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Nucleon transfer contribution to the absorptive potential in heavy-. ion scattering
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We propose a simple model for estimating the nucleon transfer contribution to the ima-

ginary part of the nucleus-nucleus optical potential. Using the proximity method we calcu-
late the transfer probability per unit time in terms of the flux of nucleons between two
slabs. Pauli blocking and barrier penetration effects are taken into account. We compare
our results with phenomenological potentials at the strong absorption radius.

I NUCLEAR REACTIONS Imaginary part of the heavy ion optical po-

l
tential. Nucleon transfer contribution. Barrier penetration, Pauli block-

ing, and relative motion effects.

I. INTRODUCTION

The imaginary part 8'of the optical potential de-
scribes the depopulation of the entrance channel in
elastic heavy ion scattering. In a recent article Bro-
glia et al. ' argue that nucleon transfer between the
two nuclei and inelastic excitation of the two nuclei
give the most important contributions to 8' at large
separations. They view the total depopulation of
the entrance channel as due to elementary transi-
tions so that in their picture multinuclear transfer is
the result of the successive transfer of individual
nucleons. If it is assumed that these elementary
transitions are independent of each other and that
the probability of any specific transition occurring
during the collision is small, then the total absorp-
tive potential 8' can be written as an incoherent
sum of contributions from the different elementary
processes. Broglia et a/. ' write 8'= 8 inc/+ ~trans~
where W~„,&

is the contribution of inelastic excita-
tion to W, and W«,„, is the nucleon transfer contri-
bution. They claim that the range of 8'«», is
larger than that of W;„,~. Accepting this point of
view 8'„,„, would give a major contribution to 8'
around the strong absorption radius.

In the present work we propose a simple method
for calculating W„,„,. The nuclei are treated by the
Fermi gas model and the flux of nucleons from one
nucleus to the other is calculated by taking into ac-
count the Pauli allowed region in the momentum

space and the tunneling through the bamer f0~ed
between the single particle wells.

In Sec. II we define 8'„», in terms of the flux.
In Sec. III we calculate the flux from our model. In
Sec. IV the present results are compared to the
phenomenological imaginary potentials of various

pairs at the strong absorption radius. The last sec-
tion is devoted to the conclusions.

II. THE TRANSFER CONTRIBUTION TO 8'

We write the optical potential for scattering of
two nuclei A and 8 as V(r) —i W(r ) where r is the
distance between their centers. Throughout this
work we assume that the nuclei are spherical. If the
scattering wave function is P(r ) then the probabili-

ty density for finding the nuclei A and 8 in their
ground states with relative coordinate r is
p(r) =|t'(r )g(r) and from the time dependent
Schrodinger equation it follows that

—f p(r)d r= ——f W(r)p(r)d r .
Ch

Thus 2W(r)/fi is the transition probability per unit
time for a transition from the elastic channel when
the relative coordinate of the two nuclei is

~

r
~

..
In order to calculate 8'„,„,we need the probabili-

ty per unit time for transfer of a nucleon between
the two nuclei. This can be found by the proximity
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method which was used by Randrup for calculat-
ing the friction coefficient and mass transport coef-
ficients for deep inelastic collisions. Instead of two
finite nuclei one considers two slabs of semi-infinite
nuclear matter with surfaces separated by a distance
s [cf. Fig. 1(a)]. Let P~q(s) be the flux of nucleons
from the slab A to the slab 8, and Pzs (s) be the cor-
responding flux from 8 to A.

Now consider two finite nuclei with radii Rz and

R~ with a minimum separation s between their sur-
faces [Fig. 1(b)]. The proximity method gives the
transition probability per unit time for transfer of a
nucleon between the two nuclei as 2nRI(s. ), where

R =RgRg/(Rg +Rg)

with R& [&] to be defined later and

I(s)= f ds'[Pm(s')+Pzs(s')] . (3)

The quantity 2m.RI(s) is the integrated flux and
gives the probability per unit time for depopulation
of the ground state by nucleon transfer. According
to Eq. (1) this is the same quantity as 28'„,„,/vari.

Hence we obtain the relation

W,„,„,=vrARI(s) .

Let Vi(z, s) denote the one-dimensional barrier
through which a nucleon (q=n for a neutron and

q =p for a, proton) has to tunnel when it passes be-

tween the slabs A and 8. In a semiclassical approxi-
mation the transmission coefficient for a nucleon

with momentum component A'k, in the slab 3 is

given by

Pq(k„s) = 1/[1+exp(2F~)],

where the penetrability integral is

Equation (5) reduces to the standard Wentzel-
Kramers-Brillouin (WKB) formula when F~ is large
and is a better approximation for energies near the
top of the barrier.

The formula for the Aux of nucleons of type q
from 3 into 8 is given by

Xng(k)[1 —nj(k)],

where ng(k)[nj(k)] is the occupation probability
of the state k in A (8). The factor [1—ng(k)] takes
into account the effects of the Pauli principle in the
final state. The flux P~~ii(s) from 8 into A is given
by a formula similar to Eq. (7) with A and 8 inter-
changed and k, replaced by —k, .

III. PROXIMITY FORM FOR THE
TRANSITION PROBABILITY

In a general case the neutron and proton poten-
tials V~(z, s) can be different and, therefore, neu-
trons and protons can give different contributions
to 8'„,„,. In this section we restrict the discussion
to a special case where we take equal number of
neutrons N and protons Z, i.e.,

Ng ——Zg ——X~ ——Z~,
and where Coulomb effects are neglected. Then the
neutrons and protons have identical single particle
levels. The potential barrier V~(z,s) is symmetric
and the fluxes are all equal

X

A A~ ~H B 5

(b)

FIG. 1. Illustration of the proximity method. (a) Two semi-infinite slabs of nuclear matter separated by a distance s
along the z axis. (b) Two finite nuclei of radii R& and R~ separated by the distance r between their centers. The shor-
test distance between their surfaces is s =r —R& —R~.
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6a(»=Pa~(&) =F~a(&)=gag(~) = , P—fs) .

In this case 8'„,„, is given by Eq. (4) with

I(s)=2 I P(s')ds' . (9)

For simplicity, from now on we shall drop the
upper index q.

We take a potential of the form

VA

V(z,s)= Vp-
1+exp[( 2 s —z)/a]

V8
(10)

1+exp[( —,s+z)/a ]

with Vo ——Vo ——Vo ——50 MeV and a=0.65 fm. For
the Fermi wave number we choose k~ ——1.36 fm
These parameters are consistent with the systemat-
ics given by Bohr and Mottelson for the nucleon-

nucleus scattering data. They have been used re-

cently by Brosa and Gross for calculating the mass
flow in heavy ion deep inelastic scattering. With
these restrictions the formula for P(s) reduces to

4
P(s) = I dk, I'(k„s )

(2~)3 I P

x(kF —kg )k,g(k„u) .

nA(k)

k„

words g is given by the shaded area divided by mp

where p=(kF —k, )'~ is the radius of the circle
shown in the figure. Therefore we have:

if q+2p

g(k„u) = —(u+ —,sin2a); a=sin (q/2p). (12)
2 1

'jr
if q&2p

FIG. 2. The Pauli allowed region for nucleon transfer
at given k, . The shaded region is allowed for transitions
from A to 8. The area allowed for transitions from 8
to A belongs to the other circle. Both circles are of
equal radii p =(kF —k, )' and their centers are
separated by the relative momentum per nucleon q.

The factor g(k„u) in Eq. (11) contains the effects
of the Pauli exclusion principle. We assume that
the slab 8 moves relative to A in the x direction
with speed U. Theo

n„(k)=l, if
~
k+ —

j &kF
2

=0, if~ k+
~

)kp,
2

n~(k)=l, if
~

k ——
~

&kz
2

=0, if
(

k —~
~
&kg,

2

where q =mu i /R. Figure 2 shows a cross section
of the functions n~ ( k ) and ns( k ) at a fixed value of
k, . The shaded region indicates states which are
occupied in A and not occupied in 8 as in Eq. (7).
They give the values of k„and k~ for which transi-
tions from A to 8 are allowed by the Pauli principle.
The factor g lies in the range 0&g & 1 and is pro-
portional to the shaded area in Fig. 2. In other

Except at the pont of closest approach the rela-
tive velocity of the interacting nuclei has two com-
ponents, one radial —along the direction connecting
the linear centers in coordinate space, and the other
tangential —perpendicular to the first. The formu-
las (11) and (12) contain only the contribution of the
tangential component. Our calculations should be
valid when the tangential component is large com-
pared with the radial component at separations
where the transfer is important. Thus our result
can be used when the incident energy is well above
the Coulomb barrier. It does not apply for energies
near or below the Coulomb barrier when the radial
motion is more important than the tangential
motion. A practical criterion for "well above the
Coulomb barrier" would be a grazing angle 8& & 90'.
This condition is well fulfilled in all cases given in
Table I except for ' 0 + Ni at E~,b ——45 MeV.

Figure 3 shows values of the flux P(s) for several
different values of q calculated with the parameters
given after Eq. (10). The flux is zero if the relative
velocity is zero because the Pauli blocking effect is
complete. When u is small P is approximately pro-
portional to the relative velocity. At q=2k~ the
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TABLE I. Calculated 8'„,„,and phenomenological 8'„„potentials for various systems at the strong absorption radius
D &/2 and Ebb (or E, ). The other notations are q, the relative momentum per nucleon; s =D&/& —Rz —Rz, defined as in
Eqs. (16) and (17); R is given by Eqs. (2) and (16); Wp the depth, Rir the radius, and atr the thickness parameters of the
phenomenological imaginary potentials taken from the references indicated in the last column.

El b E q/2 5 R 8 t JY p(D]/2) Dj/2 $vo R~ any

(MeV) (MeV) (fm ') (fm) (fm) (MeV) (MeV) (fm) (MeV) (fm) (fm) Ref.

160 + 40Ca 55.6 39.7
103.6 74.0
214.1 152.9

' 0+ 'Ni 4S 35.3
60 47.0
81 63.5

' 0 + Ni 142 112.I
~60 + 208Pb 129.5 120.3

192 178.3
312.6 290.3

Ne + Ca 151 100.7
S + S 90.9 45.4

Ca + Ca 143.6 71.8
186 93
240 120

Xe + Bi 940 S69.4
1130 684.6

0.13
0.23
0.37
0.05
0.12
0.17
0.27
0.19
0.29
0.41
0.25
0.08
0,10
0.15
0.20
0.14
0.19

2.3 1.81
1.9
1.6
2.0 1.91
1.9
1.6
1.6 1.92
2.2 2.21
1.8
1.5
2 1.89
2.2 1.98
2.2 2.14
2
1.9
1.6 3.44
1.3

0.12
0.40
0.90
0.08
0.24
0.57
0.86
0.26
0.69
1.23
0.40
0.11
0.13
0.20
0.34
0.73
1.54

0.32
0.67
1.18

0 26+0.21

0.62+0. 18
1.13+0.17

0.89
1.34
1.53
0.94
0.37
0.34
0.37
0.48
2.03
0.97

12.9
13.2
13.8

7.72 0.549.7
9.3
9.0

10.0
9.9
9.6
9.6

12.8 19.4
12.4 15.6
12.1 11.4
9.7 40

10.1 22.7
10.75 12.13
10.72
10.6
15.5
15.2

10.98 0.60

7.13 0.68
8.25 0.45
9.23 0.43

15.94 14.71 0.41
6.95 14.4 0.44

10

10
9

11
9

12

13

Pauli blocking has no effect anymore and the flux
reaches a maximum. The latter case has also been
considered by Ko, Bertsch, and Cha. ' They calcu-
late the flux with slightly different parameters than
ours and use it for estimating the diffusion coeffi-
cient of a transport equation.

In Fig. 4 we present results for —,I(s) defined by

Eq. (9) as a function of s for a selection of values of
the relative momentum per nucleon q. Both P(s}
and —,I(s) can be parametrized by simple analytic

I

PlU

2kF 2hkF
(13)

1

we found that —,I(s) can be most conveniently
parametrized by

formulas in terms of s and q. From Figs. 3 and 4
we notice that for s greater than sp ——2.5 fm, P and
—,I have an exponential decay. Introducing the
variable

P Ip(s)+P(1 —P)I, (s) s (sp ——2.5 fm,
10 )& —,I(s)= i s(, , )[0.129P +0.406P(1 —P)]e ' s &sp,

(14)

where

Ip 0.129—0.232(s ———sp ) +0.209(s —sp )i

—0.091(s—sp } +0.091(s—sp)

Ii
——0.406—0.731(s—so ) +0.657(s —sp )

2

—0.262(s —sp} +0.106(s —sp)~ .

The parametrization for p can be obtained by tak-
ing the derivative of —,I(s). The polynomial Ip has
been fitted to reproduce the numerical results for
q =2kF and Ii fits well results at small q.

The analytical expressions (14) and (15) can be
easily used for any pair of nuclei in the way indicat-
ed by Randrup. ' The only difference consists in
the definition we adopt for Rq~&~. Here R&~~~



2454 FL. STANCU AND D. M. BRINK 25

10

kF

0.5
- 0.3

10

kF

0.5
0.3

V0 =50 MeV

a -055 fm

0.2
10

0.1

0.05

10-3 0.2

01

-0.05

10 10

10 10

10 I i I

1 2 3 4
s Ifm}

FIG. 3. The flux P of nucleons from one slab to the
other as a function of the spearation distance s for
several values of q/2. The parameters of the barrier
(10) are V0 ——50 MeV and a=0.65 fm. The Fermi
momentum is kF ——1.36 fm

10
2

s (fm)

FIG. 4. The zeroth incomplete moment —I of the
1

flux P defined by Eq. (9) as a function of s for a series
of values of q/2. The parameters are the same as in
Fig. 4.

represents the nucleon-nucleus potential radius and
not the central radius as in the proximity method.
To be consistent with the other parameters of the
model we choose this according to Bohr and Mottel-
son

Rr rpAr'——1/3 .

ro=1.25 fm (i=A,B) .
(16)

1

In the following section we shall use —,I(s) to the

calculation of W„,„,(r) where s and r are related by

s=r —Rg —Rg . (17)

IV. COMPARISON TO
PHENOMENOLOGICAL POTENTIALS

W«,„,(r) =620RI(s) (MeV), (18)

where R and s have been defined in Eqs. (2) and

Although the present version of our model is re-
stricted to identical nuclei we shall apply it to a
larger variety of pairs and then discuss its limita-
tions.

Taking into account the units of I(s) the formula
(4) becomes

(17), respectively, and the numerical value of —,I(s)
can be read from Fig. 4 or calculated from the ex-
pressions (14) and (15).

According to Ref. 9 the elastic scattering cross
section having a Fresnel pattern only determines the
optical potential in the vicinity of the strong ab-
sorption radius. We therefore compare our calcu-
lated values of W«,„,with the imaginary part of the
phenomenological potential at the strong absorption
radius D)g2. This comparison is given in Table I.
Two general remarks can be made. Our model
gives the right order of magnitude and an exponen-
tial decrease with a constant y=1.8 fm ' con-
sistent with the surface thickness a of the imaginary
phenomenological potential, i.e., a —1/y=0. 55 fm.

In the peripheral region one expects that two
types of phenomena contribute to the absorption
from the incident channel. These are the transfer of
nucleons and the inelastic transitions. According
to this point of view 8'„,„, would represent only a
part of the phenomenological imaginary potential.
One would therefore expect 8'«,» to be similar or
smaller than the phenomenological potential. %ith
one exception this is the case for all examples we
give in Table I. The exception is made by

' Xe +
Bi at E~,b ——1130 MeV and we believe that the

disagreement is due to the inclusion of some inelas-
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tic events in the measured elastic cross section.
Our calculations give an energy dependent ima-

ginary potential. This is a consequence of the effect
of the Pauli principle expressed in Eqs. (11) and
(12). The examples shown in Table I indicate a
similarity between the calculated energy dependence
and the trend shown by the experimental data. For
' 0 + ~Ca, ' 0 + Ni, and ~Ca + Ca at the
highest energy given in the table, 8'„,„, and W,„~
are very similar. For the lowest energy the calculat-
ed potential is generally about half of the experi-
mental value.

In making the comparison one should bear in
mind that there are uncertainties both in the extrac-
tion of W,„~ and the calculation of W„,„,. The case
of '60+ Ni shows the order of magnitude of the
uncertainties expected in 8',„p The calculated
values of W«,» depend upon the choice of the
parameters Vp, a, k~, and rp. For example, reduc-
ing Vo to 45 MeV increases W„,„,by about a factor
of 2 at s =2 fm. Reducing a by 0.05 fm decreases

W„,„, by about 25%%uo for the same value of s. The
choice of rp affects the value of s at the strong ab-
sorption radius [see Eq. (17)] and a small change in
s can produce a large modification of 8'„,„,.

The pairs Ca+ Ca and S + S correspond
to the particular conditions of our model mentioned
at the beginning of Sec. III, because these are identi-
cal nuclei with N=Z Figure 5.(a) shows a typical
barrier for such a case. It is calculated for s =2 fm
which is close to the strong absorption radius for
several of the examples in Table I. Note that the
Fermi level is about 6 MeV above the top of the
barrier.

In the following we shall comment on effects
which modify the present results. Figures 5(b) and
(c) indicate the way in which the barrier is modified
if N~ N2&Z& ——Z2.——Here b corresponds to the
neutron barrier for Pb+ SPb. The barrier is
still symmetric but has a reduced height because of
the isospin dependence of Vo for which we choose
according to Ref. 7

Vp ———50+22.5
N —Z

A

( +for neutrons, —for protons).

The neutron Fermi level is raised because
kz„-p„' . Thus the contribution of neutrons to
8'„,„, is larger than calculated by our simplified
model. Figure 5(c) shows the proton barrier for

Pb + Pb. The height of the barrier is increased
because of the isospin dependence of Vp and the
proton Fermi level is lower and is below the top of

40-

I

(o)
E

40C Ca

(b)

4Q— E F

208Pb

o 0
(c)

Pb

o 40—

208p

P— EF

Pb

4Q En
F

16p

EF

Pb

0 —' t

-4 0

z (fm)

FIG. 5. Nuclear barriers at s =2 fm and Fermi levels
for several pairs of nuclei. The Fermi momentum for
nuclear matter is k+ ——1.36 fm '. Neutron (q =n) and
proton (q =p) Fermi momenta are k+„——(2N/A ) kF
and k~~ ——(2Z/A )' 'k+, respectively. The isospin
dependence of the parameter Vp of the barrier (10) is
given by Eq. (19). The diffuseness parameter is a =0.65
fm. (a) Neutron or proton barrier for Ca+ ~Ca or
any other pair of identical nuclei with N=Z. (b) Neu-
tron barrier for Pb+ Pb. (c) Proton barrier for

Pb + 'Pb (no Coulomb interaction). (d) Neutron
for &6O + 2osPb; in Eq. ( 10) we take Vp = Vp

where A stands for ' O.

the barrier. This makes a big reduction in the
transfer probability of protons. Such an effect has
been considered by Brosa and Gross in their study
of neutron-rich flow contribution to the friction
coefficient. They also discuss the hindering role of
the Coulomb potential to proton transfer.

Figure 5(d) shows the neutron barrier of
' 0+ Pb. The barrier is asymmetric because of
the isospin dependence of Vo. Also the Fermi levels

are different. This implies an asymmetric flux.
Moreover, the flux from Pb to ' 0 is nonzero
even for zero relative velocities because there are
levels in ' 0 which can be occupied by transfer.
The barrier for proton transfers would also be
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asymmetric and would be modified by the effects of
the Coulomb interaction of the protons.

For each specific pair of nuclei it would be in-

teresting to investigate in a quantitative way the
modifications resulting from the above mentioned
effects.

V. CONCLUSIONS

Broglia et al. ' have argued that for large separa-
tions nucleon transfer gives a major contribution to
the imaginary part of the heavy ion optical poten-
tial. In the present paper we have made a calcula-
tion of 8 «,„, in a simple model. Nucleon transfer
between slabs of nuclear matter was studied first
and then a connection was made to finite nuclei by
using the proximity method. We find that the cal-

culated values of 8'„,„, are similar to empirical
values of W at the strong absorption radius. There
is a dependence of W„,„, on energy which resem-
bles the one found experimentally. The dependence
of 8 „,„, on the relative distance between the nuclei
is exponential at large separation with a surface dif-
fuseness which lies in the range a =0.45 —0.65 fm
depending on the parameters used in the calcula-
tion. Although the proximity method is a very
crude approximation the results look promising. It
would be interesting to make a more detailed
analysis of the effects neglected in this work.
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