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We construct a three-dimensional quantum mechanical model relevant for nucleon transfer in heavy ion collisions. It
consists of two adjacent cubic boxes with a rectangular window in the wall which separates them. We calculate the one-
sided flux as a function of the window size and compare it with previous results.

In heavy ion collisions the flow of particles
through the region of contact between interacting nu-
clei is an important source of dissipation. The classical
window formula of Swiatecki [1] gives a simple meth-
od [2] for deriving the friction force in terms of the
static one-way mass current. Randrup [3,4] has used
the proximity approach to calculate the particle flow
during a nucleus—nucleus collision. As it will be later
discussed the technique was semi-classical inasmuch as
it utilizes the Thomas—Fermi model for the density
and momentum distribution. The flux was evaluated
at the window plane from the product p3v where p
and v are the local Fermi momentum and velocity re-
lated through a space dependent effective mass.

In the present work we construct a simple three-di-
mensional quantum mechanical independent particle
model for the interacting nuclei, The wave functions
are obtained numerically and the one-sided flux is cal-
culated from the associated Wigner function. We ob-
tain the total flux as a function of the window size for
a composite system of 32 particles and make a com-
parison with Randrup’s proximity results [3].

Our model consists of two adjacent hard-walled
cubes having a length L on each edge, communicating
through a window. The geometry is shown in fig. 1.
The window plane is z = 0. The window extends from
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Fig. 1. The geometry of the model in the plane y = const.

x = —wtox =w, independent of y. Hence the y-de-
pendence of the wave function clearly factorizes
while the x- and z-dependence does not.

With the center-of-coordinates at the middle of the
window the hamiltonian possesses symmetry with re-
spect to reflection through each of the coordinate
axes. We specify the reflectional quantum numbers by
Tes Ty, and 7, each assuming the possible values +1,
We choose the basis functions (i =x, y or z)

i (0) = (2JL)12
X cos(nir:/Li)i , m=+1, mn;odd,

upi(i) = (/L)'

Xsin(nm/L)i, m=-1, n;even, (
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with L, =L, =Land L, =2L. These functions vanish
on the planes i = +L;/2;u; vanishes also at z =0 but
u; does not. If we denote MM, T, = the system is
described by the functions Y7 defined only inside the
volume occupied by the two cubes. We expand them
in terms of the complete basis states

Vi) =) 2 Crxtz wrx@uri(z). (2
Each term sat1sﬁes the outside boundary conditions
and continuity across the window. The vanishing of
the wave function on the separating wall (z =0, w

< |x| < L/2) is automatic for m, = —1 states where
Crx~  =§

a,xnz a,ynz’
but because in practical calculations the summation in
(2) must be truncated this boundary condition is
achieved only approximately for m, = +1 states.

In order to impose the interface condition we intro-

duce the quantity

= [ ey 0 axdy, (3)
@ w<ixl<Li2 ©

which we minimize with respect to CTX ”Zn in a man-

ner similar to the method of Laglange multlpliers,

i.e. we minimize the expression

WTIT - ETyT+ T, 4)

where T is the kinetic energy operator, E'7 is the
Lagrange multiplier for the normalization condition
and A is a positive parameter. The minimization proce-
dure leads to the matrix equation

25 1]

where €7 are the kinetic energy eigenvalues of the ba-
sis states and V7, is the matrix element of the “poten-
tial”

V =A8(2)60(|x| — w), ©)

with n = (n,, n,). Trivially V7, =0 form, = —1. As
the number of terms in the basis set increases the de-
pendence on A of the physical results should decrease.
This is indeed verified below.

Let us now define the total averaged one-sided flux
as:

iw) = 'Z imw), 0

m,alocc)

—EMs, .+ VT ]CT =0, )
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where the contribution of each single particle state V!
is given by

1 L/2 w o oo = D
=gz ) W[ ax [ dp, [op, [ang
2 Iw e "ls o

Xfat,9,0,05,0y,0;) . @

In the above expression the one-sided flux perpendict
lar to the window has been integrated over the windo
and divided by its area 2wL; the integrand contains tt
Wigner function

= w I .
finn= s [ d3s exp[~(m)p-s]

X YT +5)Y70 - 25) ©

taken at z = 0. Its integration over p, and Dy gives

f dp,, f dp, 13,

—c0

=0
= [T (y)]? 23 CTxT2CTxT2y ™ (x)u™¥(x)
?Iy n,n' okl oaft Ry hx

2L

X— f ds exp [(—i/A)p,s] u”z(—s)u"z(— 5) .
(10

The Wigner function can have regions of negative val-
ues which lead to negative j7. This is not surprising be
cause /T is not an observable quantity [5,6] . Howeve:
the summation over all occupied states in (7) turns ot
to be positive. The formula (8) is consistent with the
quantum mechanical operator introduced by
Feldmeier [7].

Calculations have been made for cubes of size L
= 4,548 fm. The system contains 32 particles at den-
sity pg =0.17 fm=3. Spin and isospin degeneracy is
assumed. A simple scaling relation permits reinterpre-
tation of the results to other L-values and correspond
ing densities. The window size is varied with an incre-
ment Aw = 0.2 fm in the interval 0.8 fm to L/2. The
region w < 0.8 fm has not been explored due to com-
putational limitations.

In the limit /T - O (infinite basis) the results
should be independent on A. Hence the spirit of the
model is to find a region of A where quantities of in-
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Table 1

The eigenvalues of the lowest states [a =1, my =mz; =1] [a
=2,my =my = 1] and [a =3, my = —1, m; = +1] as a function
of A (MeV fm) and N = max (#z). The texm #2/2m)

X [(=/L) ny] 2 has not been included, as in eq. (5).

Eigenvalue A N

19 23 27 31

10* 1766 1749 17.37  17.28
10° 1801 17.78 17.60 17.48
10° 1823 1799 17.82  17.69

E 10* 40.80  40.36  40.05  39.82
10° 41.94 4121 4071 4037
10° 4271 4190 41.39  41.01

E3 10* 4949 4938  49.30  49.24
10° 49.59  49.48 4940  49.33
10° 49.68  49.55 49.45  49.38

E;

terest vary very slowly with X i.e. show the tendency
of forming a plateau. Once this region is established
we increase the basis set with the intent of reaching
convergence. As a typical example we show results for
w =1 fm. First let us consider the lowest eigenvalues
E7, for m, = m, = +1 since the states with 7, = —1 are
exact and 7,, = —1 gives equivalent information to 7
=+1. They are shown in table 1 as a function of A and
N =max(n,) i.e. the maximum value taken by n, in a
fixed basis set. One can see very good stability with re-
spect to A and this stability increases as /V increases.
Second, in fig. 2 we plot the integrated probability

Table 2
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Fig. 2. The y-integrated probability for the lowest state o = 1,
Ty = mz = 1 in the window plane z = 0 as a function of x at NV
=15, 23 and 31 and A = 10* MeV fm. The window size is w
=1 fm.

5, L2
L oowien?,
—-L/2

for the lowest state @ = 1, m,, =m, = +1 as a function
of x in the window plane z = 0. The value of A is 104
MeV fm and we take NV =15, 23 and 31 in order to
show that by increasing the basis set the wave func-
tion becomes better localized in the window interval.
The localization decreases with increasing the single
particle energy E7. An interesting quantity is Ax, the
root mean square spread of the probability in the win-
dow plane. This is included in table 2 for the lowest
three eigenstates [a=1,m, =m, =1], [e=2,7, =7
=1] and [@=3,m, = —1,m, =1]. The range of val-

z

The one-sided flux j and the root mean square probability spread Ax of the m; = 1 occupied states as a function of w. The second
column gives NV = max (n,) for the corresponding basis set used in the calculations, the third column gives the range of A where the
flux tends towards a plateau. The other columns indicate the values of Ax orj at the edges of the “plateau’.

w N A Ax (fm) jx 103
(fm) eV fm) 3

s a=1, a=2, a=3, et =)

Ty =Mz =1 Ty =mp =1 my=—lm=1

0.8 39 10* — 10% 0.33 —0.30 0.33 —0.30 0.49 —0.45 4.16 — 2.78
1.0 31 10* — 108 0.41 —0.38 0.40 —0.37 0.60 — 0.55 7.19 — 5.58
Jip 27 10% - 10° 048 —0.45 0.48 —0.45 0.71 — 0.66 9.36 — 8.00
1.4 27 10* —10° 0.56 — 0.53 0.55 —0.52 0.82 —0.77 10.61 — 9.55
1.6 27 102 — 10° 0.66 — 0.61 0.65 — 0.60 0.96 — 0.88 11.97 — 10.37
1.8 27 10° — 10° 0.73 —0.68 0.72 - 0.67 1.06 —1.00 12,44 — 11.44
2.0 27 10° — 10° 0.78 — 0.75 0.77 — 0.73 1.4 —1.08 12.72 —11.55
L/2 27 0.82 0.82 1.46 12.29
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Fig. 3. The total averaged one-sided flux as a function of 1/¥
for A = 10%, 105, 10 and 107 MeV fm and w = 1 fm. The
points are the calculated values. The lines are interpolations
or extrapolations of the calculations. The upper scale gives the
values of V. ;

ues given in table 2 for Ax and j correspond to the
edge values of A in the region where the flux is close
to a plateau. This range of A is also indicated in

table 2 and one can see that it increases with the win-
dow size w. At each w we have given the results corre-
sponding to the largest basis set, indicated by /N, for
which calculations have been performed. As w de-
creases it was necessary to increase V. The dimension
of the matrix to be diagonalized is (V + 1)2/4 for Ty
=+1 and (V% — 1)/4 for m, = —1. The convergence at
fixed w =1 fm is best illustrated in fig. 3 where we
have plotted the flux as a function of 1/V. The lines
connect values of the flux at fixed A = 104, 105, 106
and 107 MeV fm. When &V increases the lines get closer
to each other. By assuming a linear dependence on 1/
N we extrapolate the lines towards NV = oo, The values
obtained for the current J(w) = 2wLj(w) from this ex-
trapolation procedure are drawn in fig. 4 as a function
of wkg where k = 1.36 fm~1. We can compare it
with

JOPEN = Dy [, jOPER (11)

where jOPe1 js the normal one-way flux of particles
when the window is fully open. For a system of 32
particles in its ground state we have

4
jopen 2 1 5% n_Si(rn,) =12.29X 103 ¢ fm 3,
M4 n,=1 (12)

where Si(x) is the sine integral function [8]. In the
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Fig. 4. The total currentJ as a function of wkp with A
=1.36 fm™1. Full line: our result as explained in the text.
Dashed—dotted line: J 9P of egs. (11) and (12).

limit L — oo this corresponds to the bulk flux nj con-
sidered by Randrup

-open

JPE > o =ngfm = i (hfmkepy

=9.1X 103 ¢fm—3, (13

for kg =136 fm~! and py = 0.17 fm 3.

The variation with respect to w in J(w) arises from
wave effects. The vanishing of the wave function at
the window edge reduces the effective window size
and decreases the current. In fig. 4 we can distinguish
two regions. For wky < 2.3, J(w) is smaller and drop:
faster to zero than the classical value J°P®™ when w
decreases. By contrast at wkg > 2.3,J(w) is a few pe:
cent higher than J°P¢™, Such a small difference be-
tween the classical and quantum mechanical values is
not surprising at large window sizes.

The difference between j°P®" and j is an expres-
sion of the finite size effects and is independent of w.
The value of j; from eq. (13) can be used within prox
imity concept [3,4] where finite nuclei are replaced
by semi-infinite slabs. At zero separation distance be-
tween the nuclear surfaces the proximity current is of
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the order 3 X 1022 s~1 for 160 + 160, At maximum
opening our result is closer to the maximum value
(closest approach) of ~8 X 1022 s~1 of the one-way
current derived [9] from time dependent Hartree—
Fock calculations at 1.25 MeV/nucleon,

In order to make a detailed comparison between
our results and Randrup’s proximity current it is neces-
sary to find a correspondence between w and the sur-
face separation s. A possibility would be to identify
[10] the window areas of both models. But in com-
paring our slit model with Randrup’s proximity cui-
rent we must emphasize the differences and comple-
mentarity of the models. In the slit model the current
decreases with the window size due to wave mechani-
cal effects; the flux “incident” on the window is char-
acterized by the mean density of the box and each oc-
cupied state contributes. Randrup uses a semi-classical
model (no diffraction) and only particles with an ener-
gy higher than the barrier top contribute to the flux
in the window area. The current decreases with the in-
crease of the barrier height i.e. with the separation dis-
tance.

14
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