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L’axonométrie orthogonale

avec TikZ

Résumé. Nous montrons dans ce petit texte comment calculer les coordonnées de la pro-
jection orthogonale d’un point à partir des coordonnées de ce point. Nous commençons par
quelques rappels théoriques, généraux puis de plus en plus précis, pour expliquer comment
mener les caculs. Nous arrivons ainsi à des formules tout à fait pratiques, et nous montrons
comment les mettre en œuvre lorsque LATEX est utilisé avec le module de dessin Tikz —mais
les aficionados de PSTricks n’auront pas de mal à adapter la technique.

Axonométrie, non, ce n’est pas un 417e juron du capitaine Haddock 1. Ce terme de dessin technique
désigne, de manière générale, une perspective parallèle, par opposition à la perspective centrale (ou co-
nique). Cette dernière, utilisée dans les beaux-arts depuis la renaissance, est plus fidèle à lamanière dont
notre cerveau interprète ce que voient nos yeux (voir la figure 3). La perspective parallèle, au contraire,
parait souvent conventionnelle, à cause des déformations qu’elle introduit. Mais elle rend bien des ser-
vices en dessin industriel. Selon que la direction de projection est ou non orthogonale au plan sur lequel
on projette, l’axonométrie est dite orthogonale ou oblique ; la plus employée des axonométries obliques
est la perspective cavalière (voir la figure 1). Nous nous intéresserons ici à l’axonométrie orthogonale 2

(voir la figure 2).
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Figure 1 –
Perspective cavalière
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Figure 2 –
Axonométrie orthogonale
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Figure 3 – Perspective centrale

Pour le mathématicien qui souhaite produire des vues en perspective, l’avantage de la projection
parallèle sur la projection centrale, c’est qu’il s’agit d’une application a�ne, et même d’une applica-
tion linéaire si nous projetons sur un plan qui passe par le point choisi pour origine de l’espace ; sa
description en termes de coordonnées est donc beaucoup plus simple : il su�t de quelques petits cal-
culs matriciels. Évidemment, le géomètre pur et dur préférera la géométrie projective et le travail en
coordonnées homogènes ; mais il faut admettre que les calculs sont plus compliqués.

1 Espaces vectoriels — Applications linéaires

Rappelons quelques notions d’algèbre linéaire dont nous aurons besoin pour conduire nos calculs,
en nous limitant, parce que nous n’aurons besoin de rien d’autre, au cas où les scalaires, les nombres
donc, sont les réels.

Un espace vectoriel est un ensemble non vide dont les éléments, bien évidemment appelés vecteurs,
quelle que soit par ailleurs leur nature intrinsèque, peuvent être multipliés par des réels et additionnés

1. Cf. https://fr.wikipedia.org/wiki/Vocabulaire_du_capitaine_Haddock (consulté le 31/03/2018).
2. Les cours de dessin technique distinguent axonométries isométrique et dimétrique ; il est important de signaler ici que cet

usage de l’adjectif isométrique n’a rien à voir avec son acception mathématique ; une axonométrie isométrique n’est évidemment
pas une isométrie, puisqu’elle n’est même pas injective. En fait, une axonométrie est dite isométrique, dans ce langage-là, lorsque
le plan sur lequel on projette fait le même angle avec les trois axes de référence de l’espace ; les projections de ces trois axes feront
alors des angles de 120� sur l’épure, et les facteurs de réduction des longueurs seront les mêmes dans leurs trois directions —
d’où l’adjectif isométrique.

https://fr.wikipedia.org/wiki/Vocabulaire_du_capitaine_Haddock


entre eux ; en itérant et en combinant ces deux opérations, nous formons des combinaisons linéaires de
vecteurs ; par exemple, si u, v et w sont trois vecteurs,

2u +3v �w
en est une combinaison linéaire ; nous avons déjà ici utilisé un petit raccourci d’écriture : nous aurions
en e↵et dû noter 2u +3v +(�1)w. Dans une description axiomatique bien léchée de la structure d’espace
vectoriel, nous devrions maintenant énumérer les axiomes auquels ces opérations doivent satisfaire.
Contentons-nous ici de dire que ces axiomes et leurs conséquences valident toutes les règles de calcul
auxquelles chacun s’attend. Notamment, l’espace vectoriel contient un élément particulier, le vecteur
nul o, égal à 0u quel que soit le vecteur u ; il joue le rôle de neutre pour l’addition des vecteurs.

La notion de combinaison linéaire est donc la clé de voute de la notion d’espace vectoriel. Étant
donné un espace vectoriel, un sous-espace vectoriel en sera une partie « bonne » en ce sens que les
combinaisons linéaires ne s’en échappent pas : si u1, u2, . . ., un sont des vecteurs dans cette partie, quels
que soient les coe�cients réels r1, r2, . . ., rn, la combinaison linéaire r1u1 + r2u2 + · · · + rnun est encore
dans la partie. En particulier, le vecteur nul, qui est combinaison linéaire de n’importe quoi, appartient
à tout sous-espace vectoriel.

Dans le même esprit, les « bonnes » applications d’un espace vectoriel dans un autre, celles qui seront
appelées applications linéaires, sont celles qui préservent les combinaisons linéaires : f est linéaire si,
pour tous vecteurs u1, u2, . . ., un et réels r1, r2, . . ., rn,

f (r1u1 + r2u2 + · · ·+ rnun) = r1f (u1) + r2f (u2) + · · ·+ rnf (un).

Encore une fois, ceci entraine en particulier que l’image du vecteur nul de l’espace de départ doit être
le vecteur nul de l’espace d’arrivée.

Une partie d’un espace vectoriel en est une base si tout vecteur de l’espace s’écrit, de manière unique,
comme combinaison linéaire de vecteurs de la partie. Un espace vectoriel qui admet une base finie est
dit de dimension finie ; dans un tel cas, toutes les bases ont le même nombre d’éléments, et ce nombre
commun est appelé la dimension de l’espace.

2 Calcul des coordonnées

Nous travaillons ici dans un espace vectoriel V de dimension finie. Si b = (b1, . . . , bn) en est une base,
un vecteur u admet une décomposition unique

u = u1b1 + · · ·+unbn,

où les uk sont des réels. Rangeons ces coe�cients u1, . . ., un dans un vecteur colonne que nous notons bu :
la colonne des coordonnées de u dans b ; puisque la base b est aussi la matrice ligne (b1, . . . , bn), nous avons

u = u1b1 + · · ·+unbn = b1u1 + · · ·+ bnun =
⇣
b1 . . . bn

⌘
·

0
BBBBBBBB@

u1
...
un

1
CCCCCCCCA
= b · bu.

Soit ensuite W un second espace vectoriel et f : V ! W une application linéaire. Supposons V
équipé de la base b ci-dessus et W d’une base c = (c1, . . . , cm).

La matrice

c(f )b .
.=

⇣
cf (b1) · · · cf (bn)

⌘
2 Rm⇥n,

formée des colonnes de coordonnées dans c des images par f des vecteurs de b, est appelée matrice de

f , relative aux bases b et c. Son nombre de lignes est la dimension de l’espace d’arrivée et son nombre de
colonnes est la dimension de l’espace de départ.

Elle permet, connaissant la colonne des coordonnées dans b d’un vecteur u de V , de calculer la
colonne des coordonnées dans c de son image par f :

cf (u) = c(f )b · bu.
En e↵et,

cf (u) = cf (u1b1 + · · ·+unbn)

= c(u1f (b1) + · · ·+unf (bn))

= u1 cf (b1) + · · ·+un cf (bn)

=
⇣

cf (b1) · · · cf (bn)
⌘
·

0
BBBBBBBB@

u1
...
un

1
CCCCCCCCA

= c(f )b · bu.



3 L’espace d’Euclide comme espace vectoriel

L’espace de la géométrie à la Euclide n’est pas un espace vectoriel. Cela saute aux yeux si nous
pensons que cet espace est homogène en ses points : tous jouent le même rôle ; alors que dans un espace
vectoriel, il y a un élément privilégié : le vecteur nul. Un espace « presque vectoriel », en ce sens qu’il ne
lui manque qu’un point « nul », est un espace a�ne. Mais nous ne développerons pas cela ici.

Cependant, nous pouvons définir dans l’espace d’Euclide 3 les vecteurs libres, qui constituent un es-
pace vectoriel de dimension 3 ; nous le noterons E3. Ces vecteurs « concrets » (qui sont donc un exemple
des vecteurs « abstraits » décrits dans les deux sections précédentes), nous les noterons par des lettres
surmontées d’une flèche : ~u par exemple. Si un point est choisi et déclaré « origine », nous pouvons
reporter les vecteurs à partir de ce point, ce qui établit une bijection entre l’ensemble des points et l’en-
semble des vecteurs libres. Ci-dessous, nous nous permettrons donc de regarder les points comme des
vecteurs, l’origine choisie, que nous noterons O, correspondant alors au vecteur nul ~o.

L’espace tout entier est évidemment un sous-espace vectoriel de lui-même, ainsi que le singleton {O} ;
ces deux sous-espaces sont dits triviaux ; les autres sous-espaces vectoriels de E3 sont les droites et les
plans passant par O 4.

Dans la suite, il ne sera pas su�sant de regarder E3 comme espace vectoriel ; en e↵et, nous aurons
besoin de mesures de longueurs et d’angles. Il nous faudra donc l’équiper de sa structure euclidienne,
déterminée par un produit scalaire ; nous noterons

⌦
~u | ~v ↵

le produit scalaire des vecteurs ~u et ~v. Une fois
le produit scalaire disponible, nous l’utilisons pour définir la norme, la perpendicularité, les angles. . .

Dans un espace vectoriel euclidien, les bases véritablement « utiles » sont les bases orthonormées :
leurs vecteurs sont normés et orthogonaux deux à deux ; en d’autres termes, b = (b1, . . . , bn) est orthonor-
mée si, pour tous i et j entre 1 et n, D

bi | bj
E
= �ij ,

où �ij est le symbole de Kronecker :

�ij =
(

0 si i , j,
1 si i = j.

Dans une telle base,
• Si les coordonnées de u sont (u1, . . . ,un)t 5 et celles de v, (v1, . . . , vn)t, alors

hu | vi = u1v1 + · · ·+unvn ;

• Les coordonnées d’un vecteur sont simplement ses produits scalaires avec les di↵érents vecteurs
de la base. Un e↵et, si b est orthonormée et si u = u1b1 + · · ·+unbn, alors

hu | bii = hu1b1 + · · ·+uibi + · · ·+unbn | bii = u1 hb1 | bii+ · · ·+ui hbi | bii+ · · ·+un hbn | bii =
= u1 · 0+ · · ·+ui · 1+ · · ·+un · 0 = ui .

Dans E3
6, un autre sous-produit du produit scalaire (et du choix d’une orientation de l’espace) est

le produit vectoriel : alors que le produit scalaire de deux vecteurs est un réel, leur produit vectoriel ~u^~v
est un vecteur. Plus précisément :
• Si ~u et ~v sont parallèles (en particulier si l’un est nul ou l’autre), ~u ^ ~v est le vecteur nul ;
• Sinon, c’est le vecteur dont la direction est perpendiculaire au plan déterminé par ~u et ~v, dont

le sens est tel que la base (~u,~v, ~u ^ ~v) appartient à l’orientation choisie (ce qui se concrétise dans
l’espace « physique » par la « règle du tirebouchon ») et dont la norme est kuk · kvk · sin\(~u,~v)
(voir la figure 4).

Si la base b est orthonormée et directe (ceci signifiant qu’elle appartient à la classe de bases qui
détermine l’orientation ; ou encore que ~b3 =~b1 ^~b2 ; alors, également, ~b1 =~b2 ^~b3 et ~b2 =~b3 ^~b1) :

b(~u ^ ~v) =

0
BBBBBB@

u2v3 �u3v2
u3v1 �u1v3
u1v2 �u2v1

1
CCCCCCA

lorsque

b~u =

0
BBBBBB@

u1
u2
u3

1
CCCCCCA et b~v =

0
BBBBBB@

v1
v2
v3

1
CCCCCCA .

3. Comme dans tout espace a�ne.
4. Les droites et les plans ne passant pas par l’origine sont des sous-espaces a�nes, mais pas des sous-espaces vectoriels.
5. La notation Mt désigne la transposée de la matrice M , obtenue en transformant les lignes en colonnes et inversement ;

ici, (u1, . . . ,un) est une ligne, donc sa transposée est une colonne. Nous utilisons cette écriture pour éviter le gaspillage d’espace
vertical.

6. La dimension 3 est ici essentielle.



~u

~v

~u ^ ~v

Figure 4 – Définition du produit vectoriel

4 Projection orthogonale sur un plan

Nous supposons maintenant fixée une base orthonormée directe b = (~b1,~b2,~b3).
Soit ⇡ le plan sur lequel nous projetons et p : E3! ⇡ la projection orthogonale. Le plan ⇡ doit passer

par l’origine O, sans quoi la projection ne serait pas une application linéaire. Il est déterminé par la
longitude ↵ 2 ]�⇡;⇡ ] et la latitude � 2 ]�⇡/2;⇡/2[ d’un vecteur normal (voir la figure 5)

~n =

0
BBBBBB@

cos↵ cos�
sin↵ cos�

sin�

1
CCCCCCA

(ce vecteur est normé) ; nous pouvons en outre supposer que la latitude � est positive, car si ~n est normal
à ⇡, �~n l’est également. Connaissant un vecteur normal à notre plan ⇡ et sachant que celui-ci passe par
l’origine, nous connaissons une équation du plan :

⇡ ⌘ X cos↵ cos� +Y sin↵ cos� +Z sin� = 0,

où (X,Y ,Z)t sont les coordonnées du « point courant », c’est-à-dire d’un point quelconque du plan.

⇡

x

~b1 y~b2

z

~b3

↵

~n

~c1

~c2

�

Figure 5 – Positionnement du plan sur lequel on projette

Nous utiliserons dans ⇡ la base orthonormée c = (~c1,~c2) pour laquelle ~c2 est parallèle à la projection
de ~b3 (et de même sens), de manière que les droites verticales soient représentées sur l’épure par des
droites verticales, avec le haut en haut. Nous calculerons ~c1 et ~c2 ultérieurement.



Pour tout vecteur ~u de coordonnées (x,y,z)t, la projection p(~u) peut s’écrire p(~u) = ~u + r~n, où r est à
déterminer de manière que p(~u) appartienne à ⇡ ; les coordonnées de p(~u) sont donc

0
BBBBBB@

x + r cos↵ cos�
y + r sin↵ cos�

z + r sin�

1
CCCCCCA ,

et la condition d’appartenance s’écrit :

cos↵ cos�(x + r cos↵ cos�) + sin↵ cos�(y + r sin↵ cos�) + sin�(z + r sin�) = 0,

d’où r = �(x cos↵ cos� + y sin↵ cos� + z sin�). Dès lors, les coordonnées de p(~u) dans la base b sont
0
BBBBBBB@

x(1� cos2↵ cos2 �)� y sin↵ cos↵ cos2 � � z cos↵ sin� cos�
�x sin↵ cos↵ cos2 � + y(1� sin2↵ cos2�)� z sin↵ sin� cos�

�x cos↵ sin� cos� � y sin↵ sin� cos� + z cos2 �

1
CCCCCCCA
.

En particulier, lorsque ~u =~b3, nous avons x = y = 0 et z = 1, donc les coordonnées de p(~b3) sont

0
BBBBBB@

�cos↵ sin� cos�
�sin↵ sin� cos�

cos2 �

1
CCCCCCA ,

et sa norme est q
(�cos↵ sin� cos�)2 + (�sin↵ sin� cos�)2 + (cos2 �)2 = cos� ;

donc, ~c2, qui est le vecteur normé parallèle à p(~b3) et de même sens que lui, vaut
1����p(~b3)

����
p(~b3) et a pour

coordonnées 0
BBBBBB@

�cos↵ sin�
�sin↵ sin�

cos�

1
CCCCCCA .

Ensuite, puisque ~c1 doit être orthogonal et à ~c2 et à ~n, nous prenons ~c1 = ~c2^~n (un autre choix aurait été
possible : ~n^~c2), dont les coordonnées sont

0
BBBBBB@

�sin↵ sin� · sin� � cos� · sin↵ cos�
cos� · cos↵ cos� � (�cos↵ sin�) · sin�

�cos↵ sin� · sin↵ cos� � (�sin↵ sin�) · cos↵ cos�

1
CCCCCCA =

0
BBBBBB@

�sin↵
cos↵
0

1
CCCCCCA .

Les deux composantes de p(~u) dans la base c = (~c1,~c2) sont donc

⌦
p(~u) | ~c1

↵
= (x(1� cos2↵ cos2�)� y sin↵ cos↵ cos2 � � z cos↵ sin� cos�) · (�sin↵) +

+ (�x sin↵ cos↵ cos2 � + y(1� sin2↵ cos2 �)� z sin↵ sin� cos�) · cos↵ +

+ (�x cos↵ sin� cos� � y sin↵ sin� cos� + z cos2 �) · 0
= �x sin↵ + y cos↵

et

⌦
p(~u) | ~c2

↵
= (x(1� cos2↵ cos2 �)� y sin↵ cos↵ cos2 � � z cos↵ sin� cos�) · (�cos↵ sin�) +

+ (�x sin↵ cos↵ cos2 � + y(1� sin2↵ cos2�)� z sin↵ sin� cos�) · (�sin↵ sin�) +

+ (�x cos↵ sin� cos� � y sin↵ sin� cos� + z cos2 �) · cos�
= �x cos↵ sin� � y sin↵ sin� + z cos�.

Ainsi,

cp(~u) =
 

�x sin↵ + y cos↵
�x cos↵ sin� � y sin↵ sin� + z cos�

!
=

 
�sin↵ cos↵ 0

�cos↵ sin� �sin↵ sin� cos�

!
·
 x
y
z

!
,

ce qui montre que

c(p)b =
 

�sin↵ cos↵ 0
�cos↵ sin� �sin↵ sin� cos�

!

est la matrice de la projection p, relativement aux bases b de E3 et c de ⇡.



5 Et en pra. . .TikZ
Les trois colonnes de la dernière matrice sont les colonnes de coordonnées dans la base c de ⇡, des

projections des trois vecteurs de la base b ; autrement dit, ce sont les positions, sur l’épure, des projec-
tions des vecteurs unitaires des trois axes de coordonnées spatiales. Par conséquent, TikZ se chargera de
positionner correctement sur l’épure les points que nous aurons défini par leurs coordonnées tridimen-
sionnelles si nous indiquons parmi les arguments optionnels de l’environnement tikzpicture (ou de
la commande \tikz) :

x={(�sin↵ cm,�cos↵ sin� cm)},y={(cos↵ cm,�sin↵ sin� cm)},z={(0 cm,cos� cm)}

(veiller à utiliser, chaque fois, le double encadrement : parenthèses & accolades, et à ne pas omettre
les unités de longueur). Ces trois options définissent les positions, sur l’épure, des projections des trois
vecteurs de base. Comme nous le verrons dans l’exemple ci-dessous, il est possible de redimensionner
la figure globalement, sans redéfinir ces trois vecteurs.

Par exemple, dans la figure 2, la projection se fait selon le vecteur unitaire ~n dont la longitude et la
latitude sont toutes deux de 30�, sur le plan perpendiculaire. La matrice de cette projection est
 

�sin30� cos30� 0
�cos30� sin30� �sin30� sin30� cos30�

!
=

 
�1/2

p
3/2 0

�
p
3/4 �1/4

p
3/2

!
'

 
�0,500 0,866 0,000
�0,433 �0,250 0,866

!
.

Le code complet de cette figure est le suivant 7 :

\begin{tikzpicture}
[x={(-0.500cm,-0.433cm)},y={(0.866cm,-0.250cm)},z={(0cm,0.866cm)},
scale=2,very thick,join=bevel,fill=magenta!50]
\coordinate(oo)at(0,0,0);
\coordinate(xx)at(1,0,0);
\coordinate(yy)at(0,1,0);
\coordinate(pp)at(1,1,0);
\coordinate(hh)at(0,0,2);
\coordinate(xh)at(1,0,1);
\coordinate(yh)at(0,1,1);
\coordinate(ph)at(1,1,1);
\draw[-latex,thin,fill=black](oo)--(1.3,0,0)node[below left]{$x$};
\draw[-latex,thin,fill=black](oo)--(0,1.3,0)node[right]{$y$};
\draw[-latex,thin,fill=black](oo)--(0,0,2.2)node[above]{$z$};
\filldraw(oo)--(xx)--(pp)--(yy)--cycle;
\filldraw(oo)--(xx)--(xh)--(hh)--cycle;
\filldraw(oo)--(hh)--(yh)--(yy)--cycle;
\filldraw(xx)--(pp)--(ph)--(xh)--cycle;
\filldraw(yy)--(yh)--(ph)--(pp)--cycle;
\filldraw(xh)--(ph)--(hh)--cycle;
\filldraw(yh)--(hh)--(ph)--cycle;
\end{tikzpicture}

Tous les points sont définis par leurs coordonnées tridimensionnelles et TikZ se charge, comme un
grand, de calculer leurs projections. Par contre, TikZ ne gère pas du tout le vu et le caché ; afin que la
figure soit correcte de ce point de vue, l’utilisateur doit lui-même veiller à faire construire les di↵érents
éléments de la figure de l’arrière vers l’avant. Ceci, heureusement, n’empêche pas de modifier a posteriori
le « point de vue », c’est-à-dire la direction de projection, tant que l’on reste, ici par exemple, dans le
premier octant (0  ↵  ⇡/2, 0  �  ⇡/2).

Par exemple, si nous décidons d’employer l’axonométrie « isométrique », comme sur la figure 6, nous
utilisons le vecteur ~n qui fait le même angle (✓ = arccos(1/

p
3), soit environ 55�) avec les trois axes de

coordonnées ; donc ici ↵ = ⇡/4 et � = ⇡/2�✓ = arcsin(1/
p
3), et la matrice de la projection devient

 
�
p
2/2

p
2/2 0

�
p
6/6 �

p
6/6

p
6/3

!
'

 
�0,707 0,707 0,000
�0,408 �0,408 0,816

!
.

La seule modification à apporter au code ci-dessus est le remplacement de la deuxième ligne par

[x={(-0.707cm,-0.408cm)},y={(0.707cm,-0.408cm)},z={(0cm,0.816cm)},.

7. Une très brève introduction à TikZ se trouve dans les deux articles suivants : Pascal Dupont, LATEX, un peu, beaucoup —
12. TikZ (1), Losanges 33 (2016), 59–64 ; Pascal Dupont, LATEX, un peu, beaucoup — 13. TikZ (2), Losanges 34 (2016), 55–60.
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Figure 6 – Axonométrie « isométrique »

Une autre limitation est que les chemins ainsi tracés ou remplis ne peuvent contenir que l’opération
« -- » ; des opérations telles que « circle », « rectangle », &c., sont spécifiques au dessin bidimension-
nel ; d’ailleurs, à bien y réfléchir, si nous utilisions cette dernière, dans quel plan devrait se trouver le
rectangle ? Ce plan n’est pas déterminé par les deux sommets du rectangle. . .

Si nous nous entêtons à utiliser les opérations « circle » ou « rectangle » dans une figure en pers-
pective, nous serons déçus : nous obtiendrons un cercle ou un rectangle (à côtés parallèles aux bords du
dessin), là où nous espérions obtenir leurs projections : une ellipse ou un parallélogramme.

Malgré leurs limitations, ces méthodes sont simples et élégantes. Malheureusement, elles ne per-
mettent pas de construire des figures en perspective conique ; la figure 3 a été obtenue en calculant
préalablement les coordonnées planes de la projection de chacun des sommets du solide.

Un petit cadeau pour terminer : six vues de la collégiale Saint-Barthélémy de Liège.



↵ = 0�, � = 0� ↵ = 0�, � = 30�

↵ = �60�, � = 0� ↵ = �60�, � = 30�

↵ = �90�, � = 0� ↵ = �90�, � = 30�

Figure 7 – Six vues de la collégiale Saint-Barthélémy de Liège
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