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Wigner function and the one-sided flux

C. Gnucci and Fl. Stancu
Institut de Physique B5, UniUersite de Liege, B-4000 Liege 1, Belgium

I,'Received 10 June 1983)

We calculate the Wigner function of the one-body density of a system of 32 independent particles
moving in two adjacent cubic boxes communicating through a window. We discuss the applicability
of the currently used definition of the classical analog of the one-sided flux obtained from the
Wigner function,

NUCLEAR REACTIONS Wigner function for a simple quantum mechanical
model, nucleon exchange, static one-sided flux.

The static one-sided current is used as a measure of the
dissipation rate produced by nucleon exchange between
colliding nuclei. ' In the simplest form of his model
Swiatecki' assumes that the nucleons are exchanged via a
sharply defined window. Randrup has taken into ac-
count the diffuseness of the nuclear surface in the
Thomas-Fermi model and applied the proximity concept
to derive the one-sided current as a function of the separa-
tion distance between nuclei. Within the same concept
penetrability effects and temperature dependence have
been considered.

Recently attempts to derive the one-sided current on a
more microscopic basis have been made. ' These calcula-
tions have a quantum-mechanical input. They are based
on the knowledge of the wave functions given by time-
dependent or adiabatic time-dependent Hartree-Fock
calculations, from which the Wigner distribution function

f(r, k, t) of the one-body density can be constructed.
Then the classical analog of the one-sided flux in the z
direction is defined as

of length L on each edge. They communicate through a
window situated in the plane z=0 and which extends
from x = —w to x =w and from y = —(L/2) to y =L/2
The system is therefore symmetric with respect to refiec-
tions through each coordinate. As the parity ~;=+1
(i =x,y, z) is conserved, the basis functions are

u„'(i)=
' 1/2

2 n;m.
cos i; m.;=+1, n; odd

l l

' 1/2
2 . ni~ .
L. sin i m = —1 n evenl

l

(2)

g =u„~(y) g C~„u„"(x)u„*(z),

with L„=L„=L and L, =2L. The total parity is
m =a„m„m; and the wave functions lt~ defined inside the
volume occupied by the two cubes can be expanded in
terms of the basis set (2)

j+(r, t)= —f d kk,f(r, k, t) .

Feldmeier has also defined a quantum mechanical opera-
tor for the one-sided current. If the flux is oriented in the
z direction, the expectation value of this operator amounts
to expression (1).

In the present work we want to discuss the applicability
of Eq. (1). This is related to the fact that, contrary to the
classical distribution function, the Wigner function can
have regions of negative values and make the quantity (1)
negative. In such cases some care must be taken.

Vfe limit our discussion to the static case by using the
simple three-dimensional quantum mechanical model in-
troduced in Ref. 10. This model can be briefly described
as follows. We consider two adjacent hard-walled cubes

where n =(n„,n, ) and p=m.„m,
The intermediate wall in which the window has been

created can be simulated by the following potential:

V =A,5(z)0(
i
x

~

—w) . (4)

An alternative description has been given in Ref. 10. The
Schrodinger equation with the potential (4) becomes the
following matrix equation:

gl«n E'+.n—+&a. Ã'an =o
n'

where

f2 2

2m L2

and
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Thts expression holds for n, and n' odd
th b i t(2)i 1'e imp ies automatically

' en' =0 for n~ = —1 (8)

equivalent to C~ =5
1 o role in solvin E . 5 .

an an ne can notice that the va
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which allowed th fe e actorization (3). For solvin

cally one must truncat th
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ae esuminE. (5. L
aue a enby n in the u cated space.
even reduces to X odd due to (8). For N

d as two p ete
e c oice of the range of A, and t

with respect to X h
g o and the convergence

ec o as been studied in Ref. 10. As
ample here we take L =4.548 fm = i.e.m and uI =1 fm, i.e., a,

wmdow about one third of the box sizi e, and solve Eq. (5)
e m and %=27. Accor

'

h I hi hieve t e cancellation of th
h i di 11

The Wigner transform of ths orm o the one-body density is

f(r, k)=gf (r, k), (9)

Xg r ——
2

(10)

where a runs over all occu ie
and

a occupied states of both parities ~
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Here we want to calculate the one-sided flux at and per-
pendicular to the window. Then the quantity of interest is
the Wigner function evaluated at z =0 and integrated over
the variables y, k, and k». For fixed o.'and p let us call it

I

I'"(x,k, )= f dy f" dk„ f dk»f»(r, k) ~z () .

(11)
Carrying out the integrations we obtain:

F»(x, k, )= QC»„C»„u„"(x)u,"(x) '
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k, +

2L
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sin k, — 2L

2L
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(12)

At the window we define an average one-sided flux for
each state e, m.

(j ) ~'"= f dx j dk, k,Fx(x, k, ), (13)

where 2ujL is the window area.
In a plane (x,k, ) the function (12) has reflectional sym-

metry with respect to both variables. Therefore only one
quarter of this plane needs to be used to represent it and
we have chosen the half axes x & 0 and k, & 0.
Throughout the whole of this work the values of X and k
have been fixed as mentioned. Figure 1(a) shows contour
plots of the function (12) for a = 1 and p = 1, i.e., the
lowest eigenvalue of Eq. (5). The variable x runs through
the opening of the window of size uj = 1 fm, and

~
k,

~

ex-
tends up to 2.7 fm ', i.e., well beyond the region where
the function is practically zero. The contour plots show a

I

simple structure. The function is positive only for
~
k,

~

&0.35 fm '. The integration over x and
~
k,

~
gives

roughly zero but the one-sided flux (1) results from the
product

k,F»~(x, k, ) =k,F~~(x, —k, )

with k, pO, which gives large weight to the negative
values of F» so that the average flux (13) turns out to be
negative. The result is shown in Fig. 2(a) and is associated
with state (1) or (4) from Table I. One can also see that
these are not the only states which produce a negative flux
at uj & 1 fm. By taking four or five occupied states the to-
tal flux remains negative, but the situation changes at
larger w or when more states are occupied. The box size
under consideration can accommodate 32 particles at den-
sity p=0. 17 fm . Then all eight states from Table I
must be occupied, each being four times degenerate. Sum-
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FIG. 2. (a) The partial average one-sided flux (13) as a function of (jj. Each curve gives four times the contribution of one of the
states indicated in Table I. (b) The total average one-sided flux as a function of w for a system of 32 particles.
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TABLE I. The lowest eight states in increasing order for E for a box of size L =4.548 fm and a
window size ur =1 fm. Equation (5) has been solved for 1V =27 and A, =10' MeV frn. The columns in-

dicate the following: m;—the parity for i =x,y, z; o.—the eigenvalues E~ of Eq. (5) in increasing order,
2

e„~= —
ny

2m L

and

State E77

+1
+1
+1
+1
—1

+1
—1

+1

+1
+1
+1
—1

+ 1

—1

+1
+1

17.60
19.80
40.71
17.60
49.40
19.80
49.50
49.50

9.90
9.90
9.90

39.60
9.90

39.60
9.90
9.90

27.50
29.70
50.61
57.20
59.30
59.40
59.40
59.40

ming up all the corresponding functions F~~ we obtain the
result of Fig. 1(b). The function has more structure and is
positive in a large region, reaching a maximum at

~
k,

~

—1.15 fm '. Altogether this produces a positive
average flux shown in Fig. 2(b). In detail this happens as
follows: The total average flux is the sum of all partial
contributions from Fig. 2(a). The states with m, = —1

give rise to a positive flux at any w. One can see that at
small w there is almost a compensation for pairs of states,
one with m.,=+1 and the other with m, =—1, so that the
flux remains small but positive. Around w=l fm the rise
in the flux is dominated by the third occupied state, and
beyond w = 1 fm the positive contributions dominate. We
found that such a description holds for any N between 5
and 39 when A, takes a value in the range 10 —10
MeVfm. In Fig. 2(b) the region w&0. 6 fm has been
omitted because X =27 is not yet large enough to give a
satisfactory cancellation of the wave function at the inter-
mediate wall. As mentioned in Ref. 10, at w &0.8 fm we

must take N ~ 39 for having such a condition fulfilled.
The conclusion we would like to draw is that some care

must be taken in using the definition (1) of the one-sided
flux for a quantum system. When the number of occu-
pied states is not large enough the result might be negative
and the result does not have a meaning. But when the
system contains a sufficient number of particles the result
can be interpreted as the classical analog of the one-sided
flux. A detailed analysis of the one-sided current resulting
from other quantum-mechanical models might bring more
insight into the problem.
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