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Sir Francis Galton saw the quincunx as an analogy for
the inheritance of genetic traits like stature. The
pinballs accumulate in a bell-shaped curve that is
similar to the distribution of human heights.

The puzzle of why human heights do not spread out
from one generation to the next, as the balls would,
led him to the discovery of "regression to the mean".
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The probability of ending in bin & corresponds to the cumulative probability of all
the paths z from start to .

p(z) = /Z p(a, 2)dP;
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Assume pins all have the same effect on the balls.

Each time a ball hits a pin on its way down, it either bounces right with probability 0
or left with probability 1 — 6.

Therefore, at the last row n, each ball arrives in bin z (for 0 < k < n) if and only if

it has taken exactly x right turns (regardless of their position). This occurs with
probability

p(]6) = /Z p(z, 2|60)dP;

(Yea-or

That is, the ball distribution over the bins corresponds to a binomial distribution.
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Inference

Given a set of realizations d = {x; } at the bins, inference consists in determining
the value of 6 that best describes these observations.

For example, following the principle of maximum likelihood estimation, we have

0 = arg max H p(x;]0).

x;ed

In general, when p(x;|6) can be evaluated, this problem can be solved either
analytically or using optimization algorithms.
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What if pins are placed asymmetrically, such that the probability of bouncing right
at (4, ) is different from the probability at (', j), but still indirectly depends on
some parameters 6?
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The probability of ending in bin x still corresponds to the cumulative probability of
all the paths from start to x:

p(m\@)z/zp(x,ZW)dPg

e But thisintegral can no longer be simplified analytically!

e Asn grows larger, evaluating p(z|6) becomes intractable since the number of
paths grows combinatorially.

e Generating observations remains easy: drop the balls.

Since p(x|@) cannot be evaluated, does this mean inference is no longer possible?

No! But we do need new tools.
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The Galton board is a metaphore for the simulator-based scientific method:

the Galton board device is the equivalent of the scientific simulator

0 are parameters of interest

z are stochastic execution traces through the simulator

x are observables

For the same reasons, inference in this context requires likelihood-free algorithms.
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Observables
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Parameters
6 >
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Well-understood mechanistic model

Prediction (simulation):

Simulator can generate samples

<€

Inference: Likelihood function?(z|?) s intractable

Goal: estimatorp(z|0)

Credits: Johann Brehmer



Applications
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Cosmological N-body simulations
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Refs: Planck Collaboration, 2015 (arXiv:1502.01589); Vogelsberger et al, 2014 (arXiv:1405.2921)



Computational topography
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Refs: Benoit Bovy (xarray-simlab)



Climatology
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Refs: NASA's Goddard Space Flight Center / B. Putman, 2014 (press release) 13/59



Epidemiology
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Refs: Brockmann and Helbing, 2013 (doi:10.1126/science.1245200) 14/59



Particle physics
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Likelihood-free inference
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The physicist's way

Parameters Observables 1D summary statistics
H — > _—  z @ — 2
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T %% Syst.Unc.

w
o

Then, approximate the likelihood p(z|6) as

p(z|0) ~ p(x|0) = p(z'|0),

where p(z'|6) can be estimated by running the

simulator for different parameter values 8 and filling
histograms.




Hypothesis testing

We are not only interested in é we also want to reject all 0;
those hypotheses that do not fit the observations with high
probability.

According to the Neyman-Pearson lemma, the likelihood
ratio

i
won 28

is the most powerful test statistic to discriminate between a
null hypothesis 8y and an alternative 6.

In the likelihood-free setup, the ratio is difficult to compute. However, using the
approximate likelihood we can define

p(z|6o) _ B(z[6h)
p(z|61)  p(z|61)
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When testing a null 8y against a set of alternatives © (e.g., background only vs.
background + signal), the generalized likelihood ratio is defined as

where the MLE 6 can be approximated by scanning over p (z|6).
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This methodology has worked great for physicists for the last 20-30 years, but ...

e Choosing the projection s is
difficult and problem-dependent.

e Oftenthereis nosingle good
variable: compressing to any =’
loses information.

¢ |deally: analyse high-dimensional
2, including all correlations.

Unfortunately, because of the curse of
dimensionality, filling high-dimensional
histograms is not tractable.

Who you gonna call? Machine learning!

Refs: Bolognesi et al, 2012 (arXiv:1208.4018)
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(Some) established solutions

Histograms of observables

o Summary statistics

Approximate Bayesian Computation

o Summary statistics.

Calibrated classifiers (CARL)

o Optimal summary statistics.

Neural density estimation

o Density networks, autoregressive models, normalizing flows, etc.

Matrix Element Method

o Neglect or approximate shower+detector, explicitly calculate integral

p(z]6) = / P(210) (]2 )dz,
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Refs: Cranmer et al, 2016 (arXiv:1506.02169)

Approximating Likelihood Ratios with
Calibrated Discriminative Classifiers

Kyle Cranmer!, Juan Pavez?, and Gilles Louppe!
INew York University
?Federico Santa Maria University

March 21, 2016

Abstract

In many fields of science, generalized likelihood ratio tests are established tools
for statistical inference. At the same time, it has become increasingly common that
a simulator (or generative model) is used to describe complex processes that tie pa-
rameters # of an underlying theory and measurement apparatus to high-dimensional
observations x € BF. However, simulator often do not provide a way to evaluate
the likelihood function for a given observation x, which motivates a new class of
likelihood-free inference algorithms. In this paper, we show that likelihood ratios are
invariant under a specific class of dimensionality reduction maps EF — E. As a di-
rect consequence, we show that discriminative classifiers can be used to approximate
the generalized likelihood ratio statistic when only a generative model for the data
is available. This leads to a new machine learning-based approach to likelihood-free
inference that is complementary to Approximate Bayesian Computation, and which
does not require a prior on the model parameters. Experimental results on artifi-
cial problems with known exact likelihoods illustrate the potential of the proposed
method.

Keywords: likelihood ratio, likelihood-free inference, classification, particle physics, surro-
gate model
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Key insights:

e The likelihood ratio is sufficient for maximum likelihood estimation.

e Evaluating the likelihood ratio does not require evaluating the individual
likelihoods.

23/59



The likelihood ratio is sufficient for maximum likelihood estimation:
§ = arg max p(d|0)
p(d|0)

= arg max ————
6 constant

p(d|6)
p(d‘gref)
p(;|0)
— arg max —_——
5 0 H p(xz"eref)

x;ed

= arg max

= arg meax H T(CI?7;|(9, eref)

x;ed
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) = rx 00,0

Evaluating the likelihood ratio does not require evaluating the individual
likelihoods:

e From p(x|6y) and p(z|0:1) we can evaluate r(x |6y, 01).

e However, from r(z|6y, 61 ) the individual likelihoods p(z|6,) and p(x|6;)
cannot be reconstructed.

Therefore, MLE inference and likelihood ratio estimation are strictly simpler
problems than density estimation.
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CARL

Theorem. The likelihood ratio is invariant under the change of variable U = s(X),
provided s(z) is monotonic with ().

r(x|6y,01) = p((6) _ p(s(z)|6o)
0, 01) =7

(z|61)  p(s(z)[6:)

e Note that the equality is strict.
¢ No information relevant for determining the ratio is lost.

¢ Although information about  may be lost through s.
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Supervised learning provides a way to automatically construct s:

e Abinary classifier § (e.g., a neural network) trained to distinguish z ~ p(z|6)
fromx ~ p(x|0;) approximates the optimal classifier

p(z|6:)
z|0) + p(x|61)’

#(@) = p(

which is monotonic with 7.

e Therefore,when § = s™,

r(z]00,0;) = 1;(—1()“’)

That is, supervised classification is equivalent to likelihood ratio estimation and can
therefore be used for MLE inference.
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In practice, § # s* because of approximation, estimation or optimization errors.

e Still, the result states that calibrating § () to build p(§ (x)|6) is sufficient for
recovering the true likelihood ratio (|6, 61 ), provided § () is monotonic
with ’I’(.’E‘HO, 91)

e This step can be carried with 1D density estimation or calibration algorithms
(histograms, KDE, isotonic regression, etc).

¢ |f not monotonic with 7, then the resulting statistic is strictly less powerful than
the true ratio.
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Procedure

For inference, we have

0 = arg max H (|0, Oret)

z;ed

— arg max H p(As ([0, 0ret) |6)
0 p(s(w\@, Href)‘gref)

where § (|0, 0..¢) denotes a classifier trained to distinguish between 6 and 0.

e Point by point optimization: Keep 6.¢f fixed, scan for 6,
train a new classifier $ for each @ and evaluate the ratio.

e Parameterized classifier: Train a single classifier §

taking both x and € as inputs, scan for 6 and evaluate X1 foerxa0)
the ratio. *

Refs: Baldi et al, 2016 (arXiv:1601.07913) 29/59



For composite hypothesis testing, the previous procedure can be used to find é

Then a classifier s between 6 and 6 is built, from which is derived the generalized
likelihood ratio statistic.
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Toy example

Simulator generating 5D observables x, with parameters of interest v and (. Given
observed data d, we want to find & and B along with its o-contours.

Approx. LLR (smoothed by a
Exact —2log A(cv, 3) Gaussian Process)

7z
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L Vil

910w A _ 9o Pldle B)
2log A(a, B) 2 log o(dla, )
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Diagnostics
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False Positive Rate

We need procedures to assess the quality of the approximated ratio 7:

e Forinference, the value of the MLE 6 should be independent of the value of 0,.¢

used in the denominator of the ratio.

e Train a classifier to distinguish between unweighted samples from p(x |6, ) and

samples from p(x |6, ) weighted by 7 (|6, 61 ).
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Mining gold from simulators
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p(x]0) is usually intractable.

What about p(z, z|0)?
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p(z, 2|0) = p(21]0)p(22|21,0) . . . p(27|2<7, 0)D(T|2<7, O)
= p(2110)p(22]0) . . . p(2r|0)p(x|2r)

= p(z|2r) H 0% (1 — @)=

t

This can be computed as the ball falls down the board!
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W@(Zt|z<t)

The simulator can be viewed as a graphical model that abstracts the simulation as a
probabilistic sequence of latent states z;.

e The simulator implements a probabilistic transition 7y (2|2 ).

e The simulator emits an observation x based on p(z|z, ).
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[ ] o
Mining gold
As the trajectory z1, ..., 27 and the observable x are emitted, it is often possible:

e to calculate the joint likelihood p(x, z|6) as
mo(21)mo(22|21) - . . mo(2r |2<T)P(2| 2, 0);

e tocalculate the joint likelihood ratio r(x, 2|6y, 61 );

e tocalculate the joint score t(x, z|0y) = Vg log p(z, 2\0)‘00.

We call this process mining gold from your simulator!
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5 4 — r(X|60:61)
® r(x, z|6g,061), x ~ p(x|60 =86p)
-~ r(x, z|8e, 61), x ~ p(x|0 = 61)
d 4-
S
X
= 34 p
< o
s o \o
¥ 2 o
X @
1_
0 T
0 2 4 6 8
X
Observe that the joint likelihood ratios
p(a:, 2‘90)

r(x, z|600,01) =

p(fl?azwl)

are scattered around (|6, 61 ).

Can we use them to approximate (|6, 61 )?
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Consider the squared error of a function Q(m) that only depends on x, but is trying
to approximate a function g(m, z) that also depends on the latent z:

Lyse = By [(9(2,2) — §(2))?] -
“(z

Via calculus of variations, we find that the function g* () that extremizes Lyssg[g]

is given by

() = 2 X,z x,z)dz
') =~ [ plaz0)g(a,2)d

— IE‘Zp(z|:13,0) [g(CL‘, Z)]
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Therefore, by identifying the g(z, z) with the joint likelihood ratio r(x, 2|6, 01 )
and 0 with 61, we define

L, = Ep(as,z|91) [(”'(waz|90a91) B 72(213))2} 4

which is minimized by

N . p(x, z|60) s

(@) =~ [ plenslo) BT
_ p(z[6o)
p(z|61)

= ’I"(.CE’Q(),Hl).
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How does one find *?

r*(z|6y,601) = arg min L,.[7]

Minimizing functionals is exactly what machine learning does. In our case,

e 7 are neural networks (or the parameters thereof);

e [, istheloss function;

e minimization is carried out using stochastic gradient descent from the data
extracted from the simulator.
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2]

Similarly, we can mine the simulator to extract the joint score
t(x,z]0p) = Vg logp(a:,z\H)‘eo,

which indicates how much more or less likely , z would be if one changed 6.
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Using the same trick, by identifying g(, z) with the joint score t(x, z|6y) and 0
with 0y, we define

Ly = Epfazipn) [(t(x, 2160) — £ (2))*]

which is minimized by

1
t* = 0 1 0
) P(wlé’o)/ (@ 2100)(Vs log p( 1)
1 VGP($,2|9)}9
— x, 2|0 °d
p(x|6p) /p( 6 p(z, 2|6))
Vgp (x]0) ’9
p(z[6o)
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Family of likelihood-free inference
strategies

Table 1: A summary of simulator-based inference strategies including the traditional ABC method
and approaches that use neural networks to learn a surrogate for amortized likelihood-free inference.
Approaches based on neural density estimation and CARL only make use of the samples x ~ p(xz|6),

while the six new methods leverage the augmented data and the loss functions L, and L;.

Method Lxeg LmiE L, L 0 sampling
ABC (Approximate Bayesian Computation) 0~ 7 (9)
NDE (Neural density estimation) v O~ ( )
LRT / CARL (Likelihood ratio trick/ calibrated approximate ratios of likelihoods) v 0~ 7 (9)
ROLR (Regression on likelihood ratio) v 0~ (9)
SCANDAL (Score augmented neural density approximates likelihood) v v 0~ (9)
CASCAL (CARL and score approximate likelihood ratio). v v 0~ (9)
RASCAL (Ratio and score approximate likelihood ratio) v v 0~ (9)
SALLY (Score approximates likelihood locally) v 0 =dy
SALLINO (Score approximates likelihood locally in ene dimension) v 60 =6ty




Effective inference
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Toy experiment on the Galton board.
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Constraining Effective Field
Theories, effectively
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LHC processes
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LHC processes

Credits: Johann Brehmer
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LHC processes

Features Latent variables F’argmeters
of interest
Detector hower  Parton-level Th
Observables Showe eory

interactions splittings momenta parameters

T < 2 — 2y — Zp — )

[Image source: M. Cacciari,
G. Salam, G. Soyez 0802.1189]
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p(x|0) = /// (2p]0)p(2s|2p)P(2d| 25 )D(2|2d)d2zpdzsdzq

1ntractab1e
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Key insights:

e The distribution of parton-level four-momenta

p(zp|0) =

do(6)

1 do(6)
o(0) dz, ’

where o () and =7 are the total and differential cross sections, is tractable.

P

e Downstream processes p(2s|2p ), (24|25 ) and p(z|z4) do not depend on 6.

This implies that both r(z, 2|60y, 61 ) and t(z, 2|60 ) can be mined. E.g,,

P(zp

‘90) p(zs ‘zp) P(dezs) p(w‘zd)

0y,0,) =
r(ar;,z] 0 1) p(zp

p(zp
P(zp

‘91) p(zs ‘zp) P(dezs) p(x‘zd)
(90)

(91)
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Proof of concept

Exciting physics!

at least 16-dimensional
observable space

e Context: Higgs production in weak boson fusion.

e Goal: constraints on two theory parameters.

fW Zg a TV a fWW g a va

L=Lsy+ A2 , (D*¢)' o D" W, — N7 (¢le) Wo, W
N——

e Two setups:

o Simplified setup in which we can compare to true likelihood.

o Realistic simulation with approximate detector effects.

Credits: Johann Brehmer 51/59



Precise likelihood ratio estimates

Each point = 1 event
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° SALLY
= 004 .+ RASCAL .
© —> RASCAL
'§ 05 T much more precise than
£ f
g 1o .
i :’.
‘_8’ -1.5 L%
o
5
5 -2.0
£
IE) —254 o
~3.0

-30 -25 -20 -15 -1.0 -05 0.0 0.5

True log likelihood ratio
(usually don’t have this)

Credits: Johann Brehmer 52/59



Increased data efficiency

2D histogram —-= SALLY
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Credits: Johann Brehmer 53/59



Better sensitivity

Credits: Johann Brehmer
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Stronger bounds

Expected exclusion limits at 68%, 95%, 99.7% CL
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Summary



e Machine learning provides several solutions for simulation-based likelihood-
free inference.

e CARL defines an optimal solution for likelihood ratio estimation, which is itself
sufficient for inference.

e |tisoften possible to mine the joint likelihood, the joint likelihood ratio or the
joint score, which enables effective likelihood-free inference.
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The end.
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