC are non-significant, while trends in observed Eg↓ are significant.
The increase in Eg↓ that was observed in Belgium since the 1980s and especially since the 2000s could
mainly be explained by a decrease in the low and medium cloud cover strengthening the effect of the
decrease in aerosol loading on Eg↓ that has been observed in Europe since the 1980s. The origin of
these changes in cloudiness is not clear, and could result from changes in both atmospheric circulation
and aerosol–cloud interactions. Further analyses are therefore required. First of all, as this trend is
not simulated when MAR is forced by 20CRV2C and ERA-20C, comparing the MAR forcing fields
(temperature, humidity, and wind) from these 20th century reanalyses with ERA-Interim will help
detect the meteorological variables that are responsible for this decrease in cloudiness. Sensitivity
experiments with MAR could be performed using variables from two different reanalyses, e.g., wind
from ERA-Interim, and other fields from ERA-20C. Afterwards, a circulation type classification (as the
one developed by Belleflamme et al. [67]) could be used to associate the daily cloudiness to some types
of general circulation. The temporal evolution of these circulation types could then be studied as was
done in Bednorz et al. [68] and Lupikaszca and Lipinski [69]. Finally, it might also be interesting to
verify whether such a decrease in cloudiness would be projected if MAR was forced by GCM-based
future projections. This would suggest that such a change could be a consequence of global warming.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/9/7/262/s1.
Figure S1. Modelled Eg↓ vs. observed Eg↓ at Melle for 1967–2010: (a) annual and seasonal correlation (R),
(b) mean bias (MB), (c) centred root mean squared error (CMRSE) and (d) standard deviation (STD). It should
be noted that ERA40 covers 1967–1978 while ERA-interim covers 1979–2010; Table S1. Seasonal trends and their
uncertainty range of Snedecor for the 95% confidence interval computed computed from measurements performed
at Saint-Hubert. The values in bold indicate that the trends are statistically significant at the 95% confidence level,
namely that they are larger than the associated uncertainty range. The values between brackets indicate that they
are computed for 1966–1979; Figure S2. Modelled Eg↓ vs. observed Eg↓ at Oostende/Middlekerk for 1975–2010:
(a) annual and seasonal correlation (R), (b) mean bias (MB), (c) centred root mean squared error (CMRSE) and (d)
standard deviation (STD). It should be noted that ERA40 covers 1975–1978 while ERA-interim covers 1979–2010;
Figure S3. Modelled Eg↓ vs. observed Eg↓ at Uccle for 1959–2010: (a) annual and seasonal correlation (R), (b) mean
bias (MB), (c) centred root mean squared error (CMRSE) and (d) standard deviation (STD). It should be noted that
ERA40 covers 1959–1978 while ERA-interim covers 1979–2010; Figure S4. Modelled TCC vs. observed TCC at
Oostende/Middlekerk for 1966–2010: (a) annual and seasonal correlation (R), (b) mean bias (MB), (c) centred root
mean squared error (CMRSE) and (d) standard deviation (STD). It should be noted that ERA40 covers 1966–1978
while ERA-interim covers 1979–2010. (TCC data from NCEP/NCAR-v1 and 20CRV2C were not available); Figure
S5. Modelled TCC vs. observed TCC at Bierset for 1966–2010: (a) annual and seasonal correlation (R), (b) mean
bias (MB), (c) centred root mean squared error (CMRSE) and (d) standard deviation (STD). It should be noted that
ERA40 covers 1966–1978 while ERA-interim covers 1979–2010. (TCC data from NCEP1/NCAR-v1 and 20CRV2C
were not available); Figure S6. Modelled TCC vs. observed TCC at Uccle for 1966–2010: (a) annual and seasonal
correlation (R), (b) mean bias (MB), (c) centred root mean squared error (CMRSE) and (d) standard deviation
(STD). It should be noted that ERA40 covers 1966–1978 while ERA-interim covers 1979–2010. (TCC data from
NCEP/NCAR-v1 and 20CRV2C were not available); Figure S7. Time series of (a) LCC, (b) MCC, and (c) HCC
modelled by MAR at Saint-Hubert; Figure S8. Reanalysis data used as MAR forcings at Saint-Hubert at two
different pressure levels (700 hPa and 500 hPa): (a,b) temperature (TA), (c,d) specific humidity (HUS), (e,f) relative
humidity (HUR).
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Appendix A

Linear regression and evaluation of the significance of the trends using the uncertainty range for
the 95% confidence interval of Snedecor.

In order to compute linear trends and to assess their significance, equations of the type

yj = a ∗ tj + b (A1)

were fitted to several time series (yj, tj) where yj represents the value of the variable for the year tj.
The significance of those trends (a*t) was evaluated by computing their uncertainty range for the

95% confidence interval of Snedecor (Snedecor & Cochran, 1971) according to these formulas:

e1 = ∑ (trend(yj)− yj)
2 (A2)

e2 = ∑ (tj −mean(t))2 (A3)

http://www.mdpi.com/2073-4433/9/7/262/s1
http://apps.ecmwf.int/datasets
http://www.esrl.noaa.gov/psd/data/gridded
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range =

√√√√ e1((
t f − ti − 1

)
∗ e2

) ∗ k (A4)

where

tj is the jth year of the time series

ti is the first year of the time series
tf is the last year of the time series

yj is the value of the variable for the year tj

trend(yj) is the value of the trend of year tj

mean(t) is the average year of the time series
k = 1.96 for the 95% confidence interval

The trend of a time series is significant if its value is higher than its uncertainty range, which
mainly corresponds to the interannual variability of the considered time series.
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