
Deep Learning
Past, present and future

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 24

Past

1 / 24

How to write a computer program that performs tasks what we can all easily do,
yet all fail to describe precisely how?

1 / 24

Perceptron

The Perceptron (Rosenblatt, 1957)

f(x;w, b) = σ(w x+ b)T

2 / 24

The Multi-Layer Perceptron (Rumelhart et al, 1986)

3 / 24

Convolutional networks

Hubel and Wiesel, 1962

4 / 24

Convolutional network (LeCun et al, 1989)
5 / 24

Learning

θ = θ − γ∇ L(θ)t+1 t θ t

6 / 24

7 / 24

Present

7 / 24

8 / 24

8 / 24

Algorithms Data

Software Compute engines

What has changed?

9 / 24

Depth

Szegedy et al, 2014

10 / 24

Pixel data
(e.g., visual recognition)

Audio data
(e.g., speech recognition and synthesis)

Text data
(e.g., machine translation)

System applications
(e.g., databases)

Beyond domain-based approaches

11 / 24

Adversarial training Generative models

Few-shot learning Learning to learn

Beyond supervised learning

12 / 24

NVIDIA DRIVE Autonomous Vehicle Platform

Autonomous cars (NVIDIA)

13 / 24

DQN Breakout

Learning to play video games (Mnih et al, 2013)

14 / 24

Future

14 / 24

Andrej Karpathy (Director of AI, Tesla, 2017)

Neural networks are not just another classi�er, they represent the beginning of a
fundamental shift in how we write software. They are Software 2.0.

15 / 24

Software 1.0

Software 1.0
Programs are written in languages such as Python, C or Java.

They consist of explicit instructions to the computer written by a programmer.

The programmer identi�es a speci�c point in program space with some
desirable behavior.

16 / 24

Software 1.0 Software 2.0

Software 2.0
Programs are written in neural network weights

No human is involved in writing those weights!

Instead, specify constraints on the behavior of a desirable program (e.g.,
through data).

Search the program space through optimization.

17 / 24

For many real-world problems, it is often signi�cantly easier to collect the data than
to explicitly write the program.

Therefore,

programmers of tomorrow do not maintain complex software repositories,
write intricate programs or analyze their running times.

Instead, programmers become teachers. They collect, clean, manipulate, label,
analyze and visualize the data that feeds neural nets.

Fundamentally, deep learning enables a new methodology towards problem solving.

18 / 24

(Jeff Dean, Lead of Google.ai, 2017)

19 / 24

Bene�ts
Computationally homogeneous

Simple to bake in silicon

Constant running time and memory use

It is highly portable

It is very agile

It is better than you

20 / 24

Modules can meld into an optimal whole (Jeff Dean, Lead of Google.ai, 2017)

21 / 24

How do you trust systems made of
opaque neural networks, for which
domain knowledge seems to have
disappeared?

interpretability issues

accountability issues

security issues

Trust

22 / 24

Domain knowledge should not be abandoned.

Instead, use it to design neural networks,
thereby gaining in understanding and trust.

23 / 24

Summary
Past: Deep Learning has a long history, fueled by contributions from
neuroscience, control and computer science.

Present: It is now mature enough to enable applications with super-human
level performance, as already illustrated in many engineering disciplines.

Future: Neural networks are not just another classi�er. Sooner than later, they
will take over increasingly large portions of what Software 1.0 is responsible
for today.

24 / 24

The end.

24 / 24

