RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES

Source: https://www.windpowerengineering.com/projects/offshore-wind/drone-inspects-offshore-wind-farm/

Source: https://www.deltares.nl/en/projects/cutting-maintenance-costs-offshorewind-farms-using-improved-forecasts/

Source: https://motherboard.vice.com/en_us/article/8qxz55/wind-turbine-drone-inspectionwill-be-a-6-billion-industry-in-under-10-years

Pablo G. Morato Prof. Philippe Rigo ANAST – University of Liège

Introduction

Escuela Técnica Superior de Pablo is a Maritime Engineer... Ingenieros Navales POLITÉCNICA ... specialized in Offshore Renewable Energy... University of Strathclyde Glasgow LIÈGE université Sciences Appliquées ... and Advanced Design of Offshore Structures... CENTRALE Universität Rostock Traditio et Innovatio ints Now?... PhD in Risk-Based Maintenance of Offshore Wind Substructures AALBORG UNIVERSITY UEE Urban & Environmental Engineering

RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES

Context: Offshore Wind

Far away from shore ...Complex O&M tasks Reduce LCOE...

Wind Operations and Maintenance

Information availableInspections Monitoring...

Source: https://www.researchgate.net/figure/Opticalstrain-gauges-as-installed-at-a-Belwind-and-b-Northwind

Source: https://www.deltares.nl/en/projects/cuttingmaintenance-costs-offshore-wind-farms-usingimproved-forecasts

RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES Pablo G. Morato pgmorato@uliege.be

(€/MWh)

UEE Urban & Environmental Engineering

Aim: Decision Support

'Taking the right decision under <u>uncertainty</u>'

RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES Pablo G. Morato pgmorato@uliege.be

UEE Urban & Environmental Engineering

Uncertainties Modeling

Deterioration Model - Fatigue

Fracture Mechanics Calibration

Why fatigue? -

RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES Pablo G. Morato pgmorato@uliege.be

Combined action of wind & waves ~10⁸ cycles/lifetime

Updating Reliability - Inspections

Optimization: RISK = **Probability** * Consequence

Pablo G. Morato pgmorato@uliege.be

Urban & Environmental Engineering

Utilizing Monitoring Data

Optimization: RISK = **Probability** * Consequence

RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES

Cost Optimization

Optimization: RISK = Probability * Consequence

RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES

Decision Problem (II)

RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES

Simplification to Decision Problem

Heuristic Rule: 'Constant intervals of time'

More simplifications...

- Perfect inspections
- Repair if detected

RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES

Dynamic Approach for Maintenance Planning

MARKOV Models

Partially Observable Markov Decision Processes (POMDP)

Point-based algorithms — Reduces **CPU time** significantly

60-states POMDP including 3 combined actions — Only **0.32 seconds of CPU time**

RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES

System Effects for Planning

Where to perform inspections?

Past...

Components analyzed separately

Future...

Considering **Dependencies** Shared epistemic uncertainty

- Similar manufacturing
- Similar loading

'Lower costs can be attained'

Source: https://www.huffingtonpost.com/entry/deepwateroffshore-wind-farm_us_581a311fe4b0c43e6c1d9715

Source: https://www.telegraph.co.uk/business/2016/12/13/first-usoffshore-wind-farm-opens-rhode-islands-coast-ge-turbines/

RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES

Impact: Life extension

Fixed-Offshore Wind Farms...

Year 0

Source: https://corporate.vattenfall.co.uk/projects/

... Lifetime Reassessment Life extension

... Utilize gathered data **Inspections / SCADA**

RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES Pablo G. Morato pgmorato@uliege.be

Year 20

Impact: Desing Optimization

Floating Offshore Wind Farms...

Year 20

Source: https://www.marinelog.com/index.php?option=com_k2&view=item&id=26727:france%E2% 80%99s-first-wind-farm-to-feature-floating-wind-turbines&Itemid=257

- ... Probabilistic Design Reduce Safety Design Factor
- ... Utilize information
 Optimize resources

Year 0

RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES

Conclusion

- Decision support under uncertainty
- Utilizing available DATA
- Engineering: Optimization of the resources!

*Contact me for more info 🙂

RISK-BASED MAINTENANCE OPTIMIZATION OF OFFSHORE WIND SUBSTRUCTURES

