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Sir Francis Galton saw the quincunx as an analogy for
the inheritance of genetic traits like stature. The
pinballs accumulate in a bell-shaped curve that is
similar to the distribution of human heights.

The puzzle of why human heights do not spread out
from one generation to the next, as the balls would,
led him to the discovery of "regression to the mean".
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The probability of ending in bin  corresponds to the cumulative probability of all

the paths  from start to .

x

z x

p(x) =  p(x, z)dP  ∫
Z

Z
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Assume pins all have the same effect on the balls.

Each time a ball hits a pin on its way down, it either bounces right with probability 

or left with probability .

Therefore, at the last row , each ball arrives in bin  (for ) if and only if

it has taken exactly  right turns (regardless of their position). This occurs with

probability

That is, the ball distribution over the bins corresponds to a binomial distribution.

θ

1 − θ

n x 0 ≤ k ≤ n

x

  

p(x∣θ) =  p(x, z∣θ)dP  ∫
Z

Z

=  θ (1 − θ) .(
n

x
) x n−x
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Inference
Given a set of realizations  at the bins, inference consists in determining

the value of  that best describes these observations.

For example, following the principle of maximum likelihood estimation, we have

In general, when  can be evaluated, this problem can be solved either

analytically or using optimization algorithms.

d = {x  }i
θ

= arg   p(x  ∣θ).θ̂
θ

max
x  ∈di

∏ i

p(x  ∣θ)i

5 / 59



What if pins are placed asymmetrically, such that the probability of bouncing right
at  is different from the probability at , but still indirectly depends on

some parameters ?

(i, j) (i , j )′ ′

θ
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The probability of ending in bin  still corresponds to the cumulative probability of

all the paths from start to :

But this integral can no longer be simpli�ed analytically!

As  grows larger, evaluating  becomes intractable since the number of

paths grows combinatorially.

Generating observations remains easy: drop the balls.

Since  cannot be evaluated, does this mean inference is no longer possible?

No! But we do need new tools.

x

x

p(x∣θ) =  p(x, z∣θ)dP  ∫
Z

Z

n p(x∣θ)

p(x∣θ)
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The Galton board is a metaphore for the simulator-based scienti�c method:

the Galton board device is the equivalent of the scienti�c simulator

 are parameters of interest

 are stochastic execution traces through the simulator

 are observables

For the same reasons, inference in this context requires likelihood-free algorithms.

θ

z

x
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Applications
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Cosmological N-body simulations

―――

Refs: Planck Collaboration, 2015 (arXiv:1502.01589); Vogelsberger et al, 2014 (arXiv:1405.2921) 11 / 59



Computational topography

―――

Refs: Benoit Bovy (xarray-simlab) 12 / 59



Climatology

―――

Refs: NASA's Goddard Space Flight Center / B. Putman, 2014 (press release) 13 / 59



Epidemiology

―――

Refs: Brockmann and Helbing, 2013 (doi:10.1126/science.1245200) 14 / 59



Particle physics

The Galton board of particle physics
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Likelihood-free inference
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De�ne a projection function  mapping

observables  to a summary statistics .

Then, approximate the likelihood  as

where  can be estimated by running the

simulator for different parameter values  and �lling

histograms.

 

The physicist's way

s : X → R
x x = s(x)′

p(x∣θ)

p(x∣θ) ≈ (x∣θ) = p(x ∣θ),p̂ ′

p(x ∣θ)′

θ
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We are not only interested in , we also want to reject all

those hypotheses that do not �t the observations with high
probability.

According to the Neyman-Pearson lemma, the likelihood
ratio

is the most powerful test statistic to discriminate between a
null hypothesis  and an alternative .

Hypothesis testing

In the likelihood-free setup, the ratio is dif�cult to compute. However, using the
approximate likelihood we can de�ne

θ̂

r(x∣θ  , θ  ) ≡  0 1
p(x∣θ  )1

p(x∣θ  )0

θ  0 θ  1

 ≈  

p(x∣θ  )1

p(x∣θ  )0

 (x∣θ  )p̂ 1

 (x∣θ  )p̂ 0
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When testing a null  against a set of alternatives  (e.g., background only vs.

background + signal), the generalized likelihood ratio is de�ned as

where the MLE  can be approximated by scanning over .

θ  0 Θ

r(x∣θ , Θ)0 =  

sup  p(x∣θ)θ∈Θ

p(x∣θ )0

=  

p(x∣ )θ̂

p(x∣θ )0

≈  

 (x∣ )p̂ θ̂

 (x∣θ  )p̂ 0

θ̂  (x∣θ)p̂

19 / 59



Choosing the projection  is

dif�cult and problem-dependent.

Often there is no single good
variable: compressing to any 

loses information.

Ideally: analyse high-dimensional 

, including all correlations.

Unfortunately, because of the curse of
dimensionality, �lling high-dimensional
histograms is not tractable.

This methodology has worked great for physicists for the last 20-30 years, but ...

Who you gonna call? Machine learning!

s

x′

x′

―――

Refs: Bolognesi et al, 2012 (arXiv:1208.4018) 20 / 59



(Some) established solutions
Histograms of observables

Summary statistics

Approximate Bayesian Computation

Summary statistics.

Calibrated classi�ers (Cᴀʀʟ)

Optimal summary statistics.

Neural density estimation

Density networks, autoregressive models, normalizing �ows, etc.

Matrix Element Method

Neglect or approximate shower+detector, explicitly calculate integral

 (x∣θ) = p(z  ∣θ)  (x∣z  )dz  p̂ ∫ p p~ p p
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Key insights:

The likelihood ratio is suf�cient for maximum likelihood estimation.

Evaluating the likelihood ratio does not require evaluating the individual
likelihoods.

23 / 59



The likelihood ratio is suf�cient for maximum likelihood estimation:

  

θ̂ = arg  p(d∣θ)
θ

max

= arg   

θ
max

constant
p(d∣θ)

= arg   

θ
max

p(d∣θ )ref

p(d∣θ)

= arg    

θ
max

x  ∈di

∏
p(x  ∣θ  )i ref

p(x  ∣θ)i

= arg   r(x  ∣θ, θ  )
θ

max
x  ∈di

∏ i ref
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Evaluating the likelihood ratio does not require evaluating the individual
likelihoods:

From  and  we can evaluate .

However, from  the individual likelihoods  and 

cannot be reconstructed.

Therefore, MLE inference and likelihood ratio estimation are strictly simpler
problems than density estimation.

p(x∣θ  )0 p(x∣θ  )1 r(x∣θ  , θ  )0 1

r(x∣θ  , θ )0 1 p(x∣θ  )0 p(x∣θ  )1
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Cᴀʀʟ
Theorem. The likelihood ratio is invariant under the change of variable ,

provided  is monotonic with .

Note that the equality is strict.

No information relevant for determining the ratio is lost.

Although information about  may be lost through .

U = s(X)
s(x) r(x)

r(x∣θ  , θ  ) =  =  0 1
p(x∣θ  )1

p(x∣θ  )0

p(s(x)∣θ  )1

p(s(x)∣θ  )0

x s
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Supervised learning provides a way to automatically construct :

A binary classi�er  (e.g., a neural network) trained to distinguish 

from  approximates the optimal classi�er

which is monotonic with .

Therefore, when ,

That is, supervised classi�cation is equivalent to likelihood ratio estimation and can
therefore be used for MLE inference.

s

ŝ x ∼ p(x∣θ  )0

x ∼ p(x∣θ  )1

s (x) =  ,∗

p(x∣θ  ) + p(x∣θ  )0 1

p(x∣θ  )1

r

= sŝ ∗

r(x∣θ  , θ  ) =  0 1 (x)ŝ

1 − (x)ŝ
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In practice,  because of approximation, estimation or optimization errors.

Still, the result states that calibrating  to build  is suf�cient for

recovering the true likelihood ratio , provided  is monotonic

with .

This step can be carried with 1D density estimation or calibration algorithms
(histograms, KDE, isotonic regression, etc).

If not monotonic with , then the resulting statistic is strictly less powerful than

the true ratio.

≠ sŝ ∗

(x)ŝ p( (x)∣θ)ŝ

r(x∣θ  , θ  )0 1 (x)ŝ

r(x∣θ  , θ  )0 1

r
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Point by point optimization: Keep  �xed, scan for ,

train a new classi�er  for each  and evaluate the ratio.

Parameterized classi�er: Train a single classi�er 

taking both  and  as inputs, scan for  and evaluate

the ratio.

Procedure
For inference, we have

where  denotes a classi�er trained to distinguish between  and .

θ̂ = arg   r(x  ∣θ, θ  )
θ

max
x  ∈di

∏ i ref

= arg    

θ
max

x  ∈di

∏
p( (x∣θ, θ  )∣θ  )ŝ ref ref

p( (x∣θ, θ  )∣θ)ŝ ref

(x∣θ, θ  )ŝ ref θ θ  ref

θ  ref θ

ŝ θ

ŝ
x θ θ
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Refs: Baldi et al, 2016 (arXiv:1601.07913) 29 / 59



For composite hypothesis testing, the previous procedure can be used to �nd .

Then a classi�er  between  and  is built, from which is derived the generalized

likelihood ratio statistic.

θ̂

s θ  0 θ̂
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Toy example
Simulator generating 5D observables , with parameters of interest  and . Given

observed data , we want to �nd  and  along with its -contours.

x α β

d α̂  β̂ σ

−2 log Λ(α,β) = −2 log  

p(d∣ ,  )α̂ β̂

p(d∣α,β)
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Diagnostics

We need procedures to assess the quality of the approximated ratio :

For inference, the value of the MLE  should be independent of the value of 

used in the denominator of the ratio.

Train a classi�er to distinguish between unweighted samples from  and

samples from  weighted by .

r̂

θ̂ θ  ref

p(x∣θ  )0

p(x∣θ  )1 (x∣θ  , θ  )r̂ 0 1
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Mining gold from simulators

―――

Refs: Brehmer et al, 2018 (arXiv:1805.12244) 33 / 59



 is usually intractable.

What about ?

p(x∣θ)

p(x, z∣θ)
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This can be computed as the ball falls down the board!

  

p(x, z∣θ) = p(z  ∣θ)p(z  ∣z  , θ) … p(z  ∣z  , θ)p(x∣z  , θ)1 2 1 T <T ≤T

= p(z  ∣θ)p(z  ∣θ) … p(z  ∣θ)p(x∣z  )1 2 T T

= p(x∣z  )  θ (1 − θ)T

t

∏ z  t 1−z  t

35 / 59



The simulator can be viewed as a graphical model that abstracts the simulation as a
probabilistic sequence of latent states .

The simulator implements a probabilistic transition .

The simulator emits an observation  based on .

z  t

π  (z  ∣z  )θ t <t

x p(x∣z, θ)
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Mining gold
As the trajectory  and the observable  are emitted, it is often possible:

to calculate the joint likelihood  as 

;

to calculate the joint likelihood ratio ;

to calculate the joint score .

We call this process mining gold from your simulator!

z  , ..., z  1 T x

p(x, z∣θ)
π  (z  )π  (z  ∣z  ) …π  (z  ∣z  )p(x∣z, θ)θ 1 θ 2 1 θ T <T

r(x, z∣θ  , θ  )0 1

t(x, z∣θ  ) = ∇  log p(x, z∣θ)0 θ ∣
∣
θ  0
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Observe that the joint likelihood ratios

are scattered around .

Can we use them to approximate ?

r(x, z∣θ  , θ  ) ≡  0 1
p(x, z∣θ  )1

p(x, z∣θ  )0

r(x∣θ  , θ  )0 1

r(x∣θ  , θ  )0 1
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Consider the squared error of a function  that only depends on , but is trying

to approximate a function  that also depends on the latent :

Via calculus of variations, we �nd that the function  that extremizes 

is given by

 (x)ĝ x

g(x, z) z

L  = E  (g(x, z) −  (x)) .MSE p(x,z∣θ) [ ĝ 2]

g (x)∗ L  [g]MSE

g (x)∗ =  p(x, z∣θ)g(x, z)dz
p(x∣θ)

1
∫

= E  g(x, z)p(z∣x,θ) [ ]
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Therefore, by identifying the  with the joint likelihood ratio 

and  with , we de�ne

which is minimized by

g(x, z) r(x, z∣θ  , θ  )0 1

θ θ  1

L  = E  (r(x, z∣θ  , θ  ) − (x)) ,r p(x,z∣θ  )1 [ 0 1 r̂ 2]

r (x)∗ =  p(x, z∣θ  )  dz
p(x∣θ )1

1
∫ 1

p(x, z∣θ  )1

p(x, z∣θ  )0

=  

p(x∣θ )1

p(x∣θ )0

= r(x∣θ  , θ  ).0 1
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How does one �nd ?

Minimizing functionals is exactly what machine learning does. In our case,

 are neural networks (or the parameters thereof);

 is the loss function;

minimization is carried out using stochastic gradient descent from the data
extracted from the simulator.

r∗

r (x∣θ  , θ  ) = arg  L  [ ]∗
0 1

r̂
min r r̂

r̂

L  r
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Similarly, we can mine the simulator to extract the joint score

which indicates how much more or less likely  would be if one changed .

t(x, z∣θ  ) ≡ ∇  log p(x, z∣θ)   ,0 θ ∣
∣
θ  0

x, z θ0
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Using the same trick, by identifying  with the joint score  and 

with , we de�ne

which is minimized by

g(x, z) t(x, z∣θ  )0 θ

θ  0

L  = E  (t(x, z∣θ  ) − (x)) ,t p(x,z∣θ  )0 [ 0 t̂ 2]

t (x)∗ =  p(x, z∣θ  )(∇  log p(x, z∣θ)   )dz
p(x∣θ )0

1
∫ 0 θ ∣

∣
θ  0

=  p(x, z∣θ  )  dz
p(x∣θ )0

1
∫ 0

p(x, z∣θ  )0

∇  p(x, z∣θ)   θ ∣
∣
θ  0

=  

p(x∣θ )0

∇  p(x∣θ)   θ ∣
∣
θ  0

= t(x∣θ  ).0
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Rᴀsᴄᴀʟ

L = L  + L  r t
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Family of likelihood-free inference
strategies
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Effective inference

Toy experiment on the Galton board.
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Constraining Effective Field
Theories, effectively
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LHC processes

―――
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LHC processes
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LHC processes
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LHC processes
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p(x∣θ) =  p(z  ∣θ)p(z ∣z  )p(z  ∣z  )p(x∣z  )dz  dz  dz  

intractable

 ∭ p s p d s d p s d
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Key insights:

The distribution of parton-level four-momenta

where  and  are the total and differential cross sections, is tractable.

Downstream processes ,  and  do not depend on .

This implies that both  and  can be mined. E.g.,

p(z  ∣θ) =   ,p
σ(θ)

1
dz  p

dσ(θ)

σ(θ)  dz  p

dσ(θ)

p(z  ∣z  )s p p(z  ∣z  )d s p(x∣z  )d θ

r(x, z∣θ  , θ  )0 1 t(x, z∣θ  )0

  

r(x, z∣θ  , θ  )0 1 =     

p(z  ∣θ  )p 1

p(z  ∣θ  )p 0

p(z  ∣z  )s p

p(z  ∣z  )s p

p(z  ∣z  )d s

p(z  ∣z  )d s

p(x∣z  )d

p(x∣z  )d

=  

p(z  ∣θ  )p 1

p(z  ∣θ  )p 0
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Proof of concept

Context: Higgs production in weak boson fusion.

Goal: constraints on two theory parameters.

Two setups:

Simpli�ed setup in which we can compare to true likelihood.

Realistic simulation with approximate detector effects.

L = L  +   (D ϕ) σ D ϕ W  −   (ϕ ϕ) W  WSM  

Λ2

f  W

2
ig μ † a ν

μν
a

 

Λ2

f  WW

4
g2

†
μν
a μν a
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Precise likelihood ratio estimates
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Increased data ef�ciency
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Better sensitivity
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Stronger bounds
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Summary
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Machine learning provides several solutions for simulation-based likelihood-
free inference.

Cᴀʀʟ de�nes an optimal solution for likelihood ratio estimation, which is itself
suf�cient for inference.

It is often possible to mine the joint likelihood, the joint likelihood ratio or the
joint score, which enables effective likelihood-free inference.
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Collaborators
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The end.
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