



## 2D FE Simulations of High Speed Steel Laser Cladding Process

R.T. Jardin, H.S. Tran, N. Hashemi, J.T. Tchuindjang, R. Carrus, L. Duchêne, A. Mertens and A.M. Habraken



## Research goal Prediction of Microstructure

#### For High Speed Steel (M4 grade) wt%

| С    | Cr   | Мо   | V    | W    | Ni   | Si  | Fe   |
|------|------|------|------|------|------|-----|------|
| 1.35 | 4.30 | 4.64 | 4.10 | 5.60 | 0.34 | 0.9 | 0.33 |

Particle size [50 to 150 μm] For thick deposit,

Direct Energy Deposition DED process

or Laser cladding

 $\rightarrow$  heterogeneity in depth

if no optimization



### Material High Speed Steel M4

- Fe-Cr-C-X alloys with X: carbide-forming element (i.e. V, Nb, Mo or W)
- Hard carbides  $\Rightarrow$  High hardness and wear resistance
- Applications: high speed machining, cutting tools, cylinders for hot rolling mills, molds...







## Microstructure - Depth Heterogeneity





LC B S250 - 4.5, 6.5 et 8.5 mm





Martensitic Matrix

#### Heterogeneous wear property

#### LC B, near surface







## Wear mechanisms linked to microstructure



N. Hashemi et al., Surf. Coat. Technol. (2017), 315, 519

### Thin and bulk samples

|                            | Bulk Sample | Thin wall |
|----------------------------|-------------|-----------|
| Laser beam speed (mm/s)    | 6.67        | 7         |
| Laser power (W)            | 1100        | 420       |
| Pre-heating (°C)           | 300         | 438       |
| Mass flow (mg/s)           | 76          | 83        |
| Number of tracks per layer | 27          | 1         |
| Total number of layers     | 36          | 5         |



40 x 40 x 27.5 mm (874 tracks)



#### 40 x 1.5 x 4.3 mm 5 tracks <sup>7</sup>

### Thermal equations

#### Heat transfer per conduction

$$\frac{\partial}{\partial x} \left( k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left( k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left( k \frac{\partial T}{\partial z} \right) + Q_{int} = \rho c_p \frac{\partial T}{\partial t}$$
Conductivity
Volume energy
Heat transfer per convection and radiation
$$-K.(\nabla T.n) = -h(T - T_0) - \varepsilon \sigma (T^4 - T_0^4)$$
Convection Coef.
Emissivity
Stefan-Boltzmann Constant
Velting latent Heat
$$C_p^* = \frac{L_f}{T_{em} - T_{sm}} + C_p$$

Enthalpic formulation Enthalpy  $\angle H = \int \rho \cdot c(T) dT$ 

#### Element birth technique



#### For a thin wall 3D Bulk Sample 2D







Newly active element

Inactive element

Convection and radiation element

convection-radiation elem. on vertical planes of the clad not drawn

## 2D mesh (convergence analysis)



#### **Simulation Parameters**

- Thermo-physical parameters : k c<sub>p</sub> L<sub>f</sub> ρ !! sensitivity analysis of melt pool size prediction to conductivity and heat capacity (soon J. of Materials Processing Technology Jardin et al.2018)
- Absorption factor of laser energy  $\beta$ : physical meaning in 3D simulations but still adjusted by inverse modelling
- In 2D analysis:  $\beta$  just a fitting parameter (effect of transversal thermal leak
  - + FE assumption layer thickness...)

#### Experimental results -> FE Validation



- Average height of the last clad layer  $(H_{laver})$  (top of the deposit) :  $2300 \ \mu m = 2.3 \ mm = real \ clad$ layer height
- Average height of apparent clad layer (h) : 836  $\mu$ m = 0.836 mm
  - Number of apparent clad layers in the last track :  $2.75 \cong 3$

layer



## Experimental results

#### Substrate temperature N Substrate T° measured experimentally 750 20 mr Ν 700 ..... 650 Deposit 600 0 mm Е W 40 mm [° [K] 550 20 m 500 Substrate S 40 mm Substrate N 450 Substrate 400 350 S 300 Steel plate Time [s] Simulation time: 246.46 s 750 700 700 Hashemi 650 650 600 600 approach <u>∓</u>550 -Substrate S <u>م</u> 500 550 -Substrate N Uliege PhD 450 **Ξ** 500 Clad 400 °⊢ 450 laver 1 Substrate N thesis 2017 350 400 300 1000 500 1500 0 350 Time [s] 300

0

50

100

150

Time [s]

200

250

#### Simulation Parameters (boundary conditions)

| ajdusted on first<br>layers β on whole<br>layers h and ε | Convection (h)<br>(W/m²K) | Emissivity (ε) |
|----------------------------------------------------------|---------------------------|----------------|
| Set Hashemi                                              | 4                         | 1              |
| Set Jardin                                               | 230                       | 1              |

Both respect the constraint of 2.3 mm height of last layer however temperature history better predicted by Jardin

#### Validation of Model and set of parameters



Two ways of extraction of experimental data One temperature per layer (Hashemi) or the whole temperature history of the middle track (Jardin)

#### Key heat transfers?



#### Melt pool prediction/layer Bulk sample

#### Depth 0.76 mm



# 2.7 re-melted layers

Depth 4.5 mm

Mid Height - 13.77 mm

T (K) 1675 1524.11373.21222.31071.5920.58 769.7 618.81 467.93 317.06

#### Predicted thermal field Bulk Sample



#### Melt pool prediction/layer Bulk sample



## Thermal field $\rightarrow$ microstructure

#### Depth 0.764 mm



Depth of 4.5 mm









- VC primar angular carbides at maximum temperature
- Coalescence of VC → large massive angualar carbides (3 remelting) → for this zone ...
- VC eutectic carbides in coral shape because of 3 re-melting but higest super heating temperature

- VC primar angular carbides at maximum temperature
- VC smaller because of lower number of remelting (2) even if higher temperature



- Microstructure heterogeneity in depth could be explained by FE thermal simulations
- > Thermo physical properties need accurate measurements
- > 2D model enough for bulk samples
- NB Similar type of work for Ti6AL4V repair by Laser cladding Paydas, et al. Materials and Design 2015.
  - Tran et al. Materials & Design 128 2017

#### Future on M4

Use predicted thermal field

to optimize process parameters to keep constant melt pool size

 $\rightarrow$  more homogeneous microstructure

Validation by measurements of residual stress field predicted by FE thermo mechanical model For Single Point Incremental forming process I search a PHD student, please advertise

