Solutions for Integrating Photovoltaic Panels into Low-voltage **Distribution Networks**

Frédéric Olivier

Advisor: Prof. Damien Ernst

LV distribution network

- Distribution transformer
- Electrical lines
- Nodes (buses)
- Houses
- Smart meters

PV panels and LV distribution networks

Voltage too high Disconnection of PV Loss of renewable energy production Loss of earnings Slowing down the energy transition

How to increase the hosting capacity?

- Reinforcing the network
- Balancing the phases of the network
 - Identifying the phases of the smart meters
 - Balancing the production and consumption on the three phases
- Actively managing the network
 - Controlling the active and reactive power flows inside the network

Part 1 Phase Identification of Smart Meters

The phase identification problem

Why is the phase information important? ◆
What are the existing solutions? ◆
What is the algorithm we propose? ◆
What is its performance? ◆

On the importance of phase identification

If you are a DSO

Change connection phase of the customer

Reduce the imbalance in the network

Increase the hosting capacity

If you are a researcher

Phase-to-neutral active and reactive power measurements

Three-phase power flow

Comparison
between
measured and
simulated voltages

Existing solutions

Automatic

Smart meters with PLC

k-means clustering

Graph theory

Contributions

- 1. Novel algorithm
 - 1. Using the underlying structure of the network
 - 2. Using the advantages of both graph theory and correlation
 - Identifying the measurements that should be linked together and cluster them.
- 2. Performance compared to those of a constrained k-means clustering
- 3. Tested on real measurements from a distribution network in Belgium, in a variety of settings.

Distances

- Distance between two voltage measurements:
 - Pearson's correlation

$$d(M_l, M_i) = 1 - PC(M_l, M_i), \quad \forall l, i \in \mathcal{I}$$

Distance between a voltage measurement and a cluster

$$\Delta(\mathcal{C}_k, M_i) = \min_{l \in \mathcal{C}_k} d(M_l, M_i)$$

Reference algorithm Constrained k-means Clustering

Measurements (t₁) (r₂

Measurements

Measurements

Proposed algorithm Constrained Multi-tree Clustering

Olivier, F., Sutera, A., Geurts, P., Fonteneau, R., & Ernst, D. (2018). Phase identification of smart meters by clustering voltage measurements. In *Proceedings* of the XX Power Systems Computation Conference (PSCC 2018).

Test system

- Belgium LV distribution network
- 5 feeders, star configuration 400 V
- 79 three-phase smart meters
- 2 single phase smart meters
- Average phase-to-neutral voltage measurements every minute

Results for the test sets Discussions on the selection of the root

Performance measure

The ratio between the measurements correctly identified and the total number of measurements

Influence of the voltage-averaging period

Influence of ratio single-phase – three-phase smart meters

CKM

Influence of the number of smart meters

CKM

Part 2 Active network management

Active network management

Objective

Design strategies to control the active and reactive power injected by the PV panels into the distribution grid so as to ensure that the voltages stay within their limits

Active network management

Centralized controller

- Model required
- Communication infrastructure

Distributed controllers

- Model-free
- Little communication
- Simpler logic

- What are the key principles of the control scheme?
- What is the structure of the algorithm?
- ──How can we adapt the control scheme to three phases? —
- ──What is its performance compared to other algorithms? —

Key principles

- Distributed algorithm
- No central entity
- Each inverter applies locally the algorithm
- No model required
- First use reactive power
- Curtail active power as a last resort
- Limited communication in the form of a distress signal to pool the resources

Olivier, F., Aristidou, P., Ernst, D., & Van Cutsem, T. (2016). Active management of low-voltage networks for mitigating overvoltages due to photovoltaic units. *IEEE Transactions on Smart Grid*, 7(2), 926-936.

Assuming that the three phases are balanced

Modes of the algorithm

Mode $Q_{loc}^{\downarrow\uparrow}(V)$

Capability curve of PV inverters

Single feeder test system

When the three phases are unbalanced

- Four groups of inverters
 - One for each phase and one for three-phase inverters
- Three distress signals
 - One per phase
- Each group applies the control scheme independently

Unbalanced test system

PV connection scenarios

Scenarios 3P

PV connection scenarios

Scenarios ABC

PV connection scenarios

Scenarios AABC

PV connection scenarios

Scenarios AAABC

PV connection scenarios

Scenarios AAA

Simulations for a sunny day

Comparison between algorithms

On-off

• The one already implemented in commercial inverters

Distributed

• The one we propose

Optimal power flow

 The one centrally optimizing the power produced by the PV

Energy curtailed

Reactive energy usage

Losses

Batteries

Local energy communities

Definition

Electricity distribution system containing loads and distributed energy resources (such as distributed generators, storage devices, or controllable loads), that can be operated in a controlled, coordinated way

Local energy communities

- Drivers
 - With a shared infrastructure between the members
 - Without a shared infrastructure
 - Network operation
 - Energy market

Communities extend the perimeter of selfconsumption from one prosumer to several to pool production and flexibility means

Electric vehicles

Conclusion – From research to industry

Question 1

Identifying the network topology and the phases of the smart meters

Question 2

Computing the hosting capacity networks

Question 3

Preventive actions

Question 4Corrective actions

Solutions for Integrating Photovoltaic Panels into Low-voltage **Distribution Networks**

Frédéric Olivier

Advisor: Prof. Damien Ernst

