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NN interaction in a Goldstone boson exchange model

D. Bartz* and Fl. Stancu†

Institut de Physique B.5, Universite´ de Liège, Sart Tilman, B-4000 Lie`ge 1, Belgium
~Received 29 March 1999; published 5 October 1999!

Adiabatic nucleon-nucleon potentials are calculated in a six-quark nonrelativistic chiral constituent quark
model where the Hamiltonian contains a linear confinement and a pseudoscalar meson~Goldstone boson!
exchange interaction between quarks. Calculations are performed both in a cluster model and a molecular
orbital basis, through coupled channels. In both cases the potentials present an important hard core at short
distances, explained through the dominance of the@51#FS configuration, but do not exhibit an attractive pocket.
We add a scalar meson exchange interaction and show how it can account for some middle-range attraction.
@S0556-2813~99!04510-0#

PACS number~s!: 24.85.1p, 21.30.2x, 13.75.Cs
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I. INTRODUCTION

There have been many attempts to study the nucle
nucleon interaction starting from a system of six interact
quarks described by a constituent quark model. These m
els explain the short-range repulsion as due to the color m
netic part of the one-gluon exchange~OGE! interaction be-
tween quarks and due to quark interchanges between twq
clusters@1,2#. To the OGE interaction it was necessary to a
a scalar and a pseudoscalar meson exchange interactio
tween quarks of different 3q clusters in order to explain th
intermediate- and long-range attraction between two nu
ons @3–5#.

In a previous work@6# we have calculated the nucleon
nucleon (NN) interaction potential at zero-separation d
tance between two three-quark clusters in the framework
constituent quark model@7–9# where the quarks interact vi
pseudoscalar meson exchange, i.e., Goldstone boson
change~GBE! instead of OGE. An important motivation i
using the GBE model is that it describes well the bary
spectra. In particular, it correctly reproduces the order
positive and negative parity states both for nonstrange@8#
and strange@9# baryons where the OGE model has failed

The underlying symmetry of the GBE model is related
the flavor-spin SUF(3)3SUS(2) group. Combining it with
the S3 symmetry, a thorough analysis performed for theL
51 baryons@10# has shown that the chiral quark pictu
leads to more satisfactory fits to the observed baryon s
trum than the OGE models.

The one-pion exchange potential between quarks app
naturally as an iteration of the instanton-induced interact
in the t channel@11#. The meson exchange picture is al
supported by explicit QCD lattice calculations@12#.

Another motivation in using the GBE model is that th
exchange interaction contains the basic ingredients requ
by theNN problem. Its long-range part, required to provi
the long-rangeNN interaction, is a Yukawa-type potentia
depending on the mass of the exchange meson. Its s
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range part, of opposite sign to the long-range one, is ma
responsible for the good description of the baryon spe
@7–9# and also induces a short-range repulsion in theNN
system, both in the3S1 and 1S0 channels@13#. The present
study is an extension of@6# and we calculate here the inte
action potential between two 3q clusters as a function ofZ,
the separation distance between the centers of the clus
This separation distance is a good approximation of the
cobi relative coordinate between the two clusters. Under
assumption, here we calculate the interaction potential in
adiabatic~Born-Oppenheimer! approximation, as explained
below.

A common issue in solving theNN problem is the con-
struction of adequate six-quark basis states. The usual ch
is a cluster model basis@1,2,14#. In calculating the potentia
at zero-separation distance, in Ref.@6# we used molecular-
type orbitals@15# and compared the results with those bas
on cluster model single-particle states. The molecular or
als have the proper axially and reflectionally symmetries a
can be constructed from appropriate combinations of tw
center Gaussians. At zero separation between the 3q clusters
the six-quark states obtained from such orbitals contain
tain pns62n configurations which are missing in the clust
model basis. By using molecular orbitals, in Ref.@6# we
found that the height of the repulsion reduces by about 2
and 25% in the3S1 and 1S0 channels, respectively, with
respect to cluster model results. It is therefore useful to a
lyze the role of molecular orbitals at distancesZÞ0. By
construction, atZ→` the molecular orbital states are simp
parity conserving linear combinations of cluster mod
states. Their role is expected to be important at short rang
least. They also have the advantage of forming an orthogo
and complete basis while the cluster model~two-center!
states are not orthogonal and are overcomplete. For this
son we found that in practice they are more convenient to
used than the cluster model basis, where one must care
@14# consider the limitZ→0. Here, too, for the purpose o
comparison we perform calculations both in the clus
model and the molecular orbital basis.

In Sec. II we recall the procedure of constructing molec
lar orbital single-particle states starting from the two-cen
Gaussians used in the cluster model calculations. In Sec
©1999 The American Physical Society07-1
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D. BARTZ AND FL. STANCU PHYSICAL REVIEW C60 055207
the GBE Hamiltonian is presented. Section IV is devoted
the results obtained for theNN potential. In Sec. V we in-
troduce a middle-range attraction through a scalar meson
change interaction between quarks parametrized consist
with the pseudoscalar meson exchange. The last sectio
devoted to a summary and conclusions.

II. SINGLE-PARTICLE ORBITALS

In the cluster model one can define states which in
limit of large intercluster separationZ are rightR and leftL
states:

R5cS rW2
ZW

2
D and L5cS rW1

ZW

2
D . ~1!

In the simplest cluster model basis these are ground s
harmonic oscillator wave functions centered atZ/2 and
2Z/2, respectively. They contain a parameterb which is
fixed variationally to minimize the nucleon mass describ
as a 3q cluster within a given Hamiltonian. The states~1! are
normalized but are not orthogonal at finiteZ. They have
good parity about their centers but not about their comm
centerrW50.

From R and L one constructs six-quark states of giv
orbital symmetry@ f #O . The totally antisymmetric six-quark
states also contain a flavor-spin part of symmetry@ f #FS and a
color part of symmetry@222#C . In the cluster model the
most important basis states@13# for the Hamiltonian de-
scribed in the following section are

uR3L3@6#O@33#FS&, ~2!

uR3L3@42#O@33#FS&, ~3!

uR3L3@42#O@51#FS&, ~4!

uR3L3@42#O@411#FS&. ~5!

Harvey @14# has shown that with a proper normalization t
symmetry@6#O contains onlys6 and @42#O only s4p2 con-
figurations in the limitZ→0.

According to Ref.@15# let us consider now molecular or
bital single-particle states. Most generally these are eig
states of a HamiltonianH0 having axial and reflectional sym
metries characteristic of theNN problem. These eigenstate
have therefore good parity and good angular momentum
jection. As in the cluster model basis where one uses the
lowest statesR andL, in the molecular orbital basis we als
consider the two lowest states,s of positive parity andp of
negative parity. From these we can construct pseudorigr
and pseudoleftl states as

F rl G5221/2~s6p! for all Z, ~6!

where

^r ur &5^ l u l &51, ^r u l &50. ~7!
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In principle one can obtain molecular orbital single-partic
states from mean field calculations~see, for example,@16#!.
Here we approximate them by good parity, orthonorm
states constructed from the cluster model states~1! as

Fs
p G5@2~16^RuL&!#21/2~R6L !. ~8!

Such molecular orbitals are a very good approximation to
exact eigenstates of a ‘‘two-center’’ oscillator frequen
used in nuclear physics or occasionally@17# in the calcula-
tion of theNN potential. They provide a convenient basis f
first-step calculations based on the adiabatic approxima
as described below.

Introduced in Eq.~6! they give

F rl G5 1

2 F R1L

~11^RuL&!1/26
R2L

~12^RuL&!1/2G . ~9!

At Z→0 one hass→s andp→p ~with m50,61) wheres
and p are harmonic oscillator states. Thus in the limitZ
→0 one has

F rl G521/2~s6p!, ~10!

and atZ→` one recovers the cluster model basis beca
r→R and l→L.

Equation~9! with R and L defined by Eqs.~1! ensures
that the sameZ is used both in the molecular and clust
model bases.

From (r ,l ) as well as from~s,p! orbitals one can con-
struct six-quark states of the required permutation symme
For the S6 symmetries relevant for theNN problem the
transformations between six-quark states expressed in te
of (r ,l ) and ~s,p! states are given in Table I of Ref.@15#.
This table shows that in the limitZ→0 six-quark states ob
tained from molecular orbitals contain configurations of t
type snp62n with n50,1,. . . ,6. Forexample, the@6#O state
containss6, s6p4, s2p4, andp6 configurations and the@42#O
state associated with theS channel containss4p2 and s2p4

configurations. This is in contrast to the cluster model ba
where@6#O contains onlys6 and @42#O only s4p2 configu-
rations, as mentioned above. This suggests that the six-q
basis states constructed from molecular orbitals form a ric
basis without introducing more single particle states.

Using Table I of Ref.@15# we find that the six-quark basi
states needed for the3S1 or 1S0 channels are

u33@6#O@33#FS&5
1

4
u@A5~s62p6!2A3~s4p22s2p4!#

3@6#O@33#FS&, ~11!

u33@42#O@33#FS&5A1

2
u@s4p22s2p4#@42#O@33#FS&,

~12!
7-2
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NN INTERACTION IN A GOLDSTONE BOSON . . . PHYSICAL REVIEW C 60 055207
u33@42#O@51#FS&5A1

2
u@s4p22s2p4#@42#O@51#FS&,

~13!

u33@42#O@411#FS&5A1

2
u@s4p22s2p4#@42#O@411#FS&,

~14!

u421@6#O@33#FS&5
1

4
A1

2
u@A15~s61p6!2~s4p2

1s2p4!#@6#O@33#FS&, ~15!

u421@42#O@33#FS&5A1

2
u@s4p21s2p4#@42#O@33#FS&,

~16!

u421@42#O@51#FS&5A1

2
u@s4p21s2p4#@42#O@51#FS&,

~17!

u421@42#O@411#FS&5A1

2
u@s4p21s2p4#@42#O@411#FS&,

~18!

u511@6#O@33#FS&5
1

4
u@A3~s62p6!1A5~s4p22s2p4!#

3@6#O@33#FS&, ~19!

where the notation 33 andmn1 on the left-hand side of eac
equality above meansr 3l 3 and r ml n1r nl m as in Ref.@15#.
Each wave function contains an orbital part (O) and a
flavor-spin part~FS! which combined with the color single
@222#C state gives rise to a totally antisymmetric state. W
restricted the flavor-spin states to@33#FS , @51#FS , and
@411#FS as for the cluster model basis~2!–~5!.

As explained above, besides being poorer insnp62n con-
figurations, the number of basis states is smaller in the c
ter model although we deal with the same@ f #O and @ f #FS
symmetries and the same harmonic oscillator statess andp
in both cases. This is due to the existence of three-qu
clusters only in the cluster model states, while the molecu
basis also allows configurations with five quarks to the
and one to the right, or vice versa, or four quarks to the
and two to the right or vice versa. At large separations th
states act as ‘‘hidden color’’ states but at short- and mediu
range separation distances they are expected to bring a
nificant contribution, as we shall see below. The ‘‘hidd
color’’ are states where a 3q cluster in ans3 configuration is
a color octet, in contrast to the nucleon which is a co
singlet. Their role is important at short separations bu
vanishes at large ones~see, e.g.,@14#!.

III. HAMILTONIAN

The GBE Hamiltonian considered in this study has
form @8,9#
05520
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~( i pW i !
2

2( imi
1(

i , j
Vconf~r i j !

1(
i , j

Vx~r i j !, ~20!

with the linear confining interaction

Vconf~r i j !52
3

8
l i

c
•l j

c~V01Cri j ! ~21!

and the spin-spin component of the GBE interaction in
SUF(3) form:

Vx~r i j !5H (
F51

3

Vp~r i j !l i
Fl j

F1 (
F54

7

VK~r i j !l i
Fl j

F

1Vh~r i j !l i
8l j

81Vh8~r i j !l i
0l j

0J sW i•sW j , ~22!

with l05A2/31, where1 is the 333 unit matrix. The inter-
action ~22! containsg5p, K, h, and h8 meson exchange
terms and the form ofVg(r i j ) is given as the sum of two
distinct contributions: a Yukawa-type potential containi
the mass of the exchanged meson and a short-range co
bution of opposite sign, the role of which is crucial in baryo
spectroscopy.

In the parametrization of Ref.@8# the exchange potentia
due to a mesong has the form

Vg~r !5
gg

2

4p

1

12mimj
H u~r 2r 0!mg

2 e2mgr

r
2

4

Ap
a3

3exp@2a2~r 2r 0!2#J . ~23!

The shifted Gaussian of Eq.~23! results from a pure phe
nomenological fit~see below! of the baryon spectrum with

r 050.43 fm, a52.91 fm21. ~24!

For a system ofu andd quarks only, as is the case her
theK exchange does not contribute. Thea priori determined
parameters of the GBE model are the masses

mu,d5340 MeV, mp5139 MeV,

mh5547 MeV, mh85958 MeV. ~25!

The other parameters are given in Table I.
It is useful to comment on Eq.~23!. The coupling of pseu-

doscalar mesons to quarks~or nucleons! gives rise to a two-
body interaction potential which contains a Yukawa-ty

TABLE I. Parameters of the Hamiltonian~20!–~25!.

V0 ~MeV! C (fm22) g8
2/4p g0

2/4p Reference

0 0.474 0.67 1.206 @8#
7-3
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D. BARTZ AND FL. STANCU PHYSICAL REVIEW C60 055207
term and a contact term of opposite sign~see, e.g.,@18#!. The
second term of Eq.~23! stems from the contact term, regu
larized with parameters fixed phenomenologically. Certai
more fundamental studies are required to understand
second term and attempts are being made in this direc
The instanton liquid model of the vacuum~for a review see
@19#! implies pointlike quark-quark interactions. To obtain
realistic description of the hyperfine interaction this intera
tion has to be iterated in thet channel@11#. The t channel
iteration admits a meson exchange interpretation@20#.

In principle it would be better to use a parametrization
the GBE interaction as given in@21# based on a semirelativ
istic Hamiltonian. However, in applying the quark clust
approach to two-baryon systems we are restricted to u
nonrelativistic kinematics and ans3 wave function for the
ground state baryon.

The matrix elements of the Hamiltonian~20! are calcu-
lated in the bases~2!–~5! and ~11!–~19! by using the frac-
tional parentage technique described in Refs.@14,22# and
also applied in Ref.@13#. A program based onMATHEMATICA

@23# has been created for this purpose. In this way ev
six-body matrix element reduces to a linear combination
two-body matrix elements of either symmetric or antisy
metric states for which Eqs.~3.3! of Ref. @7# can be used to
integrate in the flavor-spin space.

IV. RESULTS

We diagonalize the Hamiltonian~20!–~25! in the six-
quark cluster model basis~2!–~5! and in the six-quark mo-
lecular orbital basis~11!–~19! for values of the separatio
distanceZ up to 2.5 fm. Using in each case the lowest
genvalue, denoted bŷH&Z , we define theNN interaction
potential in the adiabatic~Born-Oppenheimer! approxima-
tion as

VNN~Z!5^H&Z22mN2K rel . ~26!

Here mN is the nucleon mass obtained as a variationals3

solution for a 3q system described by the Hamiltonian~20!.
The wave function has the formf}exp@2(r21l2)/2b2#

where r5(rW12rW2)/A2 and lW 5(rW11rW222rW3)/A6. The
variational solution formN5^H&3q and the correspondingb
is given in Table II. The same value ofb is also used for the
6q system. This is equivalent to imposing the ‘‘stability co
dition’’ which is of crucial importance in resonating grou
method~RGM! calculations@1,2#. The quantityK rel repre-
sents the relative kinetic energy of two 3q clusters separate
at infinity:

TABLE II. Variational solution of the Hamiltonian~20!–~25!
for the nucleon massmN with b as a variational parameter~see
text!.

b ~fm! mN ~MeV!

0.437 969.6
05520
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K rel5
3\2

4mb2 , ~27!

wherem above and in the following designates the mass
the u or d quark. For the value ofb of Table II this gives
K rel50.448 GeV.

A. Cluster model

In Fig. 1 we present the expectation value of the kine
energy^KE& as a function ofZ. One can see that for the sta
uR3L3@42#O& it decreases with Z but for the state
uR3L3@6#O& it first reaches a minimum at aroundZ
>0.85 fm and then tends to an asymptotic value equal to
value at the origin due to itss6 structure. This value is

^KE&Z505^KE&Z5`5
15

4
\v, ~28!

where \v5\2/mb2. Actually this is also the asymptotic
value for all states.

The diagonal matrix elements of the confinement pot
tial are presented in Fig. 2. BeyondZ.1.5 fm one can notice
a linear increase except for theuR3L3@42#O@51#FS& state
where it reaches a plateau of 0.3905 GeV.

As an example the diagonal matrix elements of the ch
interactionVx are exhibited in Fig. 3 forS51, I 50. At Z
50 one recovers the values obtained in Ref.@6#. At Z→`
the symmetries corresponding to baryon-baryon chann
namely,@51#FS and@33#FS , must appear with proper coeffi
cients, as given by Eq.~29!. The contribution due to thes
symmetries must be identical to the contribution ofVx to two
nucleon masses also calculated with the Hamiltonian~20!.
This is indeed the case. In the total Hamiltonian the con
bution of the @411#FS Vx state tends to infinity whenZ
→`. Then this state decouples from the rest which is natu
because it does not correspond to an asymptotic bary
baryon channel. It plays a role at smallZ but at largeZ its

FIG. 1. The cluster model basis. The expectation value of
kinetic energŷ KE& as a function of the separation distanceZ be-
tween two 3q clusters. The asymptotic value of 2.242 GeV, giv
by Eq. ~28!, is indicated. The solid line corresponds tou@6#O& and
the dashed line tou@42#O& states.
7-4
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NN INTERACTION IN A GOLDSTONE BOSON . . . PHYSICAL REVIEW C 60 055207
amplitude in theNN wave function vanishes, similarly to th
‘‘hidden color’’ states. Actually, in diagonalizing the tota
Hamiltonian in the basis~2!–~5! we obtain anNN wave
function which in the limitZ→` becomes@14#

cNN5
1

3
u@6#O@33#FS&1

2

3
u@42#O@33#FS&2

2

3
u@42#O@51#FS&.

~29!

The adiabatic potential drawn in Figs. 4 and 5 is defin
according to Eq.~26! where ^H&Z is the lowest eigenvalue
resulting from the diagonalization. Figure 4 corresponds
S51, I 50 and Fig. 5 toS50, I 51. Note that from these
curves one should subtractK rel of Eq. ~27! in order to obtain
the asymptotic value zero for the potential. One can see
the potential is repulsive at anyZ in both sectors.

FIG. 2. The cluster model basis. The expectation value ofVconf

of Eq. ~21!. The corresponding states are~1! u@6#O@33#FS&, ~2!
u@42#O@33#FS&, ~3! u@42#O@51#FS&, and ~4! u@411#O@51#FS&. Note
that for curve~3! the scale is on the right-hand side~RHS! vertical
line.

FIG. 3. The cluster model basis. The expectation value of
chiral interaction, Eqs.~22!–~25!, for S51, I 50. The curves are
numbered as in Fig. 2 and the scale for~3! is also on the rhs vertica
line.
05520
d
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Our cluster model results can be compared to previ
literature based on OGE models. A typical example for
3S1 and 1S0 adiabatic potentials can be found in Ref.@24#.
The results are similar to ours. There is a repulsive core
no attractive pocket. However, in our case, in either ba
the core is about twice higher atZ50 and about 0.5 fm
wider than in@24#.

B. Molecular orbital basis

In the molecular basis the diagonal matrix elements of
kinetic energy are similar to each other as decreasing fu
tions of Z. As an illustration in Fig. 6 we shoŵKE& corre-
sponding tou33@6#O@33#FS& and to the most dominant stat
at Z50, namely,u421@42#O@51#FS& ~see @6#!. The kinetic
energy of the latter is larger than that of the former beca
of the presence of the configurations2p4 with a 50% prob-
ability while in the first state this probability is smaller a
well as that of thep6 configuration; see Eqs.~11! and ~17!.
The large kinetic energy of the state~17! is compensated by
large negative values of̂Vx& so that this state become
dominant at smallZ in agreement with Ref.@6#.

e

FIG. 4. Comparison of the adiabatic potential forS51, I 50,
calculated in the cluster model basis~solid curve! and the molecular
orbital basis~dashed curve!.

FIG. 5. Same as Fig. 6 but forS50, I 51.
7-5
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D. BARTZ AND FL. STANCU PHYSICAL REVIEW C60 055207
The expectation values of the confinement potential
crease withZ becoming linear beyondZ.1.5 fm except for
the stateu33@42#O@51#FS& which gives a result very muc
similar to the cluster model stateuR3L3@42#O@51#FS& drawn
in Fig. 2. Such a behavior can be understood through
details given in the Appendix. As a result of the similarity
the cluster model results, we do not show here^Vconf& ex-
plicitly for the molecular orbital basis.

The expectation value of the chiral interaction either d
creases or increases withZ depending on the state. In Fig.
we illustrate the case of theu421@42#O@51#FS& state both for
S51, I 50 andS50, I 51 sectors. This state is the domina
component ofcNN at Z50 with a probability of 87% for
SI5(10) and 93% forSI5(01) @6#. With increasingZ these
probabilities decrease and tend to zero atZ→`. In fact in
the molecular orbital basis the asymptotic form ofcNN is

FIG. 6. The molecular orbital basis. The expectation value
the kinetic energŷ KE& for the u@6#O@33#FS& ~solid curve! and
u421@42#O@51#FS& ~dashed curve! states@see Eqs.~11! and ~17!,
respectively#. The latter is the most dominant state atZ50 ~see
text!.

FIG. 7. The molecular orbital basis. The expectation value
the chiral interaction, Eqs.~22!–~25!, for u421@42#O@51#FS& which
is the most dominant state atZ50. The dashed curve correspon
to S51, I 50 and the solid curve toS50, I 51.
05520
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also given by Eq.~29! inasmuch asr→R and l→L as indi-
cated below Eq.~10!.

Adding together these contributions we diagonalize
Hamiltonian and use its lowest eigenvalue to obtain theNN
potential according to the definition~26!. TheS51, I 50 and
S50, I 51 cases are illustrated in Figs. 4 and 5, respective
for a comparison with the cluster model basis. As shown
Ref. @6# at Z50 the repulsion reduces by about 22% a
25% in the3S1 and 1S0 channels, respectively, when passi
from the cluster model basis to the molecular orbital ba
From Figs. 4 and 5 one can see that the molecular orb
basis has an important effect up to aboutZ'1.5 fm, giving a
lower potential at small values ofZ. For Z'1 fm it gives a
potential larger by a few tens of MeV than the cluster mo
potential. However, there is no attraction at all in either ca

Actually, by construction, the molecular orbital basis
richer at Z50 @15# than the cluster model basis. For th
reason, at smallZ it leads to a lower potential than the clust
model basis. Within a truncated space this property may
hold beyond some value ofZ. However, by an increase o
the Hilbert space one can possibly bring the molecular
tential lower again. In fact we chose the most important c
figurations from symmetry arguments@13# based on Casimir
operator eigenvalues. These arguments hold if the interac
is the same for all quarks in the coordinate space. Thi
certainly a better approximation forZ50 than for larger val-
ues ofZ. So it means that other configurations, which ha
been neglected, may play a role atZ.0.4 fm. Then, if
added, they could possibly lower the molecular basis res

As defined in Sec. II the quantityZ is the separation dis
tance between two 3q clusters. It represents the Jacobi re
tive coordinate between the two nucleons only for largeZ.
We view it as a generator coordinate and the potential
obtain represents the diagonal kernel appearing in the r
nating group or the generator coordinate method. The c
parison given above should then be considered in the con
of the generator coordinate method which will be develop
in further studies and will lead to nonlocal potentials. Ho
ever, the adiabatic potentials, calculated in the two bases,
be compared with each other in an independent and diffe
way. One can introduce the quadrupole moment of the
quark system,

q205(
i 51

6

r i
2Y20~ r̂ i !, ~30!

and treat the square root of its expectation value

^Q&5^cNNuq20ucNN& ~31!

as a collective coordinate describing the separation betw
the two nucleons. ObviouslyA^Q&→Z for largeZ.

In Fig. 8 we plotA^Q& as a function ofZ. The results are
practically identical forIS5(01) and IS5(10). Note that
A^Q& is normalized such as to be identical toZ at largeZ.
One can see that the cluster model basis givesA^Q&50 at
Z50, consistent with the spherical symmetry of the syste
while the molecular basis result isA^Q&50.573 fm at Z

f

f
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50, which suggests that the system acquires a small de
mation. This also means that its rms radius is larger in
molecular basis.

In Figs. 9 and 10 we plot the adiabatic potentials a
function of A^Q& instead ofZ, for IS5(01) and~10!, re-
spectively. AsA^Q&Þ0 at anyZ in the molecular orbital
basis, the corresponding potential is shifted to the right
appears above the cluster model potential at finite value
A^Q& but tends asymptotically to the same value. The co
parison made in Figs. 9 and 10 is meaningful in the cont
of a Schro¨dinger-type equation where a local potential a
pears in conjunction with an effective mass depending
A^Q& also. Such an effective mass can be obtained thro
the resonating group method, for example.

V. MIDDLE RANGE ATTRACTION

In principle we expected some attraction at largeZ due to
the presence of the Yukawa potential tail in Eq.~23!. To see

FIG. 8. A^Q& for IS5(01) or ~10! as a function ofZ with ^Q&,
defined by Eq.~31! and normalized as indicated in the text. Th
solid line corresponds to the cluster model basis and the da
line, to the molecular orbital basis.

FIG. 9. The adiabatic potential forS51, I 50 as a function of
A^Q&. The solid line is the cluster model result and the dashed l
the molecular orbital basis result.
05520
r-
e
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the net contribution of this part of the quark-quark intera
tion we repeated the calculations in the molecular orb
basis by completely removing the first term—the Yukaw
potential part—in Eq.~23!. The result is shown in Fig. 11 fo
SI5(10). One can see that beyondZ'1.3 fm the contribu-
tion of the Yukawa potential tail is very small, of the order
1–2 MeV. At small values ofZ the Yukawa part of Eq.~23!
contributes to increase the adiabatic potential because i
minishes the attraction in the two-body matrix elements.

The missing medium- and long-range attraction can
principle be simulated in a simple phenomenological w
For example, in Ref.@1# this has been achieved at the bary
level. Here we adopt a more consistent procedure assum
that besides the pseudoscalar meson exchange interacti
Sec. III there exists an additional scalar,s-meson exchange
interaction between quarks. This is in the spirit of the spo
taneous chiral symmetry breaking mechanism on which
GBE model is based. Thes meson is the chiral partner of th
pion and it should be considered explicitly.

Actually once the one-pion exchange interaction betwe
quarks is admitted, one can inquire about the role of at le

ed

e,

FIG. 10. Same as Fig. 9 but forS50, I 51.

FIG. 11. The adiabatic potential in the molecular orbital ba
for SI5(10). The solid curve is the same as in Fig. 6. The das
curve is the result obtained by removing the Yukawa part of
quark-quark interaction~23!.
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two-pion exchanges. Recently it was found@20# that the two-
pion exchange also plays a significant role in the quark-qu
interaction. It enhances the effect of the isospin-depend
spin-spin component of the one-pion exchange interac
and cancels out its tensor component. Apart from tha
gives rise to a spin-independent central component, wh
averaged over the isospin wave function of the nucleon p
duces an attractive spin-independent interaction. These
ings also support the introduction of a scalar~s-meson! ex-
change interaction between quarks as an approxim
description of the two-pion exchange loops.

For consistency with the parametrization@8# we consider
here a scalar quark-quark interaction of the form

Vs~r !5
gs

2

4p

1

12mimj
H u~r 2r 08!ms

2 e2msr

r
2

4

Ap
a83

3exp@2a82~r 2r 08!2#J , ~32!

wherems5675 MeV, andr 08 , a8 and the coupling constan
gs

2/4p are arbitrary parameters. In order to be effective
medium-range separation between nucleons we expect
interaction to haver 08Þr 0 and a8Þa. Note that the factor
1/mimj has only been introduced for dimensional reason

We first looked at the baryon spectrum with the sa
variational parameters as before. The only modification
shift of the whole spectrum which would correspond to ta
ing V0'260 MeV in Eq.~21!.

For the 6q system we performed calculations in the m
lecular basis, which is more appropriate than the clus
model basis. We found that the resulting adiabatic poten
is practically insensitive to changes inms and r 08 but very
sensitive toa8. In Fig. 12 we show results for

r 0850.86 fm, a851.47 fm21, gs
2/4p5g8

2/4p.
~33!

FIG. 12. The adiabatic potential in the molecular orbital ba
for SI5(10) ~full curve! and SI5(01) ~dashed curve! with pseu-
doscalar1 scalar quark-quark interaction.
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One can see thatVs produces indeed an attractive pocke
deeper forSI5(10) than for~01!, as it should be for theNN
problem. The depth of the attraction depends essentially
a8. The precise values of the parameters entering Eq.~32!
should be determined in further RGM calculations. As me
tioned above the Born-Oppenheimer potential is in fact
diagonal RGM kernel. It is interesting that an attracti
pocket is seen in this kernel when as-meson exchange in
teraction is combined with pseudoscalar meson excha
and OGE interactions~hybrid model!, the whole being fitted
to theNN problem@25#.

VI. SUMMARY

We have calculated theNN potential in the adiabatic ap
proximation as a function ofZ, the separation distance be
tween the centers of the two 3q clusters. We used a constitu
ent quark model where quarks interact via pseudosc
meson exchange. The orbital part of the six-quark states
constructed either from cluster model or molecular orb
single particle states. The latter are more realistic, having
proper axial and reflectional symmetries. Also technica
they are more convenient. We explicitly showed that they
important at small values ofZ. In particular we found that
theNN potential obtained in the molecular orbital basis ha
less repulsive core than the one obtained in the cluster m
basis. However, none of the bases leads to an attrac
pocket. We have simulated this attraction by introducing
s-meson exchange interaction between quarks.

To have a better understanding of the two bases we h
also calculated the quadrupole moment of the 6q system as a
function ofZ. The results show that in the molecular orbit
basis the system acquires some small deformation eve
Z50. When the potential is plotted as a function of the qua
rupole moment it looks more repulsive in the molecular
bital than in the cluster model basis. In this light one cou
naively expect that the molecular basis will lead to scatter
phase shifts having a more repulsive behavior than the ot

The present calculations give us an idea about the size
shape of the hard core produced by the GBE interact
Except for small values ofZ the two bases give rather simila
potentials. TakingZ as a generator coordinate the followin
step is to perform a dynamical study based on the resona
group method which will provide phase shifts to be co
pared to the experiment. The present results constitute
intermediate step towards such a study.

ACKNOWLEDGMENTS

We are very grateful to L. Wilets, K. Shimizu, and L
Glozman for useful comments.

APPENDIX

In this appendix we study the behavior of the confinem
potential in the molecular orbital basis at large separat
distanceZ between the centers of two 3q clusters. As an
example we consider the stateu421@42#O@33#FS&. Through
the fractional parentage technique@14,22# the six-body ma-

s
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trix elements can be reduced to the calculation of two-bo
matrix elements. Using this technique and integrating in
color space one obtains

^421@42#O@33#FSuVconfu421@42#O@33#FS&

5
1

40
@22̂ ppuVupp&176̂ spuVusp&126̂ spuVups&

258̂ ppuVuss&122̂ ssuVuss&#, ~A1!

where the right-hand side contains two-body orbital ma
elements. According to Eq.~8! for Z→` one has

us&→
1

&
uR1L&, up&→

1

&
uR2L&. ~A2!

Replacing these asymptotic forms in the above equation
obtains matrix elements containing the statesuR& and uL&.
Most of these matrix elements vanish asymptotically. T
only surviving ones are

^RRuVuRR&→a, ^RLuVuRL&→bZ, ~A3!
y,

c
-

F

05520
y
e

x

ne

e

where a and b are some constants. This brings us to t
following asymptotic behavior of the matrix elements on t
right-hand side of Eq.~A1!:

^ssuVuss&→~a1bZ!/2,

^ppuVupp&→~a1bZ!/2,

^spuVusp&→~a1bZ!/2,

^spuVups&→~a2bZ!/2,

^ppuVuss&→~a2bZ!/2, ~A4!

from which it follows that

^421@42#O@33#FSuVconfu421@42#O@33#FS&

→~11a119bZ!/10; ~A5!

i.e., this matrix element grows linearly withZ at largeZ. In
a similar manner one can show that with the confinem
matrix element of the stateu33@42#O@51#FS& the coefficient
of the term linear inZ cancels out so that in this case on
obtains a plateau as in Fig. 2.
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