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Résumé. Nous montrons dans ce petit texte comment calculer les coordonnées de la pro-
jection orthogonale d’un point a partir des coordonnées de ce point. Nous commengons par
quelques rappels théoriques, généraux puis de plus en plus précis, pour expliquer comment
mener les caculs. Nous arrivons ainsi a des formules tout a fait pratiques, et nous montrons
comment les mettre en ceuvre lorsque IXTEX est utilisé avec le module de dessin Tikz — mais
les aficionados de PSTricks n‘auront pas de mal a adapter la technique.

Axonométrie, non, ce n'est pas un 417¢ juron du capitaine Haddock !. Ce terme de dessin technique
désigne, de maniere générale, une perspective paralléle, par opposition a la perspective centrale (ou co-
nique). Cette derniére, utilisée dans les beaux-arts depuis la renaissance, est plus fidéle a la maniére dont
notre cerveau interprete ce que voient nos yeux (voir la figure 3). La perspective paralléle, au contraire,
parait souvent conventionnelle, a cause des déformations qu’elle introduit. Mais elle rend bien des ser-
vices en dessin industriel. Selon que la direction de projection est ou non orthogonale au plan sur lequel
on projette, 'axonométrie est dite orthogonale ou oblique; la plus employée des axonométries obliques
est la perspective cavaliére (voir la figure 1). Nous nous intéresserons ici & I'axonométrie orthogonale 2
(voir la figure 2).
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. FIGURE 3 - Perspective centrale
Axonométrie orthogonale

Perspective cavaliére

Pour le mathématicien qui souhaite produire des vues en perspective, 'avantage de la projection
parallele sur la projection centrale, c’est qu’il s’agit d’une application affine, et méme d’une applica-
tion linéaire si nous projetons sur un plan qui passe par le point choisi pour origine de l'espace; sa
description en termes de coordonnées est donc beaucoup plus simple : il suffit de quelques petits cal-
culs matriciels. Evidemment, le géométre pur et dur préférera la géométrie projective et le travail en
coordonnées homogeénes ; mais il faut admettre que les calculs sont plus compliqués.

1 Espaces vectoriels — Applications linéaires

Rappelons quelques notions d’algebre linéaire dont nous aurons besoin pour conduire nos calculs,
en nous limitant, parce que nous n‘aurons besoin de rien d’autre, au cas ou les scalaires, les nombres
donc, sont les réels.

Un espace vectoriel est un ensemble non vide dont les éléments, bien évidemment appelés vecteurs,
quelle que soit par ailleurs leur nature intrinseque, peuvent étre multipliés par des réels et additionnés

1. Cf. https://fr.wikipedia.org/wiki/Vocabulaire_du_capitaine_Haddock (consulté le 31/03/2018).

2. Les cours de dessin technique distinguent axonométries isométrique et dimétrique; il est important de signaler ici que cet
usage de l'adjectif isométrique n’a rien a voir avec son acception mathématique ; une axonométrie isométrique n’est évidemment
pas une isométrie, puisqu’elle n'est méme pas injective. En fait, une axonométrie est dite isométrique, dans ce langage-la, lorsque
le plan sur lequel on projette fait le méme angle avec les trois axes de référence de I’espace; les projections de ces trois axes feront
alors des angles de 120° sur I’épure, et les facteurs de réduction des longueurs seront les mémes dans leurs trois directions —
d’ou l'adjectif isométrique.


https://fr.wikipedia.org/wiki/Vocabulaire_du_capitaine_Haddock

entre eux; en itérant et en combinant ces deux opérations, nous formons des combinaisons linéaires de
vecteurs ; par exemple, si u, v et w sont trois vecteurs,

2u+3v—w

en est une combinaison linéaire ; nous avons déja ici utilisé un petit raccourci d’écriture : nous aurions
en effet di noter 2u + 3v + (—1)w. Dans une description axiomatique bien léchée de la structure d’espace
vectoriel, nous devrions maintenant énumérer les axiomes auquels ces opérations doivent satisfaire.
Contentons-nous ici de dire que ces axiomes et leurs conséquences valident toutes les regles de calcul
auxquelles chacun s’attend. Notamment, ’espace vectoriel contient un élément particulier, le vecteur
nul o, égal a Ou quel que soit le vecteur u ; il joue le role de neutre pour I'addition des vecteurs.

La notion de combinaison linéaire est donc la clé de voute de la notion d’espace vectoriel. Etant
donné un espace vectoriel, un sous-espace vectoriel en sera une partie « bonne » en ce sens que les
combinaisons linéaires ne s’en échappent pas : si uy, u,, ..., u, sont des vecteurs dans cette partie, quels
que soient les coefficients réels ry, 15, ..., 1, la combinaison linéaire ryuy + rouy + -+ + 1,1, est encore
dans la partie. En particulier, le vecteur nul, qui est combinaison linéaire de n’importe quoi, appartient
a tout sous-espace vectoriel.

Dans le méme esprit, les « bonnes » applications d’un espace vectoriel dans un autre, celles qui seront
appelées applications linéaires, sont celles qui préservent les combinaisons linéaires : f est linéaire si,
pour tous vecteurs uy, Uy, ..., U, etréelsry, ry, ..., 1y,

flriuy +rpug + -+ ryuy) = rf (ug) +rof (ug) + -+ 1, f ().

Encore une fois, ceci entraine en particulier que 'image du vecteur nul de 'espace de départ doit étre
le vecteur nul de l'espace d’arrivée.

Une partie d'un espace vectoriel en est une base si tout vecteur de l’espace s’écrit, de maniére unique,
comme combinaison linéaire de vecteurs de la partie. Un espace vectoriel qui admet une base finie est
dit de dimension finie; dans un tel cas, toutes les bases ont le méme nombre d’éléments, et ce nombre
commun est appelé la dimension de 1’espace.

2 Calcul des coordonnées

Nous travaillons ici dans un espace vectoriel V de dimension finie. Si b = (by,...,b,,) en est une base,
un vecteur # admet une décomposition unique

u=uby+---+u,b,,

ou les uy sont des réels. Rangeons ces coefficients uy, ..., u,, dans un vecteur colonne que nous notons ,u :
la colonne des coordonnées de u dans b ; puisque la base b est aussi la matrice ligne (by,...,b,), nous avons
Uy
w=uphy o tyby =byuy by, =( by by )| 1 [=beu
ul’l
Soit ensuite W un second espace vectoriel et f : V. — W une application linéaire. Supposons V

équipé de la base b ci-dessus et W d’une base ¢ =(cy,...,c,,).
La matrice

= ( fBr) o f(by) )eR™,

formée des colonnes de coordonnées dans ¢ des images par f des vecteurs de b, est appelée matrice de
f, relative aux bases b et c. Son nombre de lignes est la dimension de ’espace d’arrivée et son nombre de
colonnes est la dimension de l'espace de départ.

Elle permet, connaissant la colonne des coordonnées dans b d’un vecteur u de V, de calculer la
colonne des coordonnées dans c de son image par f :

S)=c(f)y-pu
En effet,
cf(u) = cf(ulbl + "'J"Mnbn)
= c(”lf(bl)+"'+ unf(bn))
uy f(by)+-+uy  f(by)

Uy

=( fb1) - fba) )

Up

= c(f)b ‘pU.



3 L’espace d’EUCLIDE comme espace vectoriel

Lespace de la géométrie a la EUCLIDE n’est pas un espace vectoriel. Cela saute aux yeux si nous
pensons que cet espace est homogene en ses points : tous jouent le méme role ; alors que dans un espace
vectoriel, il y a un élément privilégié : le vecteur nul. Un espace « presque vectoriel », en ce sens qu’il ne
lui manque qu’un point « nul », est un espace affine. Mais nous ne développerons pas cela ici.

Cependant, nous pouvons définir dans 'espace d’EUCLIDE 3 les vecteurs libres, qui constituent un es-
pace vectoriel de dimension 3 ; nous le noterons E3. Ces vecteurs « concrets » (qui sont donc un exemple
des vecteurs « abstraits » décrits dans les deux sections précédentes), nous les noterons par des lettres
surmontées d’une fléche : if par exemple. Si un point est choisi et déclaré « origine », nous pouvons
reporter les vecteurs a partir de ce point, ce qui établit une bijection entre I'ensemble des points et I’en-
semble des vecteurs libres. Ci-dessous, nous nous permettrons donc de regarder les points comme des
vecteurs, 'origine choisie, que nous noterons O, correspondant alors au vecteur nul 0.

L'espace tout entier est évidemment un sous-espace vectoriel de lui-méme, ainsi que le singleton {O} ;
ces deux sous-espaces sont dits triviaux; les autres sous-espaces vectoriels de E3 sont les droites et les
plans passant par O 4.

Dans la suite, il ne sera pas suffisant de regarder E3 comme espace vectoriel ; en effet, nous aurons
besoin de mesures de longueurs et d’angles. Il nous faudra donc I'équiper de sa structure euclidienne,
déterminée par un produit scalaire ; nous noterons (i | ¥') le produit scalaire des vecteurs i et . Une fois
le produit scalaire disponible, nous 'utilisons pour définir la norme, la perpendicularité, les angles. ..

Dans un espace vectoriel euclidien, les bases véritablement « utiles » sont les bases orthonormées :
leurs vecteurs sont normés et orthogonaux deux a deux; en d’autres termes, b = (by,...,b,) est orthonor-
mée si, pour tous i et j entre 1 et n,

(bi 1b;) =63,

ou 0;; est le symbole de KRONECKER :

‘ 0siizj,
;=4 Ostt*]
] 1sii=j.
Dans une telle base,
e Siles coordonnées de u sont (uy,...,u,) > et celles de v, (vy,...,v,)!, alors

(u|vy=uvy +--+u,v,;

e Les coordonnées d’un vecteur sont simplement ses produits scalaires avec les différents vecteurs
de la base. Un effet, si b est orthonormée et si u = u;by +---+ u,b,, alors

(ubi)=Curby +-+uibj+--+upby | b;) =uy (by [bi)+--+u{bi | bi) + - +u, (b, | bj) =
=1y 04414 t1,-0=u

Dans E3 ©, un autre sous-produit du produit scalaire (et du choix d’une orientation de l’espace) est
le produit vectoriel : alors que le produit scalaire de deux vecteurs est un réel, leur produit vectoriel ¥ AV
est un vecteur. Plus précisément :

e Si il et ¥ sont paralléles (en particulier si I'un est nul ou l'autre), i A ¥ est le vecteur nul;

e Sinon, c’est le vecteur dont la direction est perpendiculaire au plan déterminé par if et v, dont
le sens est tel que la base (7,7, il A V) appartient a l'orientation choisie (ce qui se concrétise dans
I'espace « physique » par la «régle du tirebouchon ») et dont la norme est |[u|| - ||[v]| - sin £(i7, V)
(voir la figure 4).

Si la base b est orthonormée et directe (ceci signifiant qu’elle appartient a la classe de bases qui

, . , . . - - - , > - - - - -
détermine l'orientation ; ou encore que b3 = by A b, ; alors, également, by = by Abs et by =bs Aby):

UpV3 — U3V)

b(b_l)/\i)): U3V —uU1v3

Uvy — Uy

lorsque
up V1
— —

pU=| Uy et pV=| V2
us V3

3. Comme dans tout espace affine.

4. Les droites et les plans ne passant pas par l'origine sont des sous-espaces affines, mais pas des sous-espaces vectoriels.

5. La notation M désigne la transposée de la matrice M, obtenue en transformant les lignes en colonnes et inversement;
ici, (u1,...,uy,) est une ligne, donc sa transposée est une colonne. Nous utilisons cette écriture pour éviter le gaspillage d’espace
vertical.

6. La dimension 3 est ici essentielle.
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FIGURE 4 — Définition du produit vectoriel

4 Projection orthogonale sur un plan

Nous supposons maintenant fixée une base orthonormée directe b = (31,52,53).

Soit 7t le plan sur lequel nous projetons et p : E3 — 7t la projection orthogonale. Le plan 7 doit passer
par l'origine O, sans quoi la projection ne serait pas une application linéaire. Il est déterminé par la
longitude a € |—m; 7] et la latitude B € |-7/2; /2 [ d’un vecteur normal (voir la figure 5)

cosa cos f
~ .
n=| sinacosf

sin f3

(ce vecteur est normé) ; nous pouvons en outre supposer que la latitude f est positive, car si #7 est normal
a 1, —i7 l’est également. Connaissant un vecteur normal a notre plan 7 et sachant que celui-ci passe par
l'origine, nous connaissons une équation du plan :

mt=Xcosacosf+ Ysinacosf+Zsinf =0,

ou (X,Y,Z) sont les coordonnées du « point courant », c’est-a-dire d’un point quelconque du plan.

FIGURE 5 - Positionnement du plan sur lequel on projette

Nous utiliserons dans 7t la base orthonormée ¢ = (¢}, ¢5) pour laquelle ¢, est paralléle a la projection

S
de b3 (et de méme sens), de maniére que les droites verticales soient représentées sur I’épure par des
droites verticales, avec le haut en haut. Nous calculerons ¢} et ¢, ultérieurement.



Pour tout vecteur i de coordonnées (x,7,z)", la projection p(i) peut s’écrire p(if) = i + rii, ou r est a
déterminer de maniére que p(if) appartienne a 7t; les coordonnées de p(if) sont donc

X+rcosacosf
y+rsinacosf |,
z+rsinf

et la condition d’appartenance s’écrit :
cosa cos f(x+rcosacosf)+sinacosf(y+rsinacosp)+sinf(z+rsinf) =0,
d’ou r = —(xcosacos B+ ysinacos B + zsin B). Dés lors, les coordonnées de p(i) dans la base b sont

x(1 —cos? acos? B) — ysina cos a cos? —zcosasinpfcosf

—xsina cos acos? B +p(1 —sinzacosz[}) —zsinasinfcosf
—xcosasin fcos f —ysinasin fcosp +zcos? f

- -
En particulier, lorsque i = b, nous avons x =y = 0 et z = 1, donc les coordonnées de p(b3) sont
—cosasin cos 8
—sinasinfcosf |,

cos?

et sa norme est

\/(—cosasin[}cosﬁ)z + (—sinasin Bcos B)? + (cos? B)? = cos B;

-

. . s 7 . . 1
donc, ¢,, qui est le vecteur normé paralléle a p(b3) et de méme sens que lui, vaut ——p(b3) et a pour

S
@)
coordonnées
—cosasinf3
—sinasin
cos f

— — —

Ensuite, puisque ¢; doit étre orthogonal et a ¢ et a 77, nous prenons ¢y = A i
possible : A ¢5), dont les coordonnées sont

(un autre choix aurait été

—sinasinf -sinff —cos f-sinacos f —sina
cos - cosacosf —(—cosasinp)-sinp = cosa
—cosasinf-sinacosf —(—sinasin ) - cosa cos 0

Les deux composantes de p(if) dans la base ¢ = (¢, ;) sont donc

(p(i0) | €1 ) = (x(1 = cos® a cos® B) — ysina cos a cos® f — zcos asin fcos B) - (—sina) +

2 acos? B) — zsin asin f cos ) - cos a +

+(—xsinacosa cos® B +p(1 —sin
+(—xcosasin fcos f —ysinasin fcos p +zcos> f) - 0

=—xsina +ycosa

et
(p(i0) | &) = (x(1 = cos® a cos® B) — ysin a cos a cos® f — zcos asin fcos B) - (—cos asin f) +
+ (—xsinacosa cos® B + p(1 —sin® a cos? f) — zsin asin f cos ) - (—sina sin ) +
+ (—xcosasin fcos f—ysinasinfcos S +zcosz/5)-cos/5
= —xcosasinf —ysinasinf +zcos .
Ainsi,

(if) = —xsina +ycosa _ —-sina cosa 0o (2
PV = —xcosasinf—ysinasinf+zcosf |\ —cosasinf -—sinasinf cosp Z ’

ce qui montre que
(p), = —sina cosa 0
c\Ply = —cosasinff —sinasinf cospf

est la matrice de la projection p, relativement aux bases b de Ej et ¢ de 7.



5 Eten pra...TikZ

Les trois colonnes de la derniére matrice sont les colonnes de coordonnées dans la base ¢ de 7, des
projections des trois vecteurs de la base b; autrement dit, ce sont les positions, sur I’épure, des projec-
tions des vecteurs unitaires des trois axes de coordonnées spatiales. Par conséquent, TikZ se chargera de
positionner correctement sur I’épure les points que nous aurons défini par leurs coordonnées tridimen-
sionnelles si nous indiquons parmi les arguments optionnels de I’environnement tikzpicture (ou de
la commande \tikz):

x={(-sina cm,—cosasin  cm)},y={(cosa@ cm,—sinasin g cm)},z={(0 cm,cos B cm)}

(veiller a utiliser, chaque fois, le double encadrement : parenthéses & accolades, et a ne pas omettre
les unités de longueur). Ces trois options définissent les positions, sur I'’épure, des projections des trois
vecteurs de base. Comme nous le verrons dans ’exemple ci-dessous, il est possible de redimensionner
la figure globalement, sans redéfinir ces trois vecteurs.

Par exemple, dans la figure 2, la projection se fait selon le vecteur unitaire 77 dont la longitude et la
latitude sont toutes deux de 30°, sur le plan perpendiculaire. La matrice de cette projection est

—sin 30° cos 30° 0 [ =172 \/3/2 0 N -0,500 0,866 0,000
—c0s30°sin30° —sin30°sin30° cos30°| \-+/3/4 —-1/4 +/3/2) \-0,433 -0,250 0,866/

Le code complet de cette figure est le suivant” :
\begin{tikzpicture}

[x={(-0.500cm,-0.433cm)},y={(0.866cm,-0.250cm)},z={(0cm,0.866¢cm)},
scale=2,very thick, join=bevel,fill=magenta!50]

) .
\coordinate(xx)at(1, 0 O),
\coordinate(yy)at(0,1,0);
\coordinate(pp)at(1,1,0);
\coordinate(hh)at(0,0,2);
\coordinate(xh)at(1,0,1);
\coordinate(yh)at(0,1,1);
\coordinate(ph)at(1,1,1);
\draw[-latex,thin,fill=black](00)--(1.3,0,0)node[below left]{$x$};
\draw[-latex,thin,fill=black](00)--(0,1.3,0)node[right]{$y$};
\draw[-latex,thin,fill=black](00)--(0,0,2.2)node[above]{$z$};
\filldraw(oo)--(xx)--(pp)--(yy)--cycle;
\filldraw(oo)--(xx)--(xh)--(hh)--cycle;
\filldraw(oo)--(hh)--(yh)--(yy)--cycle;
\filldraw(xx)--(pp)--(ph)--(xh)--cycle;
\filldraw(yy)--(yh)--(ph)--(pp)--cycle;
\filldraw(xh)--(ph)--(hh)--cycle;
\filldraw(yh)--(hh)--(ph)--cycle;
\end{tikzpicture}

Tous les points sont définis par leurs coordonnées tridimensionnelles et TikZ se charge, comme un
grand, de calculer leurs projections. Par contre, TikZ ne gere pas du tout le vu et le caché; afin que la
figure soit correcte de ce point de vue, l'utilisateur doit lui-méme veiller a faire construire les différents
éléments de la figure de l’arriére vers ’avant. Ceci, heureusement, n’'empéche pas de modifier a posteriori
le « point de vue », c’est-a-dire la direction de projection, tant que 'on reste, ici par exemple, dans le
premier octant (0 < a < 71t/2, 0 < f < 1/2).

Par exemple, si nous décidons d’employer I'axonométrie « isométrique », comme sur la figure 6, nous
utilisons le vecteur 77 qui fait le méme angle (0 = arccos(1//3), soit environ 55°) avec les trois axes de
coordonnées ; donc ici a = /4 et p = 11/2 — O = arcsin(1/V3), et la matrice de la projection devient

-Ve6/6 —\e6/6 +6/3 -0,408 -0,408 0,816

La seule modification a apporter au code ci-dessus est le remplacement de la deuxiéme ligne par

—V2/2 N2/2 0 )N(—o,707 0,707 0,000

[x={(-0.707cm,-0.408cm)},y={(0.707cm,-0.408cm)},z={(0cm,0.816¢cm)},.

7. Une tres bréve introduction a TikZ se trouve dans les deux articles suivants : Pascal DUPONT, IATEX, un peu, beaucoup —
12. TikZ (1), Losanges 33 (2016), 59-64 ; Pascal DUPONT, IATEX, un peu, beaucoup — 13. TikZ (2), Losanges 34 (2016), 55-60.



FIGURE 6 — Axonométrie « isométrique »

Une autre limitation est que les chemins ainsi tracés ou remplis ne peuvent contenir que l'opération
« --»; des opérations telles que « circle », « rectangle », &c., sont spécifiques au dessin bidimension-
nel; d’ailleurs, a bien y réfléchir, si nous utilisions cette derniére, dans quel plan devrait se trouver le
rectangle ? Ce plan n’est pas déterminé par les deux sommets du rectangle. ..

Si nous nous entétons a utiliser les opérations « circle » ou « rectangle » dans une figure en pers-
pective, nous serons dégus : nous obtiendrons un cercle ou un rectangle (a cotés paralléles aux bords du
dessin), la ou1 nous espérions obtenir leurs projections : une ellipse ou un parallélogramme.

Malgré leurs limitations, ces méthodes sont simples et élégantes. Malheureusement, elles ne per-
mettent pas de construire des figures en perspective conique; la figure 3 a été obtenue en calculant
préalablement les coordonnées planes de la projection de chacun des sommets du solide.

Un petit cadeau pour terminer : six vues de la collégiale Saint-Barthélémy de Liege.
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FIGURE 7 - Six vues de la collégiale Saint-Barthélémy de Liege
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